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Abstract

We present a divide and conquer based algorithm for optimal quantum compression / de-
compression, using O (n(log* n) log log n) elementary quantum operations . Our result pro-
vides the first quasi-linear time algorithm for asymptotically optimal (in size and fidelity)
quantum compression and decompression. We also outline the quantum gate array model
to bring about this compression in a quantum computer. Our method uses various classical
algorithmic tools to significantly improve the bound from the previous best known bound of
O(n?)(R. Cleve, D. P. DiVincenzo, Schumacher’s quantum data compression as a quantum
computation, Phys. Rev. A, 54, 1996, 2636-2650) for this operation.
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1 Introduction

1.1 Quantum Computation

Quantum Computation (QC) is a computing model that applies quantum me-
chanics to do computation. (Computations and methods not making use of quantum
mechanics will be termed classical). A single molecule (or collection of .particles
and/or atoms) may have n degrees of freedom known as qubits. Associated with
each fixed setting X of the n qubits to boolean values is a basis state denoted
|a). Quantum mechanics allows for a linear superposition of these basis states to
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exist simultaneously. Each basis state |a) of the superposition is assigned a given
complex amplitude «; this is denoted a|a). Unitary transformations are reversible
operations on the superpositions which can be represented by unitary matrices A
(e.g., permutation matrices, rotation matrices, and the matrices of Fourier trans-
forms) where AA* = A*A = I (we use A* to denote the conjugate transpose
(hermitian) of matrix A). The sum of the squares of the magnitudes of the ampli-
tudes of all basis states is 1. This sum remains invariant due to the application of
unitary transformations. The Hilbert space H, is the set of all possible such linear
superpositions.

Operations executed on these superpositions allowed by QC can be classified into
two main categories: (i) unitary operations, and (ii) observation operations, which
allow for the (strong) measurement of each qubit, providing a mapping from the
current superposition to a superposition where the measured qubit is assigned a
boolean value with probability given by the square of the amplitude of the qubit in
its original superposition. Elementary unitary operations that suffice for any quan-
tum computation over qubits [2,12] include a conditional form of the conditional
XOR operation &, the boolean operation NOT, and a constant boolean operation
yielding 0. The time bound for a quantum computations is defined to be the number
of such elementary unitary operations.

Deutsch[11] defined a quantum computing model known as a quantum gate array
which allows execution of a sequence of quantum gates, where each input is a qubit,
and each gate computes a unitary transformation. We will assume this model, with
the above elementary unitary operations for the gates.

1.2 Classical Lossless Compression

Suppose n characters from a finite alphabet > are each sampled independently
over some probability distribution p. In classical information theory, the Shannon
entropy of each character is Hx(p) = — X ,cx p(a) logp(a). The compression rate
is the ratio between the length of an uncompressed string and the length of the
compressed (binary) string.

There are many algorithms for universal data compression in classical domain. One
such efficient and widely used data compression algorithm is due to Ziv and Lempel

[9].

They present a simple linear time lossless compression algorithm having an asymp-
totic compression rate approaching the source’s entropy; that is allows a string of
length n to be losslessly compressed to a bit string of length asymptotic approach-
ing Hy(p)n for large n. In the first pass, they use a parsing scheme to encode the
source string into unique prefixes. In the second pass, they use this encoded infor-
mation to recover the original string without error.



Unfortunately, developing a quantum analog of Ziv and Lempel’s universal data
compression in the classical domain is not trivial since keeping track of prefixes
require multiple measurements of the same qubits which makes the operation ir-
reversible. The same difficulties appear to hold for all other known classical com-
pression algorithms [9].

1.3 Quantum Lossless Compression

It may be very advantageous to decrease, where possible by compression methods,
the number of qubits used for quantum communication and storage. Holevo [14],
Fuchs and Caves [13] and Reif [21] have results that imply that quantum methods
can not increase the bandwidth for transmission of classical information. However,
entangled quantum states can be compressed much more than possible via classical
lossless compression. Following Schumacher [22], we assume there is a finite quan-
tum state ensemble (X', p) which is a mixed state consisting of a finite number of
qubit states X' = {]ao), . . ., |a|sy|—1) }, Where each |a;) € ¥’ has probability p;. The
compressor is assumed to act on blocks of n qubits (so is a block compressor), and
is assumed to know this underlying ensemble (X', p). The density matrix of (X', p)
is an |¥'| x |X'| matrix p = Zgo‘_lpﬂai)(aﬂ, where |a;)(a;| is the projection op-
erator on the signal state |a;). The von Neumann entropy ([20,22]) corresponding
to (X', p) is Hyny(p) = —Tr(plogp) where Tr is the trace operator. In general,
the Shannon entropy Hsyy(p) is greater than or equal to the von Neumann entropy.
These entropies are equal only when the states in ¥’ are mutually orthogonal.

The unitary compression and decompression mappings need to preserve the num-
ber of bits (some of which are ignored). An n-to-n’ quantum compressor is a unitary
transformation that maps n-qubit strings to n-qubit strings; the first n’ qubits that
are output by the compressor are taken as the compressed version of its input, and
the remaining n — n’ qubits are discarded. An n'-to-n decompressor is a unitary
transformation that maps n-qubit strings to n-qubit strings; the first n’ qubits input
to the decompressor are the compressed version of the uncompressed n qubits, and
the remaining n — n’ qubits are all 0. The source to the compression scheme is
assumed to be a sequence of n qubits sampled independently from (X', p). The ob-
served output is the result of first compressing the input qubits, then decompressing
them, and finally measurement of the result (over a basis containing the n inputs). 3
The fidelity of the compression scheme is the probability that the observed output
is equal to the original input (that is the probability that the original qubits are cor-
rectly recovered, from the compressed qubits). Our goal is a quantum compression

3 One of the most interesting parts of quantum compression, is that p could represent the
reduced state of some larger system, and the compression will preserve the entanglement
within this larger system. If one just measures after compression, there may as well have
been a measurement before compression, which allows a completely classical scheme.



with both high fidelity and a high compression rate.

