Polynomial convOIUtidn algOrithm for matrix multiplication
with application for optical computing

Richard Barakat and John Reif

First, we describe an algorithm (the polynomial convolution algorithm) for the multiplication of two rectangu-
lar matrices A and B. The algorithm codes the matrix elements of A and B into two polynomials in a common
indeterminate; the degree of the polynomial characterizing A depends on the size of both A and B, while the
degree of the polynomial characterizing B only involves the size of B. The matrix elements of the productC =
AB are obtainable from the convolution of the two polynomials. Althougli the resultant analysis is quite
complex, its implementation in optical computing can be carried out in straightforward fashion (see Sec. ITI).
The algorithm is at least as fast as the outer product and Kronecker product algorithms advocated by Athale-
Collins and Barakat, respectively, in the assumed conditions of equally accessible matrix elements. Second,
we consider the situation where the matrices are so large that they cannot be stored Sim‘ulta.peously on optical
masks. Itisshown that the speed advantages of the outer product and Kronecker product algorithins are now
lost in this situation, whereas the polynomial convolution algorithm, because of its modular structure, is
robust with respect to the storage problem. Finally, we consider some partitioning strategies in the light of

the storage problem.

I Introduction

It is generally agreed that in the realm of computa-
tional linear algebra, particularly the multiplication of
two matrices, optical computing has an inherent speed
of execution advantage over digital electronics (but see
Sec.IV). Investigators in optical computing have gen-
erally taken matrix multiplication algorithms directly
from the mathematical literature and modified them
for use in optical computing. Some representative
papers are Refs. 1-4. Alternately optical architec-
turés have been developed to carry out such computa-
tions, e.g., Refs. 5-11.

One purpose of the present paper is to describe our
polynomial convolution algorithm which is an ab initio
development of matrix multiplication for use in optical
computing. A second purpose is to consider the situa-
tion where the matrices are so large that they cannot be
stored simultaneously on optical masks (hereafter
termed the storage problem). As we show in Sec. IV,
the speed advantage of the methods advocated in Refs.

The authors are with Harvard University, Division of Applied
Sciences, Harvard University, Cambridge, Massachusetts 02138.

1-4 are compromised because the matrix elements are
not equally accessible. Furthermore, we make plausi-
ble that the polynominal convolution algorithm is ro-
bust with respect to this debilitating situation in that it
is still possible to obtain a reasonable concurrency over
the more classical algorithms because of the simplified
bookkeeping and modular structure of the convolution
algorithm.

Il. Polynomial Convolution Algorilhm

In view of the initial complexity of the algorithm we
proceed in three stages. In the first stage we give the
explicit expressions and verify these formulas in the
second stage. Finally, we outline a construction which
leads to the various formulas. _ o

‘We begin by considering the matrix product'C =
AB, where A is of the size n; X ns, B is of size ny X ng,
and C is of size n; X ng, with corresponding matrix
elements a;j, bjx, and c¢;z. Let x be an indeterminate
and associate with A and B the polynomials P(x) and
Q(x):

(ny—1)ngnatny—1 )
P@= Y p @
s=0
ngng—1
A= > g @
t=0

Note that the degree of P(x) is (n; — 1)nang + ng ~1;
which involves not only the size of A through n; and
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Fig. 1. Layout of the p vector (A) and q vector (B).

but also the size of B through nz. The degree of Q(x) is
ngng — 1 and only involves the size of B, namely, ns and
n3. The p and q coefficients are related to the matrix
elements of A and B by

Ps=a; fs=({—Dnmy+j-1 (3a)
=0, if(i—Lnyng+ny=<s=<inyng (3b)
and
q;= bjk, ift= kn2 "'j (48)
=0, ift<n,ny (4b)

withl<i<n,1<j<npand1<k=<ns
We claim that the elements of the matrix product C
.are given by selected coefficients of the polynomial

R(x) = P(x)Q(x)

nyngng-1
= Z rpx™, (5)
m=0
where
m
T'm = Z Pydm-s (6)

=0
is the discrete convolution of the p and g coefficients.
These selected r,, are given by

P =Cy, ifm=(—1nyng+kny—1, (N
‘A formal proof (which is really a verification of the

formulas) is now given. We begin by rewriting Eq (6)
in the form

Tm = zpsqm—s = z aijbjk: 8)
8

a,Bv,8
where the summation in the second series is over:

a s=({-lnmny+j—1; (9a)
B: (i —Dngng <s < ~1)nyng + ny; (9b)
v t=m=s=knyg—j; (9c)
&t <nyn, (9d)
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The « term is simply Eq. (3a), while the 8 term is the
negation of Eq. (3b). The v term follows from Eq.
(4a), while the é term is the negation of Eq. (4b). On
substitution of the « term into the 8 inequality we
immediately see that this can only be true:

1<j=n, (10)

In like fashion, substitution of the vy term into the &
inequality leads to the requirement that

m=(i—1nyny+kny~1, (11)

which is Eq. (7). Thus the formulas are verified.

