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Let G=(V,E) be a directed graph and n denote |V|. We show that G is k-vertex connected
iff for every subset X of V' with |X|=k, there is an embedding of G in the (k=~1)-dimensional space
RF-1, f:V—R¥*-1 such that no hyperplane contains k points of {f(v)|ve V}, and for each ve
V=X, f(v) is in the convex hull of {f(w)|(v,w)€ E}. This result generalizes to directed graphs
the notion of convex embeddings of undirected graphs introduced by Linial, Lovész and ‘Wigderson
in “Rubber bands, convex embeddings and graph connectivity,” Combinatorica 8 (1988), 91-102.

Using this characterization, a directed graph can be tested for k-vertex connectivity by a
Monte Carlo algorithm in time O((M(n)+nM(k))- (logn)) with error probability <1/n, and by
a Las Vegas algorithm in expected time O((M(n)+nM(k))-k), where M(n) denotes the number
of arithmetic steps for multiplying two n x n matrices (M(n) = O(n2-376)). Our Monte Carlo
algorithm improves on the best previous deterministic and randomized time complexities for &>
n0-19; e.g., for k= /n, the factor of improvement is > n%62. Both algorithms have processor
efficient parallel versions that run in O((logn)?) time on the EREW PRAM model of computation,
using a number of processors equal to logn times the respective sequential time complexities. Our
Monte Carlo parallel algorithm improves on the number of processors used by the best previous
(Monte Carlo) parallel algorithm by a factor of at least n2 /(logn)?3 while having the same running
time.

Generalizing the notion of s-t numberings, we give a combinatorial construction of a directed
s-t numbering for any 2-vertex connected directed graph.

1. Introduction

The connectivity of directed and undirected graphs is one of the most well
studied areas of graph theory. This topic is central to graph theory [2], and has
diverse applications in computer science, electrical engineering and operations re-
search [7], [18], [11]. A directed (undirected) graph is said to be k-vertex connected,
if it has at least k+1 vertices and the deletion of any set of k—1 or fewer vertices
leaves the graph strongly connected (connected).

The problem of testing a given graph for k-vertex connectivity, because of its
importance, has attracted much algorithmic research. Let 7 and m denote the num-
ber of vertices and the number of edges of the graph. For digraphs (directed graphs),
the fastest deterministic algorithm known runs in time O(max{k,/n}k/nm) [8;
for k& > \/n, the probabilistic technique of [1] improves the running time to

O((%%)n”’m), where p denotes the error probability. For undirected graphs,

the fastest (deterministic) algorithm runs in time O(max{k,/n}k?n1-%) [20] and
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[4]. Let M (n) denote the number of arithmetic steps for multiplying two nx7n matri-
ces; at present, the best value of M (n) known is O(n?376) [5]. Recently, [15] gave a
randomized (Monte Carlo) algorithm for testing the k-vertex connectivity of undi-
rected graphs that runs in time O((M(n)+nM (k))-(logn)) with error probability
<1/n. This is faster than the deterministic algorithm for k >n019,

The key idea behind the algorithm of [15] is a new characterization of k-vertex
connected undirected graphs, namely, an undirected graph is k-vertex connected iff
for every size-k subset X of V, the graph has a so-called conver X -embedding in
general position in R¥~1, the (k—1)-dimensional Euclidean space. See also [17].

We generalize the notion of convex embeddings to directed graphs, and show
that a directed graph is k-vertex connected iff for every size-k subset X of V, the
graph has a convex directed X-embedding (defined in Section 2) in general position
in RF1,

There is a key difference between our proof and the approach of Linial, Lovész
and Wigderson [15]. They use a potential or “quadratic energy function”, i.e., they
associate an energy with each embedding of G, and then use the strict convexity of
the potential to argue that the minimum potential determines a unique embedding.
The minimum embedding is computed by equating the gradient of the potential to
zero, and solving the resulting system of linear equations. Unfortunately, this ap-
proach does not seem to work for directed graphs because the potential is indepen-
dent of arc directions. Consequently, the minimum embedding is not dependent on
the directions of the arcs; in contrast, for a convex directed embedding only the
outgoing arcs of a vertex determine its position, and not the incoming arcs. Instead
of working with the potential, we work directly with the system of linear equations
that determines the embedding, and we ensure that the embedding is unique by
showing that the matrix associated with the system of equations is nonsingular.

A convex directed embedding in general position can be computed with high
probability by assigning random weights to the edges and solving a system of
linear equations whose coefficients are determined by the random weights. Based
on this scheme and using the method of [15], we develop efficient randomized
algorithms for testing a directed graph for k-vertex connectivity. Specifically, we
have a Monte Carlo algorithm that runs in time O((M (n)+nM(k))- (logn)) with
error probability < 1/n. This algorithm may err both ways: It may reject a k-
vertex connected directed graph and may accept a directed graph that is not k-
vertex connected. We also have a Las Vegas algorithm that runs in expected time
O((M(n) +nM(k)) - k); this algorithm never errs. Our Monte Carlo algorithm
improves on the best deterministic algorithm known for all edge densities for k>
n019 by a factor of at least k% /n%3%; e.g., for k=+/n, the factor of improvement is
>n062 Even for smaller k, k=2,3,..., our algorithm is faster for relatively dense
directed graphs (i.e., for m >n1'3é/k )