Schumacher [22] gave a quantum coding theorem which provided asymptotically
optimal (in size and fidelity) compression of a sequence of qubits independently
sampled from a finite quantum state ensemble (X', p).

Theorem 1.1 The quantum coding theorem [22], states that for any €,6 > 0 and
sufficiently large n, (i) there is a quantum compression scheme that achieves asymp-
totic compression rate < (Hy n(p) + 0) with fidelity at least 1 —e and, (ii) any quan-
tum compression scheme that gives asymptotic compression rate < (Hy n(p) — 0)
has fidelity < e.

In other words, in the limit of large code-block size, the source’s von Neumann
entropy Hy n(p) is asymptotically the number of qubits per source state which is
necessary and sufficient to encode the output of the source with arbitrarily high
fidelity. Given a known finite quantum state ensemble (3, p), Schumacher’s com-
pression scheme assumes a known basis for which the density matrix p is diagonal,
with non-increasing values along the diagonal. The proof of the Schumacher quan-
tum coding theorem and its refinements by Jozsa and Schumacher [15], Barnum et
al [1], and H. Szeto [25] make use of the existence of a typical subspace A within
a Hilbert space of n qubits over a source of von Neumann entropy Hy y(p). These
proofs are not constructive.

Bennett [6] gave a constructive method for doing Schumacher compression. He
observed that the Schumacher compression can be done by a unitary mapping to a
basis for which the density matrix p is diagonal (in certain simple cases the density
matrix p is already diagonal, e.g., when the input is a set of n identical qubits)
followed by certain combinatorial computation which we will call the Schumacher
compression function. The Schumacher compression function S' simply orders the
basis states first by the number of ones (from smallest to largest) that are in the
binary expansion of the bits and then refines this order by a lexical sort of the
binary expansion of the bits. That is, all strings with ¢ ones are mapped before
all strings with ¢ + 1 ones, and those strings with the same number of ones are
lexically ordered. Note that for any given value X of the qubits, this transformation
S(X) is simply a deterministic mapping from an n bit sequence to a n’ bit sequence
defined by a combinatorial computation. In particular, given an n bit binary string
X, the Schumacher compression function S(.X) is the number of n bit strings so
ordered before X. It is easy to show that the Schumacher compression function is
a permutation. Since it is a permutation, it is a bijective function which is uniquely
reversible, and also is a unitary transformation.

To ensure that the overall transformation (for all the states) is a quantum com-
putation, it is essential that the Schumacher compression function be done using
only reversible, quantum-coherent elementary operations. Bennett et al [7] gave a
polynomial time quantum algorithm for the related problem of extraction of only



classical information from a quantum noiseless coding. Cleve, DiVincenzo [10]
then developed the first polynomial time algorithm for Schumacher compression
of n qubits. In particular, they explicitly computed the bijective function defined
by the Schumacher compression function and its reverse using O(n?) reversible,
elementary unitary operations.

The Schumacher quantum coding theorem assumes the compressor knows the source.
Jozsa et al [16] recently gave a generalization of the Schumacher compression
to the case where the compressor does not know the source, thus providing the
first asymptotically optimal universal algorithm for quantum compression. Also,
Braustein et al [8] have recently given a fast algorithm for a quantum analog of
Huffman coding, but do not provide a proof that this coding gives asymptotically
optimal quantum compression (that is, reaches the von Neumann entropy), as pro-
vided by Schumacher compression.

1.4 Organization and Results

In Section 2, we give an efficient deterministic algorithm for a modified Schu-
macher compression encoding function S’(X) (also with asymptotically optimal
size and fidelity) using O(n(log" n)loglogn) boolean operations. Next, in Sec-
tion 3 we show that, exploiting the inherent binary tree structure of our modified
quantum compression algorithm and using known efficient quantum algorithms for
conditional boolean operations and integer arithmetic, we can execute our quantum
compression algorithm on a quantum gate array in asymptotically the same number
(O(n(log* n)loglogn)) of operations as required by our reversible algorithm for
our modified Schumacher encoding function. Then in Section 4 we show how the
various subroutines required by our algorithm can be made reversible, and the mod-
ified Schumacher encoding and decoding can be efficiently computed by a quantum
computer within the O(n(log" n)loglogn) elementary unitary steps. In the same
Section we give recursive, reversible algorithms for some required combinatorial
and double combinatorial sums. This result is a considerable reduction from the
previous best time bounds of O(n?) for Schumacher compression due to Cleve, Di-
Vincenzo [10]. Due to the use of Schumacher-type encoding, our compression and
fidelity bounds are asymptotically optimal. For simplicity, our algorithm assumes
the compressor knows the source, but can be extended to a asymptotically optimal
universal algorithm for quantum compression where the compressor does not know
the source, using the techniques of Jozsa et al [16].