A construction which leads to the various formulas
for p; and g; in terms of a;; and by, respectively, uses
row vectors. Consider a row vector p whose elements
we denote by p, [coefficients of the polynomial P(x)]
composed of the matrix elements a;; of A and strings of
zeros as depicted in Fig. 1(A). The range of s is

0 <s S nynyng—nong+ny,—1. (12)
Consequently

ps=0, ifs=(n;— Dngng+n, (13a)

=0, ifs=<insn, (13b)

Furthermore the p; is related to the a;; as given by Eq.
(3a), as the reader can verify by construction.

In like fashion, we construct another row vector q
with elements g; according to Fig. 1(B). Unlike p, q
has no strings of zero elements. The range of ¢ is

0St<nmg—1, (14)
so that
q, =0, ift2nyn, (15)
Within the range of ¢, the g; is related to the bj, by
q,= J:,,, ift=F=1ny,+n,—}j, (16)

which reduces to Eq. (4a).
As an illustrative example of the algorithm, consider
the case where Ais 2 X 2, Bis 2 X 8sothat Cis 2 X 3



(i.e., ny =2, ny = 2, ng = 3). The upper limits on the
polynomials P, @, and R are 7, 5, and 11, respectively.
The p;, g;, and ry, coefficients evaluated according to
Eqgs. (3), (4), and (7) are listed in Table . On carrying
out the convolution operation, Eq. (6), in conjunction
with this table we have

Ty = ey = Pody + P19y = ayybyy + 615byy, (17a)
T3 = €12 = Pod3 + P14z = 813byg + ay3by, (17b)
Is = €13 = Pyd5 + P1gy = ay1byy T aygbs,, (17¢)
Iy = €1 = Pedy + Prdo = anbyy + agby, (17d)
Iy = Cgp = Pgd3 + Pea = Gg1byg + aggbyy; (17¢)
iy = Cp3 = Peqs + Prgy = Gg1byg + Ggobg. (1)

These are the matrix elements as obtained by more
standard procedures.
This completes our description of the algorithm.

. Implementation and Parallelism of Algorithm

In spite of the complicated looking nature of the
algorithm, its implementation in optical computing
can be carried out in straightforward fashion.

Examination of Fig. 1(A) shows that the matrix ele-
ments a;; of A coded into the vector p consists of the
rows of A in which strings of zeros are interspaced.

Thus all we need to do to handle A in this algorithm is

to store it on an optical mask according to Fig. 1(A).
The vector q containing the matrix elements by, is
simply the columns of B in reverse order [see Fig.
1(B)]. Obviously we need only code B as per Fig. 1(B)
on an optical mask for this aspect of the implementa-
tion. Given that both these operations have been
carried out, we proceed according to the various formu-
las quoted in the previous section.

The parallelism of the algorithm (assuming that all
the matrix elements of A and B can be stored in prima-
ry storage) manifests itself through the corresponding
p and q vectors. This is best seen by examination of
Table I; the first two components of p (i.e., a;; and a;2)
can then be combined simultaneously with (ba1, b17),
(b2g, b12), and (bgs, by3) of the vector q. While these
- operations are being carried out, the last two (nonzero)
elements of p (i.e., az; and ago) are to be combined with
(b21, biy), (baz, b1g), (bas, bi3). Thus we are able to carry
out the manipulations leading to the six matrix ele-
ments of C simultaneously. The general case of two
rectangular matrices does not require detailed com-
ment. Consequently, the polynomial convolution al-
gorithm is at least as fast as the methods advocated in
Refs. 2 and 4 under the assumed conditions of equally
accessible matrix elements.

IV. Influence of Storage Problem on Algorithm
Parallelism in Matrix Multiplication '

Although the issue of matrix multiplication, in the
context of optical computing, has been cast as one of
speed of execution of manipulations, this is only one
aspect of the problem as we will now see. Realistic
signal-processing requirements demand very large ma-

Tablel. Listing of the p, g, and r Coefficients for the Case Where A Is 2 X
d 2,Bis2X3,andCls2X3.

