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Abstract

Let G = (V, 1?) be a directed graph and n denote IVI.

We show that G is k-vertex connected iff for every subset

X of V with IX I = k, there is an embedding of G in the

(k - I)-dimensional space Rk-l, ~ : V ~Rk-l, such

that no hyperplane contains k points of {~(v) \ v G V},

and for each v E V – X, f(v) is in the convex hull

of {~(w) I (v, W) G E}. This result generalizes to

directed graphs the notion of convex embedding of

undirected graphs introduced by Linial, LOV6SZ and

Wigderson in ‘Rubber bands, convex embedding and

graph connectivity,” Combinatorics 8 (1988), 91-102.

Using this characterization, a directed graph can be

tested for k-vertex connectivity by a Monte Carlo algo-

rithm in time O((M(n) + nkf(k)) . (log n)) with error

probability < l/n, and by a Las Vegas algorithm in ex-

pected time O((lf(n)+nM(k)) .k), where M(n) denotes

the number of arithmetic steps for multiplying two n x n

matrices (Al(n) = 0(n2.3755)). Our Monte Carlo algo-

rithm improves on the best previous deterministic and

randomized time complexities for k > no. *9; e.g., for

k = @, the factor of improvement is > n0.G2. Both al-

gorithms have processor efficient parallel versions that

run in O((log n)2) time on the EREW PRAM model

of computation, using a number of processors equal to

(logn) times the respective sequential time complexi-

ties. Our Monte Carlo parallel algorithm improves on

the number of processors used by the best previous

(Monte Carlo) parallel algorithm by a factor of at least

(n2/(log n)3) while having the same running time.

Generalizing the notion of s-t numberings, we give a

combinatorial construction of a directed s-t nulmberiug

for any 2-vertex connected directed graph.
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1 Introduction

The connectivity of directed and undirected graphs is

one of the most well studied areas of graph theory. This

topic is central to graph theory [B 78], and has diverse

applications in computer science, electrical engineering

and operations research [E 79], [M 84], [IR 88]. A di-

rected (undirected) graph is said to be k-vertex con-

nected, if it has at least k + 1 vertices and the deletion

of any set of k – 1 or fewer vertices leaves the graph

strongly connected (connected).

The problem of testing a given graph for k-vertex

connectivity, because of its importance, has attracted

much algorithmic research. Let n and m denote the

number of vertices and the number of edges of the graph.

For digraphs (directed graphs), the fastest determinis-

tic algorithm known runs in time O(max{k, @}k@m)

[G 80]; for k > @, the probabilistic technique of

[B 82] improves the running time to 0((~) n1”5m),

where p denotes the error probability. For undirected

graphs, the fastest (deterministic) algorithm runs in

time O(max{k, @}k2n1”5) [NI 90] and [CKT 91]. Let

M(n) denote the number of arithmetic steps for multi-

plying two n x n matrices; at present, the best value of

M(n) known is O(n 23755) [CW 87]. RecentlY! [LLW 881
gave a randomized (Monte Carlo) algorithm for testing

the k-vertex connectivity of undirected graphs that runs

in time O((ikf(n) + nM(k)) . (log n)) with error proba-

bility < l/n. This is faster than the deterministic algo-

rithm for k ~ no” 19.

The key idea behind the algorithm of [LLW 88] is a

new characterization of k-vertex connected undirected

graphs, namely, an undirected graph is k-vertex con-

nected iff for every size-k subset X of V, the graph has

a so-called convex X-embedding in general position in

Rk-l, the (k – 1)-dimensional Euclidean space. See

also [LSS 89].

We generalize the notion of convex embedding to

directed graphs, and show that a directed graph is k-

vertex connected iff for every size-k subset X of V, the

graph has a convex directed X-embedding (defined in

Section 2) in general position in Rk - 1.

There is a key difference between our proof and the

approach of Linial, Lov&z and Wigderson [LLW 88].
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They use a potential or ‘quadratic energy function”,

i.e., they associate an energy with each embedding of

G, and then use the strict convexity of the potential to

argue that the minimum potential determines a unique

embedding. The minimum embedding is computed by

equating the gradient of the potential to zero, and solv-

ing the resulting system of linear equations. Unfortu-

nately, this approach does not seem to work for directed

graphs because the potential is independent of arc di-

rections. Consequently, the minimum embedding is not

dependent on the directions of the arcs; in contrast, for

a convex directed embedding only the outgoing arcs of a

vertex determine its position, and not the incoming arcs.

Instead of working with the potential, we work directly

with the system of linear equations that determines the

embedding, and we ensure that the embedding is unique

by showing that the matrix associated with the system

of equations is nonsingular.

A convex directed embedding can be computed with

high probability by assigning random weights to the

edges and solving a system of linear equations whose

coefficients are determined by the random weights.

Based on this method, and using the approach of

[LLW 88], we develop efficient randomized algorithms

for testing a directed graph for k-vertex connectivity.