2 Deterministic Computation of a Modified Schumacher Compression

The number of n bit (henceforth, we use qubit and bit interchangeably when the
context is clear) numbers with exactly m ones, for 1 < m < mn,is (,;) = (n#l)'m‘

For m < 0 or m > n, we define (,,) = 0. For any 1 < m < n, the number of
n bit numbers with < m ones is 1 + ,,,, where o,,,,, = > (7). In Section
4 we give an efficient reversible algorithm for the combinatorial sum o, ,,, using

O(M (mlogn)log m) boolean operations, where M (N) = O(N log N loglog N).

Let X and Y be n bit strings, and suppose X has exactly m ones. Let X = X' X",
and Y = Y'Y"” where X', Y’ each have n’ = |[n/2] bits and X", Y” each have
n” =n—n'=[n/2]bits. Let Y < X (we say Y is lexically less than X) if either
(a) Y has less than m ones, or (b) Y has m ones and either (i) Y/’ < X', or (ii)
Y =X"butY” < X”.

For n bit X with m ones, we will redefine our compression function S’(X) =
S'(X,n,m) to be the number of n bit binary numbers Y such that ¥ < X.
Since our modified Schumacher encoding S’(.X') simply is a permutation of Schu-
macher’s original encoding S(X), this modified Schumacher encoding S’ (X ) clearly
has the same fidelity as the original Schumacher compression.

Let L(X) = L(X,n,m) be the number of distinct n bit binary numbers, with ex-
actly m ones, that are lexically less than X. (Note that, S’(X, n, m) and L(X, n, m)
each need only to be a function of X, and the additional arguments n and m will be
used for notational convenience in the proofs.) Forn = 1, S’(0) = 0 and S’(1) =1
and so in this case S’(X) = X is the identity map. Also, clearly if X has any num-
ber n of bits but m = 0 ones, then S'(X) = X again is the identity map. For the
general case n > 1 and m > 1, since every n bit binary number with less than m
ones are lexically less than X, and there are 1 + o, ,,, such numbers, it follows that
S"(X,n,m) =1+ o,m + L(X,n,m).

The following Lemma gives the divide and conquer approach to compute L(.X, n, m).

Lemma 2.1 Let X be any n bit binary number with m ones. If m = 0 orn = 1
then L(X,n,m) = 0. Otherwise, if m > 1 and n > 1 then X = X' X' where X’

has n' = |n/2| bits and m’' ones and X" has n” = [n/2] bits and m” = m —m’
ones, then L(X,n,m) = (") + 0, v +L(X',n',m’) (Z’,’,) + L(X",n" m"),
where O-;L,m,m’ = ;711_1 (73/) (n?iz) .

Proof by induction: Case m = 0: In the case m = 0 where X has no ones,

so is all zeros, no other number of the same length is lexically less than X, so
L(X,n,m) = 0.

Case n = 1: The case n = 1 is also trivial, since the number of 1 bit numbers



lexically less than the number itself, having the same number of ones is always 0
irrespective of whether the number is 1 or 0.

Case m > 1and n > 1: Let X be an n bit number with m ones. We can divide
X as X = X'X” where X' is an’ = [n/2] number with the first n’ bits of X
and X" has the last n” = |n/2] bits of X. Let the number of ones in X’ be m/
and that in X” be m” = m — m’. By the induction assumption (a) the number of
n’ bit numbers having exactly m’ ones that are lexically less than X' is given by
L(X’,n’,m’), and (b) the number of »n” bit numbers having exactly m” ones that
are lexically less than X" is given by L(X"”, n” m").

Our goal now is to determine the number of n bit numbers Y that are lexically less
than X but have the same number m of ones as X. We can similarly divide Y as
Y = Y'Y” where Y’ is a n’ number with the first n’ bits of Y and Y has the last
n” bits of Y. In this case Y < X if either:

Y < X' or

(Y =X"butY” < X"

The number of n bit numbers satisfying case (i) can be divided into following three
categories.

e The number of n bit numbers having no ones in the first n’ bits , so Y’ has no
ones. This quantity is equal to (7 ) which is the number of arrangements of m
ones in the last n” bits .

e The number of n bit numbers that are less than m’ ones (but at least one) in
their first n’ bits. This quantity is given by o, . .,, where o, ., = Z?L:/f L( ")
(ﬂ?ﬂi) is the number of distinct n bit binary numbers with 7 ones in the first n’
bits, where 1 < i < m' — 1, and m — i ones in the last n” bits.

e The number of n’ bit numbers that have m’ ones in their first n’ bits but are
lexically less than X'. This quantity is given by the induction assumption (=
L(X’,n’;m')). But for each such arrangement we can have (;}1',', ) arrangements
of the last n” bits of X and all those numbers will be lexically less than X".
So the number of n bit numbers having exactly m’ ones in the first n’ bits but

lexically less than X" is: L(X’,n/, m’) ([f;f, )

Hence we conclude that the total number of n bit numbers where Y/ < X’ (as
considered in case (i) ) is given by (™) + 0, ,,, v + L(X', 0/, m) (Z’/’) .

The case (ii) is when Y’ = X’ but Y” < X”. In other words, we have to count the
number of n bit numbers whose first n’ bits are same(= X’) such that it has exactly
m” ones in the last n” bits but are lexically less than X"”. This is again given by the
induction assumption (= L(X",n",m")).

Thus we have considered all possible cases and therefore the total number of n
bit numbers having exactly m ones which are lexically less than X is given by:
L(X,n,m) = (70) + Oy +L(X" 0, m') (2,) 4+ L(X", 0", m"). Hence the



Lemma is true foralln and m < n. B

Since the sum o7, ., ../ is a product of O(m) numbers each with O(log n) bits, it fol-
lows that o;, . ., is an O(mlog n) bit number. In Section 4, we give an efficient re-
versible algorithm for the double combinatorial sum o, ,,, ..., using O(M (m log n) log m)
boolean operations (using a recursive method similar to our algorithm for evalua-

tion of o, ,, also given in Section 4).