Both our algorithms have efficient parallel implementations, and our Monte
Carlo algorithm substantially improves on the best previous parallel algorithm. On
the Exclusive Read Exclusive Write (EREW) PRAM model of parallel computation,
both our algorithms run in O((logn)?) time. The Monte Carlo algorithm uses
((M(n)+nM(k))-(logn)?) processors, and the Las Vegas algorithm uses ((M(n)+
nM(k)) - klogn) processors. For k=1, the best deterministic parallel algorithm
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known runs in O((logn)?) time and uses M(n) processors. For general k, the
best previous parallel algorithm for testing the k-vertex connectivity of directed
graphs is a Monte Carlo algorithm that runs in O((logn)?) time and uses at least
nP(n,m) processors. Here, P(n,m) is the number of processors needed to find a
maximum matching on an n-vertex m-edge undirected graph in O((logn)?) time
with high probability. Currently, the best value known for P(n,m) is O(nmM (n))
[19]. Our Monte Carlo algorithm improves on the number of processors used by
the best previous algorithm by a factor of at least (nm/(logn)?) while having
the same running time. Unless k is relatively high, the factor of improvement is
even greater: e.g., for k=./n, the factor of improvement is (n?m/(logn)?). Even
comparing with the best previous parallel O((logn)?)-time algorithm for testing k-
vertex connectivity (which is significantly slower), the number of processors used by
our Monte Carlo algorithm is much less. The O((logn)?)-time algorithm executes
at least n copies of the parallel Monte Carlo maximum matching algorithm of [9],
see also [13], and uses at least (n?- M (n)) processors overall.

For undirected graphs, a nondegenerate convex embedding for k=2 is equiv-
alent to a so-called s-t numbering of the vertices. Lempel, Even and Cederbaum
introduced the notion of s-t numberings of 2-vertex connected undirected graphs
[14]. Since then this notion has been used for planarity testing [14], fault-tolerant
protocols for distributed computers [11], etc. It appears that the obvious general-
ization to directed graphs has not been studied before. We give a simple combi-
natorial proof showing that every 2-vertex connected directed graph has a directed
s-t numbering (defined in Section 3). This result is implied by our main theorem
that every k-vertex connected directed graph has a nondegenerate convex directed
embedding, however, the result for k=2 may be of independent interest since our
proof uses straightforward combinatorial techniques. For instance, the proof for k=
2 gives a deterministic algorithm, whereas the algorithm given by the main proof
uses randomization.

An immediate application of directed s-t numberings is to give a simple con-
struction for two independent branchings (defined in Section 2) of any 2-vertex
connected directed graph. Previously, a much more complicated construction has
been reported by Whitty [24]; very recently, we have learned of another construc-
tion due to Plehn [21].

In Section 3, we focus on 2-vertex connected directed graphs, and give a
combinatorial construction for directed s-t numberings, as well as the construction
for two independent branchings. In Section 4, we give an algebraic proof of our
main result. Section 5 gives our randomized algorithms for testing a directed graph
for k-vertex connectivity.

2. Preliminaries

This section contains only definitions and notation.

Let G = (V,E) be a digraph. For any X C V with |X| =k, define a convez
directed X -embedding of G to be a function f:V —R*~1 such that for each v €
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V —X, f(v) is in the convex hull of {f(w)| (v,w) € E}. f is an embedding of the
(vertices of) digraph G in the k—1 dimensional space RF-1,

For any v €V, call the set {w:(v,w) € E} the successors of v, and denote this
set by I'(v). For a subset X of V, I'(X) denotes (UyexT'(x))—X, and v(X) denotes
IT(X)|. Call the set {u:(u,v)€ E} the predecessors of v. Define the reversal of G,
rev(G), to be the digraph (V,{(w,v):(v,w) € E}).

A separator is a subset S of V such that G — S is not strongly connected. For
subsets X and Y of V, an X-Y separator is a subset S of V' such that G — S has
no path from X —S to Y-S, and p(X,Y’) denotes the maximum number of vertex
disjoint paths from X to Y (here, the paths must have distinct end-vertices). A
set of directed paths with the same start vertex, say x, and the same end vertex,
say y (z #y), is called internally verter disjoint if these paths have no vertices
in common except = and . For two distinct vertices z and y, we use p(z,y) to
denote the maximum number of internally vertex disjoint paths from z to y (note
the difference from the previous use of p).

A branching B is a spanning acyclic subgraph of G such that one vertex, called
the root, has outdegree zero and all other vertices have outdegree one. Note that
every vertex has exactly one directed path to the root in B. For any fixed vertex
2z of a digraph, two branchings rooted at z are called independent if they are edge
disjoint, and further, for each vertex v (v # z), the two paths from v to z in the
two branchings are internally vertex disjoint. For k > 2, k branchings are called
independent if they are pairwise independent.

For a set of points X in R¥, conv(X) denotes the convex hull of X, and rank(X)
denotes the affine rank of X, i.e., one plus the dimension of the smallest affine space
containing X.