Specifically, we have a Monte Carlo algorithm that

runs in time O((lf(n) + niVf(k)) . (log n)) with error

probability < I/n. This algorithm may err both

ways: It may reject a k-vertex connected directed

graph and may accept a directed graph that is not k-

vertex connected. We also have a Las Vegas algorithm

that runs in expected time O((lf(n) + nlf(k)) . k);

this algorithm never errs. Our Monte Carlo algorithm

improves on the best deterministic algorithm known for

all edge densities for k > no” 19 by a factor of at least

k2/no.sg; e.g., for k = W, the factor of improvement is

> n0.62. Even for smaller k, k = 2,3,..., our algorithm

is faster for relatively dense directed graphs (i.e., for

m > n1”3s/k ).

Both our algorithms have eflicient parallel inlple-

mentations, and our Monte Carlo algorithm substan-

tially improves on the best previous parallel algo-

rithm. On the Exclusive Read Exclusive Write (EREW)

PRAM model of parallel computation, both algorithms

run in O((log n)2) time. The Monte Carlo algorithm

uses ((If(n) +nflI(k )).(log n)2) processors, and the Las

Vegas algorithm uses ((ill(n) + nil f(k)) - k log n) proces-

sors. For general k, the best previous parallel algorithm

for testing the k-vertex connectivity of directed graphs

is a Monte Carlo algorithm that runs in O((log n)2) time

and uses at least nI’(n, m) processors. Here, P(n, m)

is the number of processors needed to find a maximum

matching on an n-vertex m-edge undirected graph in

O((log n)2) time with high probability. Currently, the

best value known for P(n, m) is O(nmM(n)) [MVV 87].

For k = 1, the best deterministic parallel algorithm

known runs in O((log n)2) time and uses Al(n) proces-

sors. For general k, our Monte Carlo algorithm improves

on the number of processors used by the best previous

algorithm by a factor of at least (nm/(log n)3) while

having the same running time. Unless k is relatively

high, the factor of improvement is even greater : e.g.,

for k = @, the factor of improvement is (n2m/(logn)3).

For undirected graphs, a non-degenerate convex em-

bedding for k = 2 is equivalent to a so-called s-t num-

bering of the vertices. Lempel, Even and Cederbaum

introduced the notion of s-t numberings of 2-vertex con-

nected undirected graphs [LEC 66]. Since then, this no-

tion has been used for planarity testing [LEC 66], fault-

tolerant protocols for distributed computers [IR 88], etc.

It appears that the obvious generalization to directed

graphs has not been studied before. We give a simple

combinatorial proof showing that every 2-vertex con-

nected directed graph has a directed s-t numbering (de-

fined in Section 3). This result is implied by our main

theorem that shows that every k-vertex connected di-

rected graph has a non-degenerate convex directed em-

bedding, however, the result for k = 2 may be of in-

dependent interest since our proof uses straightforward

combinatorial techniques. For instance, the proof for

k = 2 gives a deterministic algorithm, whereas the al-

gorithm given by the main proof uses randomization.

An immediate application of directed s-t number-

ings is to give a simple construction for two independent

branching (defined in Section 2) of any 2-vertex con-

nected directed graph. Previously, a much more compli-

cated construction has been reported by Whitty [W 87];

very recently, we have learned of another construction

due to Plehn [P 91].

In Section 3, we focus on 2-vertex connected di-

rected graphs, and give a combinatorial construction for

directed s-t numberings as well as the construction for

two independent branching, and in Section 4 we give

an algebraic proof of our main result. Section 5 gives

our randomized algorithms for testing a directed graph

for k-vertex connectivity.

2 Preliminaries

This section contains only definitions and notation.

Let G = (V, E) be a digrapb. For any w 6 V, call

the set {w : (v, w) E E} the successors of v, and denote

this set by r(v). Call the set {u : (u, v) E E} the

predecessors of v. Define the reversal of G, rev(G), to

be the digraph (V, {(w, v) : (v, w) E E}).

For any X c V with 1X1 = k, define a corzvez di-

rected X-embedding of G to be a function j : V -+ Rk-l,
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such that foreachv c V–X, f(v) isin the convex hull

of {~(w) [ (v, w) c E}. J is an embedding of the (ver-

tices of) digraph Gin the k – 1 dimensional space Rk - 1.

A branching B is a spanning acyclic subgraph of

G such that one vertex, called the root, has outdegree

= O and all other vertices have outdegree = 1. Note

that every vertex has exactly one directed path to the

root in B. For any fixed vertex z of a digraph, two

branching rooted at z are called independent if they

are edge disjoint, and further, for each vertex v, the

two paths from v to z in the two branching are openly

vertex disjoint. For k > 2, k branching are called

independent if they are pairwise independent.

For subsets X and Y of V, p(X, Y) denotes the

maximum number of vertex disjoint paths from X to

Y. A separator is a subset S of V such that G – S is not

strongly connected. For vertices v and z, a v-z separator

is a subset S of V - {v, z} such that G – S has no path

from v to z.

For a set of points X in Rk, conv(X) denotes the

convex hull of X, and rank(X) denotes the affine rank

of X, i.e., one plus the dimension of the smallest affine

space containing X.