The above recurrences for L(X,n,m) and S"(X,n,m) =1+ 0,,, + L(X,n,m)
can thus be bounded as T'(n,m) < O(M(mlogn)logm) + 27 (n/2, m). Here
M (N), is the time taken to multiply two N bit numbers. Hence we have:

Corollary 2.1 The forward computation of S’'(X, n, m) uses O(M (nlogn)logmlogn)
< O(n(log* n) loglog n) boolean operations, where M(N) < O(N(log N) loglog N).

Next, we observe that we can reversibly compute the inverse function of S’(X) by
the following Lemma.

Lemma 2.2 The backward computation of S'(X,n,m) costs asymptotically the
same number of boolean operations as the forward computation
(= O(n(log' n)loglog n)).

Proof: Given S' = S’'(X), we can count the number of bits n of the input. We
can also determine the number m of ones of X and L(X,n,m) from S’ simultane-
ously, by applying a trick shown in Section 3. The recursive formula and the inverse
computation of a,, .., uses O(M (mlogn)logm) reversible boolean operations,
as described in section 4. Then we recursively determine the position of ones within
X by recursively determining the position of ones within X’ and X", where X' has
n' = |n/2] bits and m’ ones and X" has n” = [n/2] bits. We do this for m > 1
and n > 1 by applying the recursive formula: L(X,n,m) = (%) + 0}, v +
L(X',n',m’) (%’,’,) + L(X",n"”,m"). Since there are again O(logn) stages, each
of which costs O(M (mlogn)logm)< O(n(log® n) loglog n), the time cost of this
inverse computation is < O(n(log* n)loglog n), which is asymptotically the same
as the forward computation of the S’(X, n, m) function. W

Hence, from the Corollary 2.1 and Lemma 2.2, we have the following important
result.

Corollary 2.2 We can reversibly compute in time O(n(log* n) loglogn) the bijec-
tion Schumacher compression function S'(X).

Next in Section 3 we show that, we can execute our quantum compression algo-
rithm on a quantum gate array in asymptotically the same number O (n(log* n) log log n)
of elementary unitary operations as required by Corollary 2.2.



3 Quantum Computation of the Modified Schumacher compression using
quantum gates

3.1 Forward Computation of S'(X)

Given that we can reversibly compute in time O(n(log* n)loglogn) the bijection
S’(X), we now show that we can compute S’ (X ) in O(n(log* n) loglog ) elemen-
tary unitary operations like the conditional form of the conditional XOR operation
@, the boolean operation NOT, and a constant boolean operation yielding 0 on a
quantum gate array. Recall that for n = 1 or m = 0, then S’(X) = X. For simplic-
ity, we also assume 7 is a power of 2. (If this later restriction is removed then we
can still construct a binary tree generalization (as discussed later) except that now
we would get a complete binary tree instead of a full binary tree.)

The pseudocode for the recursive algorithm to compute S’(X) outlined in Section
2 is shown below. For our implementation we assume that we have three quantum
registers to start with:

X : an n-bit register used as the input

L : an n-bit register (initialized to 0) used as the output

W : an [(logn)]-bit register (initialized to 0) used as the work register to store
intermediate results

Our first goal is to compute the following operation on the registers (X, L, W):
(X,0,0) — (X,5(X),0). We do this by recursively computing L(X,n,m) and
assigning this value to register L, and from this we determine S’(X) and update
the register L to this value. In Section 4 we will see that we can achieve the desired
final output state (S’(X), 0,0) with no additional storage for the input.

We assume a simple subroutine NUMONES that counts the number of ones in it’s
argument. Hence, if the size of the argument passed to NUMONES is of size n then
the size of the output returned by it is O(logn).

In the recursive algorithm to compute L(X,n,m), m,m’ and m” are work reg-
isters used for temporary storage and addition operations at each iteration of the
while loop in algorithm 1. The addition(+) and the multiplication operations(-) are
the standard arithmetic addition and multiplication of qubits as shown in Vedral et
al[27]. The notation < has been used specifically to differentiate quantum assign-
ments from normal assignments denoted by =. Also the notation X{; ; (respectively
Ly; j)) represents the substring of the register X (respectively L) starting from the
ith bit to the jth bit. Note that since the register L is initialized to 0, so is Ly j.
Also, note that in the case m = 0 or n = 1, no bits of L are assigned to, so it
remains 0.



Algorithm 1 Recursive algorithm to compute L(X,n,m)
fori = 1to [logn]| do
k=1
while £ +2° — 1 < n do
m/ — NUMONES (X ;. j42i-1_1))
m” < NUMONES (X[k+2i717k+2i_1])
m «— m/ + m
if m > 0 and n > 1 then
Apply this recursive algorithm to compute L (X, p2i-1-1], 2", m) with
the side effect of assigning the result to Ly, 10i_1).
Apply this recursive algorithm to compute L(X o1 jr2i—1], 271, m”)
with the side effect of assigning the result to L 9i-1 j10i 1]
Ly gy 2i—1] < ( 2 ) + 0%y + L pr2i-1-1) ( 2 ) + Lot j2i—1)
ke—Fk+2
end while
end for

The assignment:

Lig gyoi—1) < (2;1) + 0%t + Lipyai-1-1) - (27;7/1) + Ligyoi-1 py2i-1]

is justified by Lemma 2.1, and allows us an inductive proof of the recursive algo-
rithm for computing L(X, n,m). At each step we have L; jj(= L(X[; 1, n1,m1)),
where n; and m, are the number of bits and number of ones in the [¢, j| substring
of the register X. As we go higher in the recursion we use the value calculated in
the earlier recursion step with no additional storage.

