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Abstract

Given a graph G and an imbedding I, of a subgraph Gy of G into a

2-manifold M, the imbedding extension problem is to determine if there

exists an imbedding I of G into M extending I;. We show that this problem
is complete in nondeterministic polynomial time, even if
(1) G is cubic (the maximum valence of any vertex
of G is 3), or
(2) 1, is quasiplanar (each closed face of I, is
homeomorphic to a disk).
lThis complexity result is tight in the sense that if G is cubic and I, is
quasiplanar, then the imbedding extension problem can be solved in quadratic
time.
We also show that the prob]ém of counting nonisotopic imbeddings of a
cubic graph extending a given quasiplanar imbedding is a complete counting

'problem.



1. Introduction

Considerable research effort [Lempel, Even, and Cederbaum, 1967;
Hopcroft and Tarjan, 19741 has been devoted to efficient algorithms for

recognition of planar graphs: graphs which have an imbedding into the plane.

In general, the imbedding problem for graph G and topological surface M is

to determine if G has an imbedding into M. We have recently [Reif, 1978]
developed a polynomial-time algorithm for the imbedding problem for any
fixed grientable surface. |
Our algorithm for the imbedding problem and many previous algorithms
(for example, the [Hopcroft and Tarjan, 1974] planar graph recognition
algorithm and the [Filotti, 1978a and 1978b] cubic, toroidal graph recognition
algorithm) have the following general-form:
(1) Initially we construct a fixed number of imbeddings
of subgraphs 6f graph G into surface M.
(2) Next, we attempt to éxtend each of these partial
imbeddings to an imbedding of G into M.
This paper is concerned with the time complexity of the imbedding

extension problem: given a graph G and an imbedding I, of a subgraph of G

into surface M, determine if G has an imbedding into M extending I,.

We have shown [Reif, 19781 that if the surface M is fixed and orientable,
then the imbedding extension problem is in polynomial time. Unfortunately,
we show here that the imbedding extension problem for arbitrary surfaces is
NP-complete in the sense of [Cook, 19711. This implies that the imbedding
problem for graph G and arbitrary surface M cannot be solved efficiently by

an algorithm of the above form, unless P = NP.



In the next section we give some preliminary definitions on
computational complexity, surfaces, graphs and their imbeddings into
surfaces. Section 3 presents our proof that the imbedding extension
problem is NP-complete. Section 4 gives a polynomial-time algorithm for
solving a restricted class of imbedding extension problems. Section 5

concludes the paper with some related open problems.



2. Preliminary Definitions

2.1 Computational Complexity

We consider in this paper the complexity of various imbedding
problems. As usual, we view these problems as language recognition problems,
say over a fixed alphabet :. Let P(NP) be the class of languages recognized
by (non)deterministic Turing Machines in polynomial time. Let NL be the
class of languages recognized by nondeterministic Turing Machines in log-space.

A counting Turing Machine is a nondeterministic Turing Machine augmented with

an oracle for counting all accepting instances