Our complexity bounds are stated in the uniform-

cost model, i.e., an arithmetic operation (addition,

subtraction, multiplication or division) or a comparison

on the integers or on the integers modulo a prime counts

as a single step. The largest integer computed by our

algorithms has value no(l), and can be represented

using O(log n) bits. To obtain the bounds in the

logarithmic-cost or bit-complexity model, multiply the

sequential running times and the number of parallel

processors by a factor of (log n)2 (this factor is not

optimal, but suffices for us).

For our probability estimates below, we assume that

n is not too small, e.g., n ~ 64 would suffice.

3 s-t numberings for directed graphs

We generalize the notion of s-t numberings to 2-vertex

connected digraphs, and show the following.

THEOREM 3.1. Let G = (V, E) be a 2-vertez con-

nected directed graph, and s and t be any two vertices

of G, Then, there is a numbering r : V + {1, . . .,n} of

V (i. e., T is a bijection) such that

(i) n(s) = 1 and r(t)= n, and

(ii) for each v E V – {s, t}, there is a successor w with

r(w) > r(v) and a successor u with T(U) < r(v).

The numbering ir is called a directed s-t numbering.

Instead of proving Theorem 3.1 directly, we prove a

generalization.

THEOREM 3.2. Let G = (V, E) be a directed graph,

and z be a vertex of G such that for each v ~ V – {:},

G has two openly vertex disjoint paths from v to z.

Let Z denote the set {z} U {y : (y, z) E l.?}, i.e., the
set containing z and its predecessors. Then, there is a

numbering m : V + {1,..., n} of V such that for each

v ~ V – Z, there is a successor w with m(w) > m(v) and

a successor u with ~(u) < m(v).

Note that the highest numbered vertex and the

lowest numbered vertex according to m must belong to

z.
To prove Theorem 3,1, add a new vertex z and the

edges (s, z) and (i!, z) to the original 2-vertex connected

digraph, and invoke Theorem 3.2 on the augmented

digraph.

Proof. (of Theorem 3.2) The proof uses induction

on n. The basis of the induction is easily seen to hold,

so we proceed with the induction step.

Using a theorem due to Lovzisz [Lo 73], it can be shown

that G has a spanning subgraph G’ = (V, E’) such

that the outdegree of .z (in G’) is = O, and for each

v c V–{.z}, the outdegree of v (in G’) is = 2, and G’ has

two openly vertex disjoint paths from v to z. Clearly,

any valid numbering T of G’ is also a valid numbering of

G. Focus on the in-degree of the vertices in G’. Since,

G’ has at most 2n – 4 edges with both end vertices in

V – {z} (there must be ~ 2 edges entering z), G’ has a

vertex with in-degree ~ 1.

If G’ has a vertex v with in-degree = O, then it can be

seen that G’ — v satisfies the condition of the theorem,

therefore we can find a numbering ~’ for G’ – v and then

extend it to a numbering m for G (e.g., by assigning

v a number between those of its successors, and then

“shifting up” some numbers by one in order to avoid

duplication of ~(v)).

If G’ has a vertex v with exactly one entering edge, say

(u, v), then we contract this edge (i.e., replace vertices

u and v by the vertex v* , and replace edges (v, w) or

(u, w) by (v*, w) and replace edges (q, u) by (q, v*)) and

consider the resulting digraph G’/(u, v). BY applying

Menger’s theorem, it can be seen that G’/(u, v) satisfies

the condition of the theorem, therefore we can find

a numbering m’ for G’/(u, v) and then extend it to a

numbering z for G (e.g., by assigning x(u) := T’(v”),

and assigning v a number between the numbers of its

two successors which is either less than or greater than

m(u), depending on ~’(w), where w is the other successor

of u, and then “shifting up” or ‘shifting down” some

numbers by one in order to avoid duplication of m(v)).

One application of Theorem 3.1 is to construct for

any 2-vertex connected digraph with a specified root

vertex z G V, two independent branching rooted at z,

i.e., to find branching BI = (V, El) and B2 = (v, E2)

rooted at z such that El n E2 = 0 and for each v E V

the two path from v to z, respectively in B1 and B2,

are openly vertex disjoint. For k = 2, this gives a simple
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solution for the independent branchings conjecture: For

any vertex z of a k-vertex connected directed graph,

there are k independent branching rooted at z. The

conjecture was first raised by A. Frank, see [S 79,

PP. 235], and later Itai and Rodeh [IR 88] raised a

variant of the conjecture for undirected graphs. For

k < 3, the conjecture for undirected graphs has been

resolved by [CM 88] and [ZI 89]. For general k, the

conjecture remains open for directed graphs for k > 2

and for undirected graphs for k > 3.

A construction for two independent branching has

been presented before in [W 87]. Our construction,

which is much simpler than the complicated one in

[W 87], is straightforward:

First, compute an s-t numbering for G with s = z and

t = y, where y is any predecessor of z. For the “low”

branching l?l, each v 6 V– {z} chooses its parent to be a

lower numbered successor, and for the “high” branching

l?z, each v c V – {z, y} chooses its parent to be a higher

numbered successor (B2 also contains the edge (y, z)).