The next goal is to translate algorithm 1 into a sequence of elementary quantum
mechanical operations (again we assume that n is a power of 2).

The main constraint of these operations is that they must obey the reversibility
criteria. Its easy to see that the algorithm being recursive has a built in binary tree
structure. The calculation of the function L(X, n, m) at each recursive step requires
the values calculated at the previous step involving half the number of bits.

The overall organization of the logic gates for performing the tree based operation
is shown in figure 1. The recursion in the equation of Lemma 2.1 is only due to the
computation of the number of n bit numbers which have equal number of ones but
are lexically less than X (i.e. L(X,n,m)). So, the tree performs this computation of
L(X,n,m) in a bottom up manner. At each level i of the tree, the register L stores
the L(X, 2%, m;) values in n/2’ tuples of the bits of L. Here, m; is the number of
ones in the n/2" tuples of X. At the (i + 1)th level of the recursive algorithm takes
the L values of its two children as input and performs the needed multiplication
and evaluation of combinatorial and double combinatorial forms involving 2¢+!
bits each(Lemma 2.1) to get L(X, 2" m, ;). An important thing to note here is

10



n 1-tuple n/2 2—tuples n/4 4—tuples 1 n—tuple

L(X,4,m) -
> L(X,2,m) -
n E n/2 E En/4
> L(X,2,m) -
L(X,4,m) -
> L(X,2,m) -

Fig. 1. The quantum gate array to compute L(X,n,m).

that we get away with the effort of calculating the m;(the number of ones) values at
each ith step by just adding the m,_; values of the two children and storing it in the
work registers /. At the end of recursion, register L has L(X,n, m).If m = 0 then
L(xz,n,m) = X and S'(X) = X, so the register L already has the correct value of
S’X). Otherwise, if m > 1 we perform the following final additional operation to
compute S’(X):

L+—L+oym+1.
This will give us the state (X, S’(X),0). By the help of the well known Lemma

4.1 stated in Section 4, we can get the desired state (S’(X), 0, 0) with no additional
time or storage penalty.

3.2 Analysis

Here, we obtain the time and space bounds of our binary tree implementation of
the compression algorithm. As shown below, the time requirements of the unitary
operations needed to perform the computation is same as stated in Section 2.

11



Time Complexity. In the binary tree implementation described earlier, as we go up
the recursion tree, at each level i we perform n/ 2% combinatorial sums and double
combinatorial sums (as in equation 2.1) involving 2° bits each. As we will see later
in Section 4, the reversible computation of combinatorial sums and double combi-
natorial sums involving n bits is O(M (n log n) log n) boolean operations where M
is the complexity of multiplying two numbers having n bits(=0O(n log n log logn)).
So, the total time complexity of computation of L(X, m, n) in this binary tree or-
ganization is:

s losn] 2O0(M(m;log 2") log m;) (m; is the maximum number of ones in a 2° tuple
at the sth stage)

= 2" 5 O(M (im;) log m;)
< ST 20 (im; log(mii) log log(myi) log m,)
< sl O (i3 1og i) (since my; < 27)

< O(n(log* n) loglogn)

The final operation L < L + 0, ,, + 1 used to compute S’(X') when m > 1 also
needs O(n log®W n) operations (which is essentially the time taken to compute
On.m)- S0 overall time complexity is given by O(n(log n) loglogn).

Space Complexity. It is shown in Cleve et al[10] that the space required to perform
multiplication of two numbers of n qubits each, requires 3n (= O(n)) qubit auxil-
iary registers. So, the overall auxiliary storage requirement for the above gate array
implementation has the following form:

Zlﬂzof; n] %O(mi log 2*) (m; is the maximum number of ones in a 2° tuple at the ith
stage)

= Zlﬂzolg n %O(zm,)

< 2" n0(i) (since m; < 2°) < O(n(log?n))

3.3 Quantum Decompression via Reverse computation of S'(X)

For reverse computation, we start with an n-bit number S’, the output of S’(X') and
then using unitary operations recover the original input X .

Recall that for the special case where n = 1, S'(X) = X is the identity map, and
so in this case the reverse computation is also just the identity map. Also, recall that

12



if X is an n-bit number with all zeros with m = 0, then so is S’(X '), and hence the
reverse computation is also the identity map if S a n-bit number with all zeros.

In the following, we assume without loss of generality that n» > 1 and m > 1. We
will determine the number of ones m in X using the subroutine FINDM(SS”). Recall
that the number of n bit numbers with < m ones is 1 + o, ,,, where o, ,,, = Z;Z_ll

(7). Hence m is the largest number such that S’ > o, ..

Algorithm 2 Subroutine FINDM(S")

m «— 0

o+ 1
while S’ > o do
m—m+1
oo+ (m)

end do

After determining m, we compute o, ,, and then determine L by the assignment
L — S —0,,,—1. Westore L as a signed integer. Recall that our recursive Algo-
rithm 1 for L(X, n, m) terminates leaving the register L with the value L(X, m,n).
By Lemma 2.1 we can recursively get the positions of ones in the original input X.
The reverse computation is just the same as in the forward direction to compute the
desired compression function S’(.X) with the difference that now we follow the top
down approach in a binary tree to compute from S’ the desired value X.. That is,
we have the initial input as L( X, m, n), then we recursively determine L(X, m’, n’)
and L(X,m”,n") for each of the n/2" tuple in stage ¢ after dividing the input into
2" sets of n /2" bits at the ith stage. At the bottom of the recursion tree (at the end
of O(logn) stages), we have determined the n single bits giving the actual value of
X.