Our complexity bounds are stated in the uniform-cost model, i.e., an arithmetic
operation (addition, subtraction, multiplication or division) or a comparison on the
integers or on the integers modulo a prime counts as a single step. The largest
integer computed by our algorithms has value nO)| and can be represented using
O(logn) bits. To obtain the bounds in the logarithmic-cost or bit-complexity model,
multiply the se(%uential running times and the number of parallel processors by a
factor of (logn)? (this factor is not optimal, but suffices for us).

3. s-t numberings for directed graphs

We generalize the notion of s-t numberings to 2-vertex connected digraphs. The
numbering 7 described in the following theorem is called a directed s-t numbering.

Theorem 3.1. A directed graph G =(V, E) with at least three vertices is 2-vertex
connected if and only if for every pair of vertices s,t there is a numbering 7:V —
{1,...,n} of V (i.e., 7 is a bijection) such that
(i) w(s)=1 and 7 (t)=n, and
(ii) for each veV —{s,t}, there is a successor w with w(w) >m(v) and a successor
u with m(u) <m(v).

Proof. To prove the “if part”, first focus on an arbitrary but fixed pair of vertices s
and t. Notice that if there is a numbering 7 satisfying the conditions of the theorem,
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then for each vertex veV — {s,t}, G has a path from v to s and a path from v to
t such that these paths have no common vertex except v. Since this holds for each
pair s,t, G must be 2-vertex connected.

To prove the “only-if part”, we use induction on n to prove the following statement
for an arbitrary but fixed pair of vertices s and ¢: If for each v €V —{s,}, G has
a path from v to s and a path from v to ¢ such that these paths have no common
vertex except v, then G has a directed s-t numbering .

The basis of the induction is easily seen to hold, so we proceed with the induction
step.

Using a theorem due to Lovész [16], it can be shown that G has a subgraph G' =
(V,E') such that the outdegree of both s and ¢ (in G') is zero, and for each v &
V—{s,t}, the outdegree of v (in G') is two, and G’ has a path from v to s and a path
from v to ¢ such that these paths have no common vertex except v. Clearly, any
valid numbering 7 of G’ is also a valid numbering of G. Focus on the indegree of
the vertices in G'. Since G’ has at most 2n—6 edges with head vertices in V —{s,t}
(there must be at least two edges entering {s,t}), G’ has a vertex with indegree at
most one.

If G’ has a vertex v with indegree zero, then it can be seen that G/ — v satisfies
the induction hypothesis, therefore we can find a numbering 7’ for G’ —v and then
extend it to a numbering 7 for G (e.g., by assigning v a number between those
of its successors, and then “shifting up” some numbers by one in order to avoid
duplication of 7 (v)).

If G’ has a vertex v with exactly one entering edge, say (u,v), then we contract this
edge (i.e., replace vertices u and v by the vertex v*, and replace edges (v,w) or (u,w)
by (v*,w) and replace edges (¢,u) by (g,v*)) and consider the resulting digraph
G"\(u,v). By applying Menger’s theorem, it can be seen that G\ (u,v) satisfies the
induction hypothesis, therefore, we can find a numbering 7’ for G'\(u,v) and then
extend it to a numbering 7 for G (e.g., by assigning 7(u):=n'(v*), and assigning
v a number between the numbers of its two successors which is either less than or
greater than 7(u), depending on 7’(w), where w is the other successor of u, and
then “shifting up” some numbers by one in order to avoid duplication of 7(v)). |

One application of Theorem 3.1 is to construct, for any 2-vertex connected
digraph with a specified root vertex z €V, two independent branchings rooted at z,
i.e., to find branchings By =(V, E}) and By =(V, E3) rooted at z such that E\NEy =
0 and for each v €V —{z}, the two paths from v to z, in By and By respectively, are
internally vertex disjoint. For k=2, this gives a simple solution of the independent
branchings conjecture: For any vertex z of a k-vertex connected directed graph,
there are k independent branchings rooted at z. The conjecture was first raised by
A. Frank, see [22, pp. 235], and later Itai and Rodeh [11] raised a variant of the
conjecture for undirected graphs. For k <3, the conjecture for undirected graphs
has been resolved independently by [3] and [25]. The conjecture remains open for
directed graphs for k greater than two and for undirected graphs for k greater than
three.

A construction for two independent branchings has been presented before in
[24]. Our construction, which is much simpler than the one in [24], is straightfor-
ward:
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First, compute an s-t numbering for G with s = z and ¢ = y, where y is any
predecessor of z. For the “low” branching By, each v€V —{z} chooses its parent to
be a lower numbered successor, and for the “high” branching Ba, each ve V—{z,y}
chooses its parent to be a higher numbered successor (Bg also contains the edge

(y,2))-

Theorem 3.2 (Whitty). A digraph is 2-vertex connected iff for every vertex z the
digraph has two independent branchings rooted at z.

4. Convex directed embeddings

Our main result here is that a digraph G is k-vertex connected iff for every
subset X of V with | X|=Fk there exists at least one nondegenerate convex directed
X-embedding of G, i.e., the vertices can be embedded in RF~1 such that they are
in general position and each vertex v€V —X is in the convex hull of the successors
of v.