THEOREM 3.3. (WHITTY) A digraph G is 2-vertez

connected iff for every vertex z, G has two independent

branching rooted at z.

4 Convex directed embedding

Our main result here is that a digraph is k-vertex

connected iff for every subset X of V, with IX I = k,

G has a non-degenerate convex directed X-embedding,

i.e., the vertices can be embedded in Rk– 1 such that

they are in general position and each vertex v E V – X

is in the convex hull of the successors of v.

Intuitively, it is easy to construct a convex directed

X-embedding of G in Rk-l , where X is any size-k

subset of V : Embed the vertices of X at the corners

of the unit simplex, let each arc behave as a “directed

rubber bandn, and compute the equilibrium positions

of the vertices. In more detail, let each arc exert zero

force on its head vertex, and a force on its tail vertex

equal to the length of the arc times an arbitrary positive

coefficient. Note that the asymmetry in the behavior

of “directed rubber bands” is critical for obtaining a

convex directed embedding. This physical system of

directed rubber bands can be easily modeled as a system

of linear equations, and the equilibrium position of each

vertex v E V — X can be found by solving the system.

Let c : E -R. be a positive real-valued coeffi-

cient function for the edges, i.e., the “directed rub-

ber band” (u, v) has coefficient of elasticity C(U, v).

Let VI,.. ., vn–~ and v~–k~l, . . .,vn be arbitrary lin-

ear orderings of V – X and X, respectively. us-

ing c, we can find an embedding ~(c) : V +Rk -1

with the vertices of X at the corners of the unit sim-

plex, i.e., with j(c)(vn) = (O, . . . . O) and for j =

1 ,. ... k – 1, f(c)(vn–k+j) = ej, where ej is the vec-

tor in Rk - 1 with a “1” in position j and zeros in all

other positions. Moreover, ~(c) satisfies the following

equations, where we denote the coordinates of ~(c)(v)

by ~fc)(V), ~$c)(V), . . . . ~~?l(v). For notational conve-

nience, we use ~ instead of ~(c), when there is no danger

of confusion.

Forallv EV– Xandallj=l,..., k –1,

Intuitively, this embedding ~ ensures that each

vertex in V – X is in equilibrium under the action of

the forces exerted by the directed rubber bands.

The system (1) can be rewritten as

AFj = Bj j=l, . . ..1. l, (*)

where A is the (n — k) x (n — k) matrix whose ijth entry,

i,j= 1, . . ..n–k. is givenby

Aii = –c(vi, Vj) ifi#jand(vi, vj)EE,

= ~ 4W>V) ifi=j,

Vlertv,)

= o otherwise;

Bj and Fj are column vectors of length n – k with the

ith entry (1 < i < n – k) of Fj, Fjj, standing for the

jth co-ordinate of vi, ~j (vi), and with

Blj = c(u~, Vn-k+j) if (’Ui, Vn_k+j) C E,

=0 otherwise.

Clearly, ~ is a convex directed X-embedding, i.e.,

for each vertex v c V – X, f(v) is in the convex hull of

j(r(v)) = {~(w) I w E r(v)}, otherwise there would be

a nonzero force ~W~r(V) c(V, w) “ (j(w) – ~(v)) acting

on v.

The next lemma shows that the matrix A is non-

singular, consequently equation (A) determines a unique

embedding ~.

Our main result, Theorem 4.2, states something

more: For the embedding f and every subset U of V,

the (affine) dimension of ~(U) = {f(w) I w E U} plus

one is exactly equal to the number of vertex disjoint

paths between U and X, p(17, X). First, we show in

Theorem 4.1 that for any convex directed X-embedding

f, the dimension of ~(U) plus one is less than or equal

to p(u, x).

LEMh4A 4.1. If G is k-vertex connected, then the

matrix A is nonsingular.
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Proof. The matrix A has the following key prop-

ert y:

Foreach i,i=l,..., k,k,

1412 ~ b%]. (2)

I<j<n-k
- j~i

Further, there is at least one row for which the inequal-

ity is strict, because any vertex v~_~+~ E X (1 S q S k)

haa at least k predecessors so it has a predecessor, say,

vh e V — X, and therefore

li’i~hl = ~ C(V~, w) > ~ lAhjl. (3)

(u,,w)~E l<j<n-k
‘j~h

To obtain a contradiction, suppose that A is singular.

Then, clearly there exists x CRn-k such that

Ax = O,

otherwise, the nullity of A would be zero and A would

have full rank,

By considering the inner product of the hth row of A,

denoted ah, with x,

ah-x=(),

it can be seen that all entries of x do not have the same

absolute value, otherwise

In other words, l~hl < Izjl, forsomej E {1,..., k}k}.