The time and space complexity analysis remains exactly the same as it was in the
earlier case for determining S’(.X') given that we have the reversible computational
complexity of all the subroutines outlined in Section 4. Also, as far as the architec-
ture is considered, it is obvious that we can still follow the binary tree structure as
used in the computation of L(X, n, m).

Each operation in our O(n(log" n) log log n) time reversible computation of S’(X)
consists of certain conditional boolean and arithmetic operations. The conditional
boolean operations suffice to be Toffoli gates [26] which take in 3 boolean inputs
and negates the first input iff the next two bits are 1. The conditional arithmetic
operations suffice to be n-bit (signed) integer negation, addition and multiplication
(conditional on a boolean register).

In the next Section, we describe the reversible computations of the arithmetic and

combinatorial subroutines required for evaluating L(.X, n, m) in the binary tree gate
array.

13



4 Reversible Computation of Functions Required in the Quantum Compres-
sion and Decompression

Reversible Computations are computations where each state transformation is a
reversible function, so that any computation can be reversed without loss of infor-
mation. Landauer [18] showed that irreversible computations must be exothermic
in the computing process, and that reversible computations have the property that
if executed slowly enough, they (in the limit) can consume no energy in an adi-
abatic computation. Bennett [3] (also see Bennett, Landauer [4], Landauer [19],
Toffoli [26]) showed that any computing machine (e.g., an abstract machine such
as a Turing Machine) can be transformed to do reversible computations. Bennett’s
reversibility construction required extra space to store information to insure re-
versibility.

Below, we outline some of the basic reversible computations necessary for our
compression algorithm. These operations can be performed without preserving any
input registers as a part of the output [27].

4.1 Reversible Computation of Arithmetic Functions

e Reversible Addition. (Vedral et al[27]) Given N bit numbers z, y, we can re-
versibly compute the function: (x,y) — (z,x + y). This can be computed in
O(N) reversible steps by use of the usual sequential carry-added algorithm.
Cleve, DiVincenzo [10] describes in detail how to execute conditional boolean
operations in O(1) elementary unitary operations, as well as certain conditional
arithmetic operations in O(n) elementary unitary operations, including (signed)
integer negation as well as conditional addition of a signed integer n bit register
with a constant n bit integer. Vedral, Barenco, and Ekert [27] give (as a subrou-
tine for their efficient implementation of the quantum factoring algorithm of Shor
[23,24]) a quantum algorithm for addition of two signed integer n bit registers in
O(n) elementary unitary operations.

e Reversible Multiplication. Vedral, Barenco and Ekert ([27]) give a method for
the reversible modulo N multiplication of two N bit numbers. In other words,
they show how to bring about the transformation (z,y) — (x,zy modN) re-
versibly.

We use the Schonhagen-Strassen multiplication algorithm (Knuth [17]) to do
n bit integer multiplication in O(nlogn loglogn) reversible steps. In the quan-
tum gate model, we can do n bit integer multiplication in the same asymptotic
steps, again employing the Schonhagen-Strassen multiplication algorithm. (Za-
lka [28] also gives, again as a subroutine for an efficient implementation of Shor’s
quantum factoring algorithm, a FFT-based quantum algorithm for multiplication
of two n bit integers). For n bit multiplication using the Schonhagen-Strassen
multiplication algorithm, the n bits are subdivided into n’ = n/s groups of
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size s = O(n'/?). The Schonhagen-Strassen multiplication algorithm requires
an n/-point discrete Fourier transform which can be quantum computed in O(n)
additions of s bit integers, thus costing a total of O(nlogn’) = O(nlogn) ele-
mentary unitary operations by the above mentioned quantum addition algorithm.
Then the convolution theorem is applied which reduces the problem to the n’
recursive multiplications (as given in Vedral et al[27]) on O(s) bit integers. This
requires O(loglogn) recursive stages. Hence, in the quantum gate model, we
can do n bit integer multiplication in O(n logn loglogn) elementary unitary op-
erations.

4.2  Bijection of reversible functions

To compute a bijective function f(z) reversibly (like the Schumacher compres-
sion), we require that we do not retain any record of the initial state in the output,
nor the state of the work bits (since these are completely deducible from the output).
These restrictions would seem to make a bijective reversible function f(z) difficult
to compute. However, this difficulty can be resolved by an innovative technique due
to Bennett [3,5], as follows: It is convenient to first derive a preliminary algorithm
PA that retains a record of the initial state and may also make use of temporary
work storage. Let us assume that X, L, W are registers and their values are indi-
cated by a tuple (X, L, W). Suppose the input state is given as (z,0,0). Then the
preliminary algorithm PA provides the mapping (x,0,0) — (z, f(z),w), where w
are the contents of the work registers. We can easily erase these work registers, thus
providing a mapping (x,0,0) — (z, f(z),0). Then we can apply a known trick to
eliminate the initial state; in particular, Bennett [3,5] shows if we have an auxiliary
algorithm RA that computes the inverse f ! of the function f, then we can provide
the mapping: (z,4,0) — (x @ f~(y),y,0). Since z ® f~1(f(z)) =z ®x =0,
it follows that RA provides the mapping: (z, f(x),0) — (0, f(x),0). Finally, an
exchange of registers gives the mapping: (0, f(z),0) — (f(z),0,0). (Note that it
is essential that we also can efficiently compute the inverse f ! of the function f.)
Hence we have from Bennett[3,5] :

Lemma 4.1 Given a bijective function f, suppose we can reversibly compute in
time T'(x) a bijective function f and its inverse f~! without preserving input regis-
ters as a part of the output. Then in time O(T'(n)) we can also reversibly compute

the bijective mapping: (z,0,0) — (f(x),0,0) without storing x as a part of the
output.