Ds qe 'm
0 an b
1 a1z b o1
2 0 boe
3 0 bys c12
4 0 bas
5 0 bia c13
6 ag
7 az c21
8 0
9 0 Co2
10 0
11 0 Ca3
12 0

trices to achieve the resolutions necessary to fulfill the
desired goals. Because such large matrices are needed
we must study the effect of storage (that is, the extent
to which all matrix elements in the two matrices under
multiplication are not equally accessible) on the inher-
ent parallelism, and hence speed, of the various algo-
rithms proposed.

When the matrices are small (for convenience we let
them both be square and of size n X n), the entire
arrays containing the matrix elements of A and B can
reside simultaneously in primary storage in the form of
matrix masks as described in Goodman.!2 Then it is
possible to carry out all the manipulations such as
described in the algorithms promulgated in Refs. 1-4.
Under the small n regime it is essentially true that all
matrix elements are equally accessible. Infact, all the
papers that we have succeeded in locating on matrix
multiplication (via optical computing) tacitly make
the assumption that all matrix elements are equally
accessible, independent of n.

Let us consider, for example, the inner, intermedi-
ate, and outer product methods for the multiplication
of matrices. Reference is made to the Appendix for
development of an efficient formalism that yields
these representations. Examination of these repre-
sentations reveals that it is possible to perform the
matrix—matrix product at two levels of parallelism. At
the first level, the intermediate product methods
speed up the execution over the inner product method
by afactorof n. At thesecond level, the outer product
method achieves a factor of n2 over the inner product
method. In fact, there are n parallel multiplications
and (n — 1) paralle]l additions to be performed rather
than the n3 sequential multiplications and (n3 — n?)
sequential additions required at the original element
level algorithm., Unfortunately when n is large, the
entire arrays cannot reside in primary storage but only
portions thereof. This means that the speed advan-
tage of the outer product method is now lost when
computing large matrices, because the matrix ele-
ments are not equally accessible! A second tacit as-
sumption is that all arithmetical operations of the
same type are equivalent in both cost and accuracy.
This too is violated when n is large.

2709



Thus we cannot simply dismiss the use of the inter-
mediate product representations when n is large. To
improve the efficiency of the computation in this situa-
tion, it is necessary to maximize the use that is made of
the matrix element data on a given matrix mask (con-
taining parts of A or B) while it is in primary storage.
It is probably advantageous to store matrix elements
by columns, This is precisely what the column inter-
mediate representation does: Ce; is formed as a linear
combination of Ae, with a combination coefficient
drawn from Be;. Obviously one can choose to stow
rows so that the row intermediate representations are
‘appropriate. In this scenario, we can only achieve a
factor of n in the parallelism to accommodate the
storage problem. There is also the bookkeeping ques-
tion as to efficient storage and subsequent manipula-
tion of the matrix elements in accordance with the
particular algorithm requirements. See Hockney and
Jesshope! for an overview of such considerations in
digital electronic computers.

One possible solution for increasing parallelism
when 7 is large is via partitioning. The idea is certain-
ly not new as witness the recent paper by Caulfied et
al.3 who choose to use 2 X 2 matrices for the partition-
ing. Another viable approach using the formalism of
the Appendix is the following. Suppose that A, B, and
C are partitioned into submatrices. This means that
the partitioning of the rows of A and those of C is the
same, that the partitioning of the columns of B and
those of C is the same, and that the partitioning of the
columns of A and of the rows B is the same. The
matrix product can then be formed blockwise. The
foregoing remains valid if transcribed by replacing e;
by E; etc. E; is the ith block column of the appropri-
ately partitioned identity matrix, the appropriate par-
titioning being that which is symmetric with respect to
rows and columns for the matrix multiplication in
question. Consequently, we recognize AE; as the jth
block column of A, E;" A as the ith block row of A, and
E} AE; as the (i,/)th block element of A; thus we have

I= Z EkE: . (18)
k

It may be possible tostore large matrices in partitioned
form with the natural units to be stored and manipu-
lated being the submatrices constituting the blocks.
What of the other approaches as influenced by the
storage problem? The reduction to an equivalent ma-
trix—vector problem advocated by Barakat? suffers the
same fate as the outer product representation when n
is large in that all the matrix elements are not equally
accessible. Reference 4, see Eq. (1), shows that the
Roth column decomposition of AB contains replicas of
the matrix A along the principal diagonal, so that in
this version all the matrix elements cannot be held in
primary storage. Thus for large n, the parallelism
inherent in the general reduction to the Roth column
decomposition for matrix—vector multiplications is in-
hibited. However, there is also a Roth row decomposi-
tion of AB [see Eq. (4) of Ref. 4], in which the matrix
elements of A are now spread along diagonals. It was
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hoped, in view of the previous work by Madsen et al.1¢
on matrix multiplication by diagonals, that the storage
problem could be circumvented. A detailed analysis
which we need not reproduce indicates that the row
decomposition is no more efficient than the column
decomposition regarding the primary storage of matrix
elements.