After renumbering the vertices if necessary, it follows

that there is an 1 (i < n – k) such that:

Iz,l= ...= IQI > pl+l[ 2. ““” > 1%41. (4)

Focus on the first 1 rows of A, and the corresponding

vertices VI, ..., V1 of G. Since G is k-vertex connected,

at least one of the vertices VI, . . . . V1 has a successor in

V–{%>.. -7VI }. Consequently, at least one of these

rows, say, the qth row has

Now, using the inner product of the qth row of A with x,

a~ * x = O, we obtain the desired contradiction because

14(?11%12 lql . ~ lAqjl using (2)

l~j,~n-k
J?%

> ~ ]Aqjll~jl using (4) and (5)

l~j,~n-k
J?%

REMARK. Notice that the hypothesis of the lemma

can be weakened without affecting the proofi To ensure

that A is nonsingular, G should be strongly connected,

and each vertex of X should have at least k predecessors.

THEOREM 4.1. Let G = (V, J!?) be a digraph, and

X be a subset of V. Then for every convex directed X-

ernbedding f : V * Rk-l of G and every subset U of

V, U #0, rank(f(U)) < P(U, X).

Proof. Consider any fixed subset U of V. Menger’s

theorem implies that there is a subset S of V with ISI =

p(U, X) such that G – S has no path from any vertex

of U to any vertex of X. Let W denote the maximum

subset of V – S such that G – S contains no path from

any vertex of W to any vertex of X. For any convex

directed X-embedding ~, the following argument shows

that each extreme point of conv(f(W u S)) belongs

to ~(S). Consider any vertex u in W, and note that

by the definition of W, u @ X. Since f is a convex

directed embedding it follows that ~(u) is contained in

conv(~(f’(u))), consequently, since I’(u) is a subset of

W uS– {u}, ~(tt) is contained in conv(f ( W uS– {u})).

This shows that conv(f(W u S)) = conv(f(S)). It

now follows that rank(f(U)) ~ rank(f(W U S)) =

rank(f(S)) ~ ISI = P(U, X).

THEOREM 4.2. Let G = (V, E) be a digraph, and

X be a subset of V. Then, G has a convex directed X-

embedding f : V * Rk-l such that for every subset U

of V, U # 0, rank(f(U)) ~ p(U, X).

Proof. Consider a fixed but arbitrary subset U’ of

V, and focus on p(U’, X), If p(U’, X) ~ k, then let

u = {U,, uz,..., uk } denote any subset of U’ such

that G haa h vertex disjoint paths from U to X, i.e.,

the ith path starts with Ui and ends with a distinct

vertex of X. Otherwise, if p(U’, X) = q < k, then let

U={ul,..., Uq}u(x —{w: . . . . Zq }) denote any subset

of U’ U X obtained by taking the set of start vertices

{u,,..., Uq } c U’ of q vertex disjoint paths from U’ to

X, and adding all the vertices of X except the vertices

Zl, . . ..zq that belong to these q vertex disjoint paths.
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Let the vertices of U be denoted by VI,..., Vk. Observe

that p(U, X) = k, by the construction of U.

Let c : E -+ R be a vector of positive coefficients, and

~fc~ be the embedding obtained by solving equation (k).

The rank of f[cJ(U) is determined by the matrix g(c, U)

given by

The rank of ~(c)(U) is < k exactly when the matrix

g(c, U) is singular, i.e., exactly when the determinant

of g(c, U) is zero. Note that det(g(c, U)) is a rational

function over the entries c1, . . . . cm of c, since each

$’)(uz) is an element of the matrix A- 1Bj (see equation

(~)). Therefore, either the determinant is identically

zero (for all c), or it becomes zero only for a set of

vectors c of measure zero.

We claim that the first possibility is ruled out, i.e.,

det(g(c, U)) is not identically zero. The following ar-

gument shows that the coefficients c may be chosen

such that for the resulting embedding f(c’ ) the affine

dimension of j~’’)(U) plus one equals p(U, X) : Let

PI, . . . . pk be vertex disjoint paths from U to X; sup-

pose that the path Pi has start vertex Ui and end vertex

xi (1 ~ i s k). Choose c’(u, v) = y for each arc (u, v) in

each of the paths PI, . . . . Pk, and choose c’(u, v) = 1 for

the remaining arcs. We claim that for any given c >0

there exists a sufficiently large y such that for each path

Pi the distance of Ui from xi is less than c. The claim

would imply that the dimension of ~(c’ ) (U) plus one

equals k, because the k vertices of U (that are the start

vertices of the paths PI, . . . . pk ) would be located arbi-

trarily near to k distinct vertices of the unit simplex. To

prove the claim, focus on a fixed Pi and let the vertex

sequence of Pi be (Y1 = u~), yz, . . ..yr-l. (lh = G). sup-
pose that the e~uilibrium positions of yl _ 1 and y~ = xi

are given by ~(c ) (yl_ 1) and ~(c’) (yl). Then, the vector

~“(t(c’)(vt)–.f(c’)(yr-l)) gives the magnitude and the di-

rection of the force exerted on Y1- 1 by the arc (yl– 1, yl).

The remaining force on Y1- 1 has a total magnitude of

at most @z, since there are at most n remaining arcs

with tail vertex y~_ 1, and each of these arcs has a length

of at most ~ and a coefficient of 1. As y increases,

the equilibrium distance of yl - 1 and x decreases, and

for a sufficiently high y the distance becomes less than

c/n. Repeating the above argument for the other ver-

tices y~_2, . . . . Y2, (III = u,) of Pi, itfollows that all the

vertices, including Ui, are within a distance c of xi.

Also, by the construction of U from U’, if ~(c’ ) (U) has

rank = p(U, X) = k, then f(C’)(U’) has rank z p(U’, X).

Therefore, for each subset U’ of V, the measure of the

set of vectors c such that rank(~(c) (U’)) is less than

p(U’, X) is zero. The theorem now follows, because

there are at most 2n sets U’ (i.e., finitely many sets),

therefore there exists a c with rank(~(c)(U’)) ~ p(U’, X)

for all subsets U’ of V.

THEOREM 4.3. Let G = (V, E) be a digraph, and

k be an integer, k = 2,. ... n — 1. Then, G is k-vertex

connected iff for every subset X of V with 1X1 = k, G

has a convex directed X-embedding in general position.

Proof. Let X be any subset of V with 1X1 = k.

Since G is k-vertex connected, it is clear that for every

subset Y of V with IYl = k, p(Y, X) = k. Now,

the above theorem guarantees a convex directed X-

embedding f : V + Rk -1 such that for every subset

Y of V with IYI = k rank(~(Y)) ~ p(Y, X) = k. In

other words, no hyperplane contains k vertices of f(V),

therefore, j is in general position.

For the other direction of the theorem, let ~ be a convex

directed X-embedding of G in general position, where X

is any subset of V with 1X1 = k. Then, for every Y C V

with IYI = k, p(Y, X) is ~ rank(~(Y)) by Theorem 4.1,

and since ~ is in general position rank(~(Y )) = k.

Consequently, G is k-vertex connected.

To gain computational efficiency, instead of find-

ing an X-embedding j in Rk–l, we use the [LLW 88]

method of computing an X-embedding t in the k – 1 di-

mensional linear space over a finite field F; the resulting

j is called a modular X-embedding. The computation

is done over the field of integers modulo a prime p, 2P.

A random modular X-embedding is constructed as fol-

lows : Fix a random prime p in the range [n5, n6] and

do the computations over (ZP )k -1. Choose a random

nonzero coefficient function c : E ~ 2P on the edges,

i.e., the coefficients are drawn from the nonzero elements

of 2P, and compute an X-embedding ~ : V + (ZP)k-l

by solving equation (k). Two remarks on computing

random modular X-embeddings are in order : Firstly,

the matrix A in equation (A) may be singular over 2P,

i.e., possibly det(A) = Omod p, even though A is non.

singular over the field of integers. Since p is drawn

randomly from the primes in the range [n5, n6], and

det(A) # O over the integers, the probability of A be-

ing singular over 2P is less than l/n4. * Secondly, for

a subset U of V - X, there is a positive probability

that a randomly chosen nonzero coefficient function c

on the edges gives a modular X-embedding f(c) with

rank(j~c) (U)) < p(U, X). Consequently, for a k-vertex

connected digraph G, it is not necessarily true that there

exists a modular X-embedding f such that every subset

~ number of distinct prime divisors of det(A) is <
log I det(A) I s log(np)n < 7nlogn.
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U of V with cardinality k has rank(~(U)) = k.

LEMMA 4.2. If G is k-vertex connected then for any

fized subset U of V–X’ with ]U~ = k, a random modular

X-embedding f : V + (ZP)k-l satisfies rank(i(U)) = k

with probability at least 1 – (1/n3).

Proof. Consider a vector c of nonzero coefficients

drawn at random from (ZP – {O})IEI. With probability

> 1 – ~, the matrix A in equation (k) haa det(A) #

Omodp. Moreover, assuming that det (A) # O mod p,

the determinant det (g(c, U)) in the proof of Theorem 4.2

is a rational function of degree ~ ~n2 whose denom-

inator is nonzero, because each element of the matrix

g(c, U) is a rational function of degree < 2(n – k) whose

denominator (namely, det(A)) is nonzero. Note that

each element is obtained by solving equation (*). Now

applying the Zippel-Schwartz lemma [Z 79], [Sc 80], the

probability that det (g(c, U)) = O mod p (resuming that

det(A) # O modp) is at most ~. Therefore, the prob-

ability that rank(~(c) (U)) is less than k, which is at

most the probability y that either det(A) = O mod p or

det(g(c, V)) = Omodp, is at most ~ + ~ < ~.

5 Algorithms for digraph k-vertex connectivity

Our algorithms are similar to those of [LLW 88]. We

first give a Monte Carlo algorithm for testing a digraph

for k-vertex connectivity, and then describe the modifi-

cations necessary to obtain a Las Vegas algorithm.

The basic subroutine used by our algorithms,

test root, haa two inputs, a digraph G = (V, E) and a

“root vertex” z c V. The subroutine tests whether G

haa k vertex disjoint paths to z from each v < V – X,

where X is a set of k predecessors of z. A call of test root

is said to succeed if the call finds that G has the above

paths, otherwise, the call is said to fail.

For every vertex v E V, let 17~(v) denote a fixed

but arbitrarily chosen set of k successors of v, i.e.,

17~(v) g f’(v) and I r’k(~) 1= k.

The subroutine test root, given a root vertex z,

works as follows: First, an arbitrary subset iX of the

predecessors of z of size k is chosen. Then, a random

modular X-embedding ~ : V + (ZP )k - 1 is computed

by choosing a random prime p and random nonzero

coefficients for the edges of G (i.e., choosing a random

nonzero function c : E ~ .ZP) and solving the linear

system (k). Finally, for every v 6 V—X, we test whether

rank(~(r~ (v))) is equal to k. If some vertex v fails the

test, then the call of test root fails, otherwise the call

succeeds. See Figure 1.

The following well known result [E 75,E 79] shows

how Iesl rool can be used to test for k-vertex connectiv-

ityy.

LEMMA 5.1. Let za, ..., Zk! be k arbitrary but dis-

tinct vertices of the digraph G. Then, G is k-vertez con-

nected iff for both the digraphs G and rev(G), test root

succeeds wxth each of the k root vertwes z = Zl, ..., ~k.

For each execution of our Monte Carlo algorithm,

if we do not require the output to be correct but

instead allow a digraph that is not k-vertex connected

to be accepted with probability < l/n, then we can

improve on the number of calls to test root by fixing

an appropriate value kt < k and calling test root for

k’ randomly chosen root vertices, say Y1,..., ykl. An

execution of the algorithm may be erroneous: If G is

not k-vertex connected, but every separator of G with

size < k contains the randomly chosen root vertices

Y1 , . . . . yk,, then the algorithm would accept G. To fix

the value of k’, note that the probability of an erroneous

result is s ((k– l)/n)k’. This idea has been used before

by [B 82], [M 84] and [LLW 88].

LEMMA 5.2. Let k’ be an integer such that ((k –

1)/n)~’ < l/n; note that kt may be taken to be

[logn/ log(n/k)l. Let Y1, . . . . YW be k’ randomly cho-

sen vertices of the digraph G. For both the digraphs G

and rev(G), if test root succeeds with each of the k’ root

vertices z = ~1, . . . . yk,, then with probability> I–(l/n)

G is k-vertex connected.

As mentioned before, with probability < l/n the

Monte Carlo algorithm may accept a digraph that is

not k-vertex connected. Also, with probability < l/n

the algorithm may reject a digraph that is k-vertex

connected. This is because with probability < l/n the

embedding f computed by the algorithm may have a

vertex v with rank(~(f’k (v))) < k, even though the

digraph is k-connected. See Figure 2.

Coming to the running time analysis, the linear

system (k) has to be solved in order to construct a

modular embedding : We first compute the inverse

of A in time O(M(n – k)), and then compute Fj for

j= l,..., k “simultaneously”, by multiplying A-1 and

the matrix (Bl . . . B,) in time O(ikf(n-k). [k/(n–k)l).

For subsets U of V with IUI = k, the running time for

computing rank(\(U)) is O(M(k)). Therefore, test root

runs in time O(ikf(n – k)[k/(n – k)l + M(k)(n – k)).

To estimate the cost of log n/ log(n/k) calls of test root,

note that when k s n/2, then log n/ log(n/k) < log n,

otherwise, log n/ log(n/k) < k log n/(n – k).

The next theorem sums up the above discussion.

THEOREM 5.1. The k-vertez connectivity of any

digraph can be tested by a Monte Carlo algorithm with

a running time of O((itl(n)~rzM(k)) o (log n)). U the .

digraph is k-connected (is not k-connected,), then the

algorithm accepts the digraph (rejects the digraph) with

probability >1 – l/n.

A Las Vegas algorithm for testing the k-vertex
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Subroutine test root(z, G)

Input: a digraph G = (V, E), and a “root vertex” z.

Output: for a subset X of k predecessors of z, if there is a v E V – X

such that G has < k vertex disjoint paths from v to z, then

return failure, otherwise return success with probability > 1 – l/rz.

begin

choose a random prime p E [rz5, rz6] and

a random coefficient vector c c (ZP - {O})IEI;
let X be a set of k predecessors of z;

compute the modular X-embedding ~(c) by solving equation (*);

forallv EV-Xdo

compute the rank of f(c)(rk(~)) = {f(c)(w) I ~ E rk(~)};

if matrix A is singular over 2P or some v computes a rank < k

then return failure

else return success;

end.

Figure 1: Constructing and testing a modular X-embedding

Algorithm Monte Carlo k-connectivity

Input: a digraph G = (~ E).

Output: if G is k-connected, accept it with probability >1 – l/rz,

otherwise reject it with probability y > 1 - 1/n.

begin

let k’= flog n/log(rz/k)l;

fori==ltok’do

begin

Choose a random vertex Vi c v;

Call test root(yi, G) and test root(Yi, rev(G)) and

if either call of test root fails, then reject G and stop;

end;

accept G;

end.

Figure 2: Monte Carlo algorithm for digraph k-vertex connectivity
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Algorithm Las Vegas k-connectivity

Input: a digraph G = (V, E).

Output: accept G if it is k-connected, otherwise reject it.

begin

fori=ltokdo

begin

Choose a vertex vi c V - {VI,... ,vi_l};

loop

Call test r~ot(~i, G) and test root(yi, rev(G)) and

if both calls of test root succeed, then exit the loop;

choose one of G or rev(G) on which test root fails, and

let v be a vertex causing test root to fail;

compute the affine hull H of the embedding of rk (v);

let S be the set of vertices s embedded in H

such that there is an edge (s, w) with either

w = Yi or w not embedded in H;

if ISI < k then reject G and stop ;

forever;

end;

accept G;

end.

Figure 3: Las Vegas algorithm for digraph k-vertex connectivity

connectivity of digraphs can be obtained from the S = S(v, y), and let T be ihe set of vertices having

above algorithm by eliminating the possibility of both

accepting a digraph that is not k-vertex connected,

and rejecting a digraph that is k-vertex connected. To

handle the first possibility, we simply choose k distinct

vertices yl, . . . . yk, and for both the digraphs G and

rev(G) call test root k times with the ith call using yi as

the root vertex.

Consider the second possibility. If a call of test root

with root vertex, say, y fails for the vertex v, i.e., if we

find that the modular X-embedding f computed by this

call of test root has rank(~(rk(v))) < k, then we attempt

to find a separator S of cardinality < k whose deletion

destroys all paths from v to y. Although there may be

many such separators, among the minimum cardinality

v-y separators there is a unique one that is “closest”

to v, and the affine hull of ~(rk (w)) is determined by

this separator. To see this, define a partial order on

the minimum cardinality v-y separators such that two

separators S1 and S2 are related if S1 intersects every

path from v to S2. It is known that this partial order

is a lattice, see [Lo 79]; the unique minimum element

of this lattice, denoted S(W, y), is the separator which

determines the affine hull of ~(l’k (v)). This gives us the

next lemma.

LEMMA 5.3. Let G = (V, E) be a digraph, and v

and y be vertices of G. Suppose that p(v, y) < k. Let

paths to y in G – S. Then, for a random modular

X-embedding f, where X is a set of k predecessors of

y, with probability at least 1 – l/n2 the aflne hull of

f (1’~(v)) does not contain any point of f(T).

When a call of test root with root vertex y fails for

the vertex v, we first compute the affine hull If of r~ (v),

and then find the set of vertices S that are embedded

in H and either have a successor embedded outside H

or have y as a successor. Note that S is a v-y separator.

If S has cardinality < h, then we have showed that G

is not k-vertex connected, otherwise this call of test root

has been futile and we repeat the call with the same

root vertex. See Figure 3. The above discussion gives

us the next theorem.

THEOREM 5.2. There is a Las Vegas algorithm with

an erpecied running time of O((M(n) + nM(k)) “ k)

to test the k-vertex connectivity of any digraph. The

algorithm accepts a digraph iff it is k-vertex connected.

Both the algorithms in this section can be imple-

mented on the PRAM model of computation. On an

EREW PRAM, both algorithms have running times of

O((log n)2). The critical computation for both paral-

lel algorithms is to invert the matrix A in equation (A).

Using the algorithms of Kaltofen and Pan [KP 91], with

high probability, an n x n matrix can be inverted on an

EREW PRAM in time O((log n)2) using (fl!f(n) log n)
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processors; for completeness, we cite the main theorem

of [KP 91].

THEOREM 5.3. (KALTOFEN AND PAN) Let n be a

number ~ 1, K be a field of characteristic zero or > n,

and A G Knxn be a nonsingular matriz. There exists a

randomized algebraic circuit for computing A–l that has

size O(M(n) log n) and depth O((log n)2), and that uses

O(n) random input elements drawn uniformly from a

subset S of K (besides the n2 input elements of A). The

circuit outputs the n2 entries of A-l with probability

~ 1 – (3n2/lSl). With probability < 3n2/lSl (or if the

matrix A is singular) the circuit divides by zero.

The next theorem gives the complexity of both our

parallel algorithms.

THEOREM 5.4. The k-vertex connectivity of a di-

graph can be tested on the ERE W PRAM model of com-

putation by :

1. A Monte Carlo algorithm in a running time of

0((logn)2) using O((M(n) + nM(k)) . (logn)2)

processors. If the digraph is k-connected (is not k-

connected], then the algorithm accepts the digraph

(rejects the digraph) with probability> 1- (1/rz +

l/n2).

2. A Las Vegas algorithm in an expected running time

of O((logn)2) using O((M(n) + nM(k)) . k logn)

processors. The algorithm accepts a digraph ifl it is

k-vertex connected.
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