4.3 Reversible Computation of Combinatorial Functions

Reversible Computation of Factorial.
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Lemma 4.2 Given a number x, we reversibly compute the function: x — x!. Let N
be the number of bits of ©\. Factorial can be reversibly computed in O(M (N)log N) =
O(N log? N loglog N) computations

Proof: We take as input y = z! and let N = [log y| be the number of bits of y. We
apply the Sterling formula to approximate: y = z! = x%e "/ 2mx(1 + O(1/z)),
and taking logarithms we obtain:

log y = log(z"e™"V2mx(1 4 o(1))),
=xlog(x/e) — %log(ch) + O(1).

Let f(z) = xlog(x/e) — 5log(2mz) and let its inverse function be f~*(y). The
inverse # = f~!(y) can be approximately computed up to the required log x bits in
time O(N log? N loglog N) by the Newton iteration methods of Brent and Kung
(see Knuth [17]), and this computation can easily be made reversible. Hence we
compute the factorial of Z + ¢ for each i where |i| < O(1). We output that z = T +
i such that (Z + 4)! = y. This has cost O(1) times the cost O(N log® N log log N)
of the forward computation of factorial, and hence has cost O(N log? N loglog V).
|

Hence by Lemma 4.1, we can reversibly compute factorial in time O(M (N) log N)
— O(N log? N loglog N) without preserving input registers to form a part of the
output.

Reversible Computation of Combinatorial Forms. We provide the Lemmas on
the reversible computation of combinatorial and double combinatorial forms nec-
essary for the computation of S’"(X).

Lemma 4.3 Given n bit number with x ones, we can reversibly compute the func-
tion:x — (%) = (n%'x), in O(M(N)log N) = O(Nlog® N loglog N) steps where

N is the number of bits of ().

Proof: The forward computation can be easily achieved using a reduction to re-
versible factorial computation as described above. To reverse the computation of
(%), we take as input y = (%) and let N = [logy| be the number of bits of y.

Setting p = Z, we can apply the Sterling formula to approximate, for z — oo and

n—r — o0

y= (1) =@ (1—p)" ") 2rp(l — p)n) (1 + O(1/x)).

Taking logarithms we obtain:
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log y=~nlog(p?(1 ~ p)'*) ~ 3 log(2mp(1 — p)n) + O(1 /),

——n(plog(p) + 1 - plog(1 — p)) ~ 5 log(2mp(1 — p)n) + O(1).

Let g(p) = —n(plog(p) + 1 — plog(1—p)) — 3 log(2mp(1 — p)n) and let its inverse
function be g7 (y). The inverse Z = ng~!(y) can again be approximately computed
up to the required number of bits in time O(N log® N loglog N) by the methods
of Brent [17], and this computation can be made reversible. Hence we compute
(i il z) for each i where |i| < O(1). We output that z = & + i such that (w il z)
— y. This has cost O(1) times the cost O(N log? N loglog N) of the forward com-
putation of (7 ), and hence has cost O(N log? N loglog N). Hence by Lemma 4.1,
we can reversibly compute (7 ) in time O(M(N)log N) = O(N log® N loglog N)
without preserving input registers as a part of the output. H

Lemma 4.4 The combinatorial sum o,,,, = >7* () and the double combina-
torial sum o}, ., = Sl () (nﬁil) can be solved in O(M (mlogn)logm)

reversible boolean operations, where M (x) is the time complexity of multiplying
two numbers with x bits.

Proof: Here, we give the proofs separately for different cases.

(1) Computation of sums of combinatorial forms(c,,,, = >77' ()): Since
() is a product of O(m) numbers each with O(logn) bits, it follows that
(/) is an O(mlogn) bit number. So o, ,,, is a sum of n numbers each of
O(mlogn) bits, and so is also an O(m logn) bit number. Note that since (7))
= (;21)(n— (i — 1)), it follows that o,, ,,, has a recursive expansion:

Opm=n(l+n-1)1+...(n—=(m=3)1+n—(m=2)))...).

To compute o, ,,,, we will apply a divide and conquer of this recursive ex-
pansion. For 1 < a < b < n, let 7,05 = (X0_, (7))/ (4"1). Note that by
definition, 0, ,;, = Ty,,1,m—1. Observe that 7, ., has the recursive expansion:

- (n—(a—1))
T”’“’b_g n—i)

b

=2 (n—=(a=1)n—-a)...(n=(=2))(n—(i-1),

= (a—1)1+(m—a)1+...(n— (b—2))
1+ —OB-1))...).

To compute 7,, , 5, we apply divide and conquer of the expansion at o’ = Lb_T“J ,
using the identity 7, o = Tha,’ + Cn,a,a/Tn,a/ b, Where
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a’'—1

Cn,a,a = H (n - (2 - 1))7

i=a

=n—(d—-2)n—-(ad-3)...(n—a)(n—(a—1)).