Finally we come to the algorithm of the present
paper. The implementation of the algorithm as dis-
cussed in Sec. ITI bears directly on the storage problem.
When the matrices are large enough to violate the
equal accessibility condition, we can still maintain a
reduced degree of parallelism because the convolution
algorithm does not require the rather complicated
bookkeeping that the column middle product decom-
position necessitates before calculations can be carried
out. Even though we cannot simultaneously store all
the matrix elements of A and B, the convolution algo-
rithm only requires the rows of A to be stored on
separate optical masks so they can interact with the
successive columns (in reverse order) of B and sequen-
tially stand on optical masks to produce the various
rowsof C. Consequently when both A and B are large,
we can still maintain a degree of parallelism because we
do not require all the matrix elements of A and B to be
in primary storage simultaneously. All we need in
primary storage are the respective row and column of A
and B. Thus the polynomial convolution algorithm
seems to be more immune to the storage problem than
do the algorithms in Refs. 2 and 4. This is because
both the outer product and Kronecker product decom-
position algorithms are not modular in structure; if the
equal accessibility condition is violated there is no way
to patch them up to work in the situation where the
matrices are very large. It may be possible to employ
partitioning as described in Ref. 3 or in the present
paper; however, the bookkeeping is probably going to
be a significant obstacle.
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RGB Associates, Inc.) by the Innovative Science and
Technology Office for the Strategic Defense Initiative
Organization and was administered through the Office
of Naval Research under contracts N00014-85-K-0479
and N00014-86-K-0591.

Appendix

The purpose of this Appendix is to outline an effi-
cient formalism (due to our colleague D. G. M. Ander-
son, unpublished) describing the inner product, inter-
mediate product, and outer product representations of
matrix multiplication. We further employ this for-
malism to discuss matrix partitioning, see Eq. (18).

To begin we avoid unnecessary complications by
assuming that the two matrices, call them A and B, are
square. Itisalso convenient to use the vector ek which
is the kth column of the unit matrix, i.e.,

I=) eef- (A1)



and the plus sign denotes the transpose (thus etisa
row vector). Given the square matrix A, we have

Jth colum of A = Ae;,

ithrowof A = e} A,

(1,/)th element of A = e} Ae;.

The usual element representation of the matrix
product C = AB reads in the above notation

e} Ce; = Z (ef Aey) (e} Be)). (A2)

The element representation is the old fashioned way
that matrices were multiplied before high level pro-
gramming languages were invented.

To obtain the inner product representation, we be-
gin with the element representation, Eq. (A2), and
delete the parenthesis on the right-hand; thus

e} Ce; = Z e} AeeiBe;
3

= (e}A) [ z e,,e,;f] (Be)
k

= (efA)(Be)). (A3)

The reason it is termed the inner product representa-
tion is that the matrices A and B are sandwiched
between the unit vectors.

At the other extreme, we have the outer product
representation which we obtain in the following fash-
ion from the element representation, Eq. (A2):

e}'Ce; = z e}Ae,Be; = ef [ Z (Ae,)(efB) ] e (A9)
k k
Consequently,
C= Z (Aep(efB). (A5)
k

The reason it is termed the outer product representa-
tion is that the matrices A and B now reside at the
extreme left and right of the summation. This expres-
sion can be shown to be equivalent to the expression
given in Athale and Collins?, see their Eq. (2).

We next consider two intermediate representations
which we term the column intermediate product
representation and the row intermediate product
representation. We return again to Eq. (A2):

e/Cej= D efAcyeiBe; = cf > (Aeyei(Bey)], (A6)
k k

or

Ce; = " (Aey)[e} (Bey)]. (A7)
k

This is the column intermediate product. The corre-
sponding row intermediate product is

el Ce; = Z [(e} A)e,] (e} B)e; (A8)
k
or
eC= Z [(e}A)es](ei B). (A9)
k

It is a straightforward exercise to extend the above
formalism to accommodate rectangular matrices; we
omit the details,
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