Intuitively, it is easy to conmstruct a convex directed X-embedding of G in
R¥~1 | where X is any size-k subset of V: Embed the vertices of X at the corners
of the unit simplex, let each arc behave as a “directed rubber band”, and compute
the equilibrium positions of the vertices. In more detail, let each arc exert zero
force on its head vertex, and a force on its tail vertex equal to the length of the are
times an arbitrary positive coefficient. Note that the asymmetry in the behavior
of “directed rubber bands” is critical for obtaining a convex directed embedding.
This physical system of directed rubber bands can be easily modeled as a system
of linear equations, and the equilibrium position of each vertex v €V — X can be
found by solving the system.

Let ¢c: E—R be a positive real-valued coefficient function for the edges, i.e., the
“directed rubber band” (u,v) has coefficient of elasticity c(u,v). Let v1,...,vp_¢
and vy _g41,---,Un be arbitrary linear orderings of V—X and X, respectively. Using

¢, we can find an embedding f (). =RF! with the vertices of X at the corners of
the unit simplex, i.e., with f(c) (vn)=(0,...,0) and for j=1,...,k—1, f(c)(vn_k_}_j} =
e;, where e; is the vector in R*~! with a “1” in position j and zeros in all other
positions. Moreover, f(c) satisfies the following equations, where we denote the
coordinates of f(©) (v) by fl(c) (v), fg(c) (v),..., ,Ec_)l('u) (For notational convenience,

we use f instead of f(¢) when there is no danger of confusion.)
For all veV —X and all d=1,...,k—1,

(1) Yo clv,w) - (falv) = fa(w)) = 0.
wel'(v)

Intuitively, this embedding f ensures that each vertex in V—2X is in equilibrium
under the action of the forces exerted by the directed rubber bands.
The system (1) can be rewritten as

(%) AF;=B; d=1,...,k—1,
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where A is the (n—k) x (n—k) matrix whose ijth entry, i,j=1,...,n—Fk, is given by

_C(Uiavj) if i # j and (Uiavj) € E,
A’ij = yler(m) C('U?:,'U[) if 4 =1
otherwise

By and Fy are column vectors of length n — k with the ith entry (1<i<n—Fk) of
Fy, Fjq, standing for the dth co-ordinate of v;, f(v;), and with the ith entry of By
being given by

Bii= { (Vs Vpmkogd) if vy is a predecessor of vp_4q € X,
0 otherwise.

Clearly, f is a convex directed X-embedding, i.e., for each vertex v eV — X,
f(v) is in the convex hull of f(T'(v))={f(w)|w €T (v)}, otherwise there would be
a nonzero force 3, cp(,) ¢(v,w)- (f(w) - f(v)) acting on v.

The next lemma shows that the matrix A is nonsingular, consequently equation
(x) determines a unique embedding f. The following result, Theorem 4.2, shows
that for every convex directed X-embedding f and for every subset U of V, the
affine dimension of f(U)={f(w)|weU} plus one is less than or equal to p(U, X).

Our main result, Theorem 4.3, states something more: There exists an embed-
ding f such that for every subset U of V' the affine dimension of f(U)={f(w)|we
U} plus one is exactly equal to the number of vertex disjoint paths between U and
X, p(U,X).

Lemma 4.1. If G is strongly connected, then the matrix A is nonsingular.

Proof. The matrix A has the following key property:
For each 7, i=1,...,n—k,

(2) ' Al > Y 44l
1<) <n—k
i

Further, there is at least one row for which the inequality is strict, because at least
one vertex in V — X, say vy, has a successor in X, and therefore

(3) [Amal = > clonv) > Y. |Aggl:
v; €L (up) 1Sign-k

To obtain a contradiction, suppose that A is singular. Then there exists a nonzero
vector z€R™ ¥ such that
otherwise, A would have full rank.

By considering the inner product of the hth row of A, denoted ay,, with z,

ap-x =0,
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it can be seen that all entries of z do not have the same absolute value, otherwise

| Appllznl > lonl - Y |Ansl using (3)
1<j<n—k
i#h
2| D Awl
1<<n—k
j#h
= | App|znl-

In other words, |zp| <|z;|, for some j€{1,...,n—k}.
After renumbering the vertices if necessary, it follows that there is an l(l<n—k)
such that:

(4) lz1] = -+ = | > |@g1] = - 2 [@n—kl-

Focus on the first [ rows of A, and the corresponding vertices v1,...,v; of G. Since
G is strongly connected, at least one of the vertices vy,...,1 has a successor in
V —{v1,...,u}. Consequently, at least one of these rows, say the gth row, has

(5) |Agq| > E |Agjl-

1<5<l

i#q
Now, using the inner product of the gth row of A with z, ag-z=0, we obtain the
desired contradiction because

|Agqllzgl > > |Agjllz;| using (2), (4) and (5)
1<j<n—k
i#q
> | Z Agjzj
1<j<n—k
J#q
= |Agqllzql-
This completes the proof. (]

Remark. If G is k-vertex connected for k at least one, then G is strongly connected
and by the lemma A is nonsingular. Notice that the hypothesis of the lemma can be
weakened without affecting the proof: to ensure that A is nonsingular, the digraph
G\ X obtained by contracting the vertex set X into a single vertex, say z*, should
have a branching with root z*.

Theorem 4.2. Let G=(V,E) be a digraph, let X be a subset of V and let k denote
|X|. Then for every convex directed X -embedding f: V —RF-1 of G and for every
subset U of V, U#0, rank(f(U)) <p(U, X).

Proof. Consider any fixed subset U of V. Menger’s theorem implies that there is a
subset S of V with |§|=p(U, X) such that G—S has no path from any vertex of U
to any vertex of X. Let W denote the maximum subset of V' — S such that G- 5
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contains no path from any vertex of W to any vertex of X. Clearly, U is contained
in WUS. For every convex directed X-embedding f, the following argument shows
that each extreme point of conv(f(WUS)) belongs to f(S). Consider any vertex u
in W, and note that by the definition of W, u¢ X and u¢ S. Since f is a convex
directed embedding it follows that f(u) is contained in conv(f(T'(u))), consequently,
since I'(u) is a subset of WUS —{u}, f(u) is contained in conv(f(WUS - {u})).
This shows that conv(f(W US)) = conv(f(S)). It now follows that rank(f(U)) <
rank( (W US)) =rank(£(8)) < S| =p(U, X). i

Theorem 4.3. Let G= (V.E) be a digraph, let X be a subset of V and let k denote

|X|. Then G has a convex directed X -embedding f:V —RF~1 such that for every
subset U of V, U#0, rank(f(U))=p(U,X).

Proof. Consider a fixed but arbitrary subset U’ of V, and focus on p(U’,X). If
p(U’", X) equals k, then let U={uy,uz,...,u;} denote any subset of U’ such that G
has k vertex disjoint paths from U to X, i.e., the ith path starts with u; and ends
with a distinct vertex of X. Otherwise, if p(U’, X)=k' is less than k, then let U=
w1, st FU(X = {21,..., 70 }) denote any subset of U’ UX obtained by taking
the set of start vertices {u1,...,up } CU’ of K’ vertex disjoint paths from U’ to X,
and adding all the vertices of X ezcept the vertices z1,..., 2 that belong to these
k' vertex disjoint paths. Let the vertices of U be denoted by v1,...,vE. Observe
that p(U, X) equals k, by the construction of U.

Let c: E—R be a vector of positive coefficients, and f () be the embedding obtained
by solving equation («). The rank of £(9)(U) is determined by the matrix g(e,U)
given by

1 %) . £9 ()

o= ) - A

1 9% .. £ ()

The rank of f(c)(U ) is less than k exactly when the matrix g(c,U) is singular, i.e.,
exactly when the determinant of g(c,U) is zero. Note that det(g(c,U)) is a rational

function over the entries c1,...,cp, of ¢, since each féc)(ui) is an entry of the matrix

Fy= A"1By (see equation (x)). Therefore, either the determinant is identically
zero (for all ¢), or it becomes zero only for a set of vectors ¢ of measure zero.

We claim that the first possibility is ruled out, i.e., det(g(c,U)) is not identically
zero. The following argument shows that there exists a vector of coefficients ¢’ such
that for the resulting embedding f (¢) the affine rank of f(cr)(U } equals p(U, X).
Let Pi,..., Py be vertex disjoint paths from U to X; suppose that the path P; has
start vertex u; and end vertex z; (1<i<k). Choose ¢/(u,v) =7~ for each arc (u,v)
in each of the paths Py,..., P, and choose ¢/(u,v) =1 for the remaining arcs. We
claim that for any given € >0 there exists a sufficiently large v such that for each
path P; the distance (in Rk_l) of u; from z; is less than €. The claim would imply

that the dimension of f(¢)(U) plus one equals k, because the k vertices of U (that
are the start vertices of the paths Pi,..., P;) would be located arbitrarily near to



444 JOSEPH CHERIYAN, JOHN H. REIF

k distinct vertices of the unit simplex. To prove the claim, focus on a fixed F;
and let the vertex sequence of P; be (y1 =u;),y2,...,¥—1, (¥ = ;). Suppose that
the equilibrium positions of y;_; and y; ==; are given by ) (y,_1) and f (C’)(y;).
Then the vector - (£ (y;) — F€)(y_1)) gives the magnitude and the direction
of the force exerted on ;1 by the arc (y;—1,%;). The remaining force on y;_1 has
a total magnitude of at most \/§n, since there are at most n remaining arcs with
tail vertex y;_1, and each of these arcs has a length of at most v/2 and a coefficient
of one. As 7 increases the equilibrium distance of y;_; and y; = x; decreases, and
for a sufficiently high + the distance becomes less than e¢/n. Repeating the above
argument for the other vertices y;_a,...,y2,(y1 =u;) of P, it follows that all the
vertices, including u;, are within a distance € of z;.

Also, by the construction of U from U’, if f(‘:r)(U) has rank equal to p(U, X) =k,
then £(¢)(U') has rank equal to p(U’,X).

Therefore, for each subset U’ of V the measure of the set of vectors ¢ such that
rank(f(©)(U")) is less than p(U’, X) is zero. The theorem now follows, because there
are at most 2" sets U’ (i.e., finitely many sets), therefore there exists a c such that
for all subsets U’ of V' rank(f(¢)(U")) equals p(U’, X). 1

Theorem 4.4. Let G = (V,E) be a digraph, and k be an integer, k =2,...,n— 1.
Then G is k-vertex connected iff for every subset X of V with |X|=k, G has a
convex directed X -embedding in general position.

Proof. Let X be any subset of V with |X|=k. Since G is k-vertex connected, it
is clear that for every subset ¥ of V with |Y|=k, p(Y,X)=~k. Now, the above
theorem guarantees a convex directed X-embedding f:V — R*~1 such that for
every k-vertex subset Y of V rank(f(Y)) equals p(Y,X)=Fk. In other words, no
hyperplane contains k vertices of f(V'), therefore, f is in general position.

For the other direction of the theorem, let f be a convex directed X-embedding of
G in general position, where X is any subset of V with |X|=4k. Then for every ¥ C
V with |Y|=k, p(Y, X) is at least rank(f(Y)) by Theorem 4.2, and rank(f(Y))=Fk
since f is in general position. Consequently, G is k-vertex connected. |

To gain computational efficiency, instead of finding a directed X-embedding
f in R*~1 we use the [15] method of computing a directed X-embedding f in
the k —1 dimensional linear space over a finite field F; the resulting f is called a
modular directed X -embedding. The computation is done over the field of integers
modulo a prime p, Z,. A random modular directed X-embedding is constructed as
follows: Fix a random prime p in the interval [n?,n%] and do the computations over
(Zp)*F~1. Choose a random nonzero coefficient function c: E — (Z, —{0}) on the
edges, and compute a directed X-embedding f .y — (Z:D)k_l by solving equation
(%). Two remarks on computing random modular directed X-embeddings are in
order: Firstly, the matrix A in equation (%) may be singular over Z,, i.e., possibly
det(A) = 0modp, even though A is nonsingular over the reals. Since p is drawn
randomly from the primes in the interval [n°, n%], and since det(A) is nonzero over
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the reals, the probability of A being singular over Zp is less than 1 /n4.* Secondly,
for a subset U of V' — X, there is a positive probability that a randomly chosen

coefficient vector c€ (Z,—{0})|E| gives a modular directed X-embedding £(°) with
rank(f(©)(U)) less than p(U, X ). Consequently, for a k-vertex connected digraph
G, it is not necessarily true that there exists a modular directed X-embedding f
such that every subset U of V' with cardinality & has rank(f(U))=k.

Lemma 4.5. Let G=(V,E) be a digraph, let X be a subset of V" and let k denote
|X|. Then for any fixed subset U of V—X, a random modular directed X -embedding

F1V—(Z,)F1 satisfies rank(f(U)) =p(U, X) with probability at least 1— (1/n3).

Proof. Consider a vector ¢ drawn at random from (Z, —{0})/El. With probability
greater than 1— n—ﬂ-, the matrix A in equation () has det(A4)##0mod p. Moreover,
assuming that det(A) # Omodp, the determinant det(g(c,U)) in the proof of
Theorem 4.3 is a rational function of degree at most 2k(n — k) < %nz whose
denominator is nonzero, because each entry of the matrix g(c,U) is a rational
function of degree at most 14+(n—k) <2(n—k) whose denominator (namely, det(A))
is nonzero. Note that each entry is obtained by solving equation (). Now applying
the Zippel-Schwartz lemma [26], [23], the probability that det(g(c,U)) = Omodp
(assuming that det(A4) # 0mod p) is at most g%. Therefore, the probability that
rank(f(¢)(U)) is less than k, which is at most the probability that either det(A)=

Omodp or det(g(e,U))=0mod p, is at most n%}-i—%gfg. |

5. Algorithms for digraph k-vertex connectivity

Subroutine test root(z, Q)
Input: Digraph G=(V,E), and a “root vertex” z.
Output: If the algorithm returns success, then G has k internally vertex disjoint
paths from each v € V —{z} to z. If the algorithm returns failure, then
with probability >1—1/n? @ has a separator of size < k.
begin
choose a random prime p € [n%,1n%] and a random vector c€ (Z, — {0})£l;
let X be a set of k predecessors of z;
compute the modular directed X-embedding f(®) by solving equation (%);
for all ve V —{z} do
compute the rank of £()(I'y(v))={f(9 (w)|weTy(v)};
if matrix A is singular over Z, or some v computes a rank <k
then return failure
else return success;
end.

Fig. 1. Constructing and testing a modular directed X -embedding

* The number of distinct prime divisors of det(A) is <log|det(A)|<log(np)™ < Tnlogn; and
there are (n5/(Inn)) primes in the interval [n5,n®], by the prime number theorem [10].
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Algorithm Monte Carlo k-connectivity
Input: Digraph G=(V,E).
Output: If G is k-connected, accept it with probability >1~-1 /n, otherwise, reject
it with probability >1—1/n?.
begin
let &' =[logn/log(n/k)];
for i=1 to k' do
begin
choose a random vertex y; €V
call test root(y;,G) and test root(y;,rev(G)) and
if either call of test root fails, then reject G and stop;
end;
accept G
end.

Fig. 2. Monte Carlo algorithm for digraph k-vertez connectivity

Our algorithms are similar to those of [15]. We first give a Monte Carlo
algorithm for testing a digraph for k-vertex connectivity, and then describe the
modifications necessary to obtain a Las Vegas algorithm.

The basic subroutine used by our algorithms, testroot, has two inputs: a
digraph G = (V,E) and a “root vertex” z € V. The subroutine tests whether G
has k internally vertex disjoint paths from each veV —{z} to z, or whether G has
a separator of size less than k. Both outcomes are possible for the same G, since
every separator of size less than k may contain z.

Let X be a fixed but arbitrary subset of the predecessors of z with |X|=k.
For every vertex v €V — X, let I'y(v) denote a fixed but arbitrarily chosen set of
k successors of v, i.e., [x(v) CT(v) and |Tk(v) |=k. For vertices v € X, let T'(v)
denote the union of {v} and a fixed but arbitrarily chosen set of k—1 vertices from
I'(v)—{z}. Consider any vertex veV—{z}. To efficiently test for k internally vertex
disjoint paths from v to z, it suffices to check whether G has k vertex disjoint paths
from Ty (v) to X. If G has these paths, then it also has & internally vertex disjoint
paths from v to z. On the other hand, if G does not have k vertex disjoint paths
from T'x(v) to X, then by Menger’s theorem G must have a separator of size less
than k.

The subroutine testroot, given a root vertex z, works as follows: First, a
random modular directed X-embedding f:V — (Zp)k_1 is computed by choosing a
random prime p and random nonzero coefficients for the edges of G (i.e., choosing

a random vector ¢ € (Zp — {0})El), and solving the linear system (x). Then for
every v € V —{z}, we test whether rank(f(T;(v))) is equal to k. If the matrix A
is singular over Zp, or if some vertex v fails the test, then the call of test root fails,
otherwise, the call succeeds. See Figure 1.

Coming to the running time analysis, the linear system (x) has to be solved
in order to construct a modular directed embedding: We first compute the inverse
of A in time O(M(n —k)), and then for d = 1,,..,k “simultaneously” compute
Fy=fq:(V—-X)— Zp, by multiplying A~1 and the matrix (Bj...By) in time
O(M(n—Fk)-[k/(n—k)]). For subsets U of V with [U|=Fk, the running time for
computing rank(f(U)) is O(M (min{k,n—k})).
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Lemma 5.1. If test root returns success, then for each veV —{z}, the digraph has
k internally vertex disjoint paths from v to z, and if test root returns failure, then
with probability >1—1 /n2 the digraph has a separator of size less than k. The
running time of test root is O(M(n—k)-[k/(n—k)]+n-M (min{k,n—k})).

The following well known result [6, 7] shows how test root can be used to test
for k-vertex connectivity.

Lemma 5.2. Let z1,...,2; be k arbitrary but distinct vertices of the digraph G.
Then G is k-vertex connected iff for both the digraphs G and rev(G), testroot
succeeds with each of the k root vertices z=2z1,...,2.

For each execution of our Monte Carlo algorithm, if we do not require the
output to be correct but instead allow a digraph that is not k-vertex connected to
be accepted with probability less than 1/n, then we can improve on the number of
calls to testroot by fixing an appropriate value &' less than k and calling test root
for k' randomly chosen root vertices y1,...,yx. An execution of the algorithm may
be erroneous: If G is not k-vertex connected, but every separator of G with size less
than %k contains the randomly chosen root vertices yi,...,y, then the algorithm
would accept G. To fix the value of k', note that the probability of an erroneous

result is at most ((k—1)/n)¥’. This idea has been used before by [1], [18] and [15].

Lemma 5.3. Let k' be an integer such that ((k—1)/n)* <1/n; k' may be taken to
be [logn/log(n/k)]. Let yi,...,yw be k' randomly chosen vertices of the digraph
G. If for both the digraphs G and rev(Q), test root succeeds with each of the k' root
vertices z=y1,...,Yy , then with probability >1—(1/n) G is k-vertex connected.

As mentioned before, with probability less than 1/n the Monte Carlo algorithm
may accept a digraph that is not k-vertex connected. Also, with probability less
than 1/n° the algorithm may reject a digraph that is k-vertex connected, because
according to Lemma 4.5 with probability less than 1 /n2 either the matrix A may
be singular over Z, or the embedding f computed by the algorithm may have a
vertex v with rank(f(Iy(v))) <k. See Figure 2.

To estimate the cost of logn/log(n/k) calls of testroot, note that when k <
n/2, then logn/log(n/k) <logn, otherwise, logn/log(n/k) <klogn/(n—k).

The next theorem sums up the above discussion.

Theorem 5.4. The k-vertex connectivity of any digraph can be tested by a Monte
Carlo algorithm with a running time of O((M(n)+nM (k))-(logn)). If the digraph
is k-vertex connected (is not k-vertex connected), then the algorithm accepts the
digraph (rejects the digraph) with probability >1—1/n.

A Las Vegas algorithm for testing the k-vertex connectivity of digraphs can be
obtained from the above algorithm by eliminating the possibility of both accepting
a digraph that is not k-vertex connected and rejecting a digraph that is k-vertex
connected. To handle the first possibility, we choose k distinct vertices y1,...,%k,
and for both the digraphs G and rev(G) call test root k times with the ith call using
y; as the root vertex.

Consider the second possibility. If a call of test root with root vertex y and k-
subset of y’s predecessors X fails for the vertex v, i.e., if we find that the modular
directed X-embedding f computed by this call of testroot has rank(f(I'y(v))) <
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Algorithm Las Vegas k-connectivity
Input: Digraph G=(V,E).
Output: Accept G if it is k-vertex connected, otherwise reject it.
begin
for i=1 to k do
begin
choose a vertex y; €V —{y1,-..,¥i—1};
loop
call testroot(y;,G) and testroot(y;,rev(G)) and
if both calls of test root succeed, then exit the loop;
(if testroot fails, assume it returns the embedding f ()
and a vertex v causing failure;)
choose one of G or rev(G) on which testroot fails, and
let v be a vertex causing test root to fail;
compute the affine hull H of the embedding of I';(v);
let S be the set of vertices s embedded in H
such that either s€ X or s has a successor w
which is not embedded in H;
if |S| <k then reject G and stop ;
forever;
end;
accept G;
end.

Fig. 3. Las Vegas algorithm for digraph k-vertex connectivity

k, then we attempt to find a separator S of cardinality less than k& whose deletion
destroys all paths from I'y(v) to X. Suppose that p(I'y(v),X) =K is less than k.
For any T'y(v)-X separator S with cardinality k' let Q(S) denote the maximum
subset of V — S such that G — S has no path from Q(S) to X —S. The following
result is well known, and may be proved using the submodularity of .

Lemma 5.5. Let S* be a T',(v)-X separator with cardinality p(T'y(v),X)=k' such
that Q(S*) is maximal over all such separators S. Then S* is unique, and for each
vertex vEV —(S*UQ(S*)) the number of vertex disjoint paths from {v}US* to X,
p({v}US*, X), is greater than k.

Combining this result with Lemma 4.5, and noting that the affine hull of f(S5*)
contains the affine hull of f(I';(v)) gives the key lemma for analyzing our Las Vegas
algorithm. ’

Lemma 5.6. Suppose that there is a vertex ve€V —{z} with p(T'y(v), X) less than k,
and let S* and Q(S*) be as above. For a random modular directed X-embedding
f with probability at least 1—1/n? no vertex of V — (S*UQ(S*)) is embedded in
the affine hull of f(T'y(v)). '

When a call of test root with root vertex y fails for the vertex v, we first compute
the affine hull H of I'g(v), and then find the set of vertices S that are embedded in
H and that either belong to X or have a successor embedded outside H. Note that
S is a 't (v)-X separator. If S has cardinality less than k, then we have showed
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that G is not k-vertex connected, otherwise this call of testroot has been futile and
we repeat the call with the same root vertex. See Figure 3. The above discussion
gives us the next theorem.

Theorem 5.7. There is a Las Vegas algorithm with an expected running time of
O((M(n) + nM(k)) - k) to test the k-vertex connectivity of any digraph. The
algorithm accepts a digraph iff it is k-vertex connected.

Both the algorithms in this section can be implemented on the PRAM model
of computation. On an EREW PRAM, both algorithms have running times of
O((logn)?). The critical computation for both parallel algorithms is to invert the
matrix A in equation (). Using the algorithms of Kaltofen and Pan [12], with high
probability, an nxn matrix can be inverted on an EREW PRAM in time O((log'n)2)
using (M (n)logn) processors; for completeness, we cite the main theorem of [12].

Theorem 5.8 (Kaltofen, Pan). Let n be a number >1, X be a field of characteristic
zero or >n, and A€ KX™*"™ be a nonsingular matrix. There exists a randomized alge-
braic circuit for computing A~ that has size O(M(n)logn) and depth O((logn)?),
and that uses O(n) random input elements drawn uniformly from a subset f of X
(besides the n? input elements of A). The circuit outputs the n® entries of A1
with probability >1—(3n2/|¥|). With probability <3n?/|¥f| (or if the matrix A is
singular) the circuit divides by zero. ‘

The next theorem gives the complexity of both our parallel algorithms.

Theorem 5.9. The k-vertex connectivity of a digraph can be tested on the EREW.
PRAM model of computation by:

1. A Monte Carlo algorithm in a running time of O((logn)?) using (M (n)+
nM(k))- (logn)? processors. If the digraph is k-vertex connected (is not
k-vertex connected), then the algorithm accepts the digraph (rejects the
digraph) with probability >1—(1/n+1/n2).

2. A Las Vegas algorithm in an expected running time of O((logn)?) using
(M (n)+nM/(k))-klogn processors. The algorithm accepts a digraph iff it
is k-vertex connected. '

Acknowledgments. We thank the referees for their comments.
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