Since ¢, 4 is a product of O(b — a) numbers each with O(logn) bits, it
follows that ¢, . is an O((b — a)logn) bit number. Let M (N) be the bit
complexity of multiplying two N bit numbers. Hence the time cost for the
recursive computation of 7, ,, form = b — a, is T'(n, m) < O(M(mlogn))
+ T(n, 7)) + T(n, [5]) < O(M(mlogn)) + 2T(n, [F]). This recur-
rence is bounded as 7'(n, m) < O(M(mlogn)logm). Hence o, ,, also costs
O(M (mlogn)logm) boolean operations.

(2) Inverse and Reversible Computation of Sums of Combinatorial Forms:
Let F'(m) = o, for fixed n. Since the sum of combinatorial forms is domi-
nated by its highest term, the inverse /'~!(y) = m of the function F'(m) can
also be efficiently be reversibly computed in time O(M (mlogn)logm) by
techniques similar to those described above for the inverse of (7 ). Hence,
we can reversibly compute o,, ., in O(M (mlogn)log m) boolean operations
without preserving input registers as a part of the output.

(3) Computation of Sums ¢’ of Double Combinatorial Forms: Here we com-
pute o7, = () (ﬂl}ll) which is the number of n bit binary num-
bers with at least 1 ones and at most m’ — 1 ones in the first n’ = |n/2] bits
and n” = n — n'. Note that

and

SO,
() (27) = (7)) (e ) (0 = (= 1) (0" = (m = (i — 1))).

It follows that o/ . has a recursive expansion:

n,m,m

e = (5) (00 = m)) (1 + (0 = 1)(n” = (m — 1))
(L4 (0 = (m' = 3))(n" — (m — (m' = 3)))(1+ (0 — (m' - 2))
(n" = (m— (m' = 2))))...).

To compute o, ,,, ..., we will apply a divide and conquer of this recursive
expansion. For 1 < a < b <n, let:

Trlz,m,a,b = (Z (7;/) (n?iz)>/<(a7il1) (m—r(Ltlzl—l) ))

i=a
Note that by definition, o7, ., ,.v = 7, . 1 - Observe that 7). ., has the

recursive expansion:
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Tnmap = ("= (@ =1)(n" = (m = (a =1))))
1+ ((n" = a)(n" = (m — a)))
I+ ((n = (b=2)(n" = (m = (b—-2))))
1+ (" = =1))(n" = (m—=(b-1)))...).

To compute 7,, , 5, we apply divide and conquer of the expansionata’ = | %5¢],

/ .
using the 1dent1ty b = Tomaa T Cnmaa Toam.a by Where:

= TL (0 = (1= D) = (= (i = 1)),
= (0~ (@ = D)~ (m~ ('~ 2)
(0~ (& = 3) ("~ (m~ (@' = 3))..
(0 = )~ (m @) (' ~ (a = )"~ (m ~ (a = 1))

Since ¢}, , ,» is a product of O((b — a)) numbers each with O(log n) bits, it
follows that ¢, , ., is an O((b — a)logn) bit number. Recall that o7, m ,is a
product of O(m ) numbers each with O(logn) bits, so it follows that o
is an O(mlogn) bit number. Hence the time cost for the recursive compu-
tation of 7, 4 is T"(n,m) < O(M(mlogn)) + T'(n, [ %]) + T'(n, [%]) <
O(M(m]logn)) + 21"(n, [%]). This recurrence is bounded as T’(n m) <
O(M(mlogn)logm). Hence 07, m.me €an be recursively evaluated in

O(M (mlogn)logm) boolean operations.

(4) Inverse and Reversible Computation of Sums of Double Combinatorial
Forms: Let y = G(m,m') = o], ,, ,» for a fixed n. Since the sum of double
combinatorial forms is dominated by its highest term, the inverse G~1(y) =
(m,m’) of the function y = G(m, m’) can also be efficiently be reversibly
computed in O(M (mlogn)logm) boolean operations by techniques similar

to those described above for the inverse of (7, ). H

So, all the above operations used in the computation of S’'(X) can be reversibly
computed without preserving the input as a part of the output. These computations
can be done by the use of efficient quantum algorithms [10] using basic quantum
gates and reversible arithmetic and conditional operations.

Hence by Lemma 4.1, we can reversibly compute the arithmetic, combinatorial
and double combinatorial operations used in the gate array computation of S’(X)
without preserving the input registers as a part of the input.

In Sections 2 and 3, we described how to do the reversible computation of S’ (X, n, m)
in < O(n(log" n)loglogn) deterministic boolean steps using the binary tree gate
array model. In this Section, we have shown how to reversibly compute each of the
subroutines required in the S’(X, n, m) computation. Hence, we obtain the main
result:

Theorem 4.1 The overall transformation (for all the states) S'(X) be done as
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a quantum computation using only elementary unitary quantum operations, with
asymptotic number of O(n(log* n) loglogn) steps.

5 Conclusion

We give an efficient deterministic algorithm for a modified Schumacher compres-
sion encoding function (with asymptotically optimal size and fidelity) using
O(n(log" n) log log n) boolean operations. To achieve our goal we have also shown
how the various subroutines required by our algorithm can be made reversible, and
the modified Schumacher encoding and decoding can be efficiently computed by a
quantum computer in O(n(log" n)loglogn) elementary unitary steps. We exploit
the inherent tree structure of the divide and conquer algorithm to obtain the gate ar-
ray to evaluate the S’(X ) in asymptotically the same number O(n(log” n) loglog n)
of operations as required by our reversible algorithm for our modified Schumacher
encoding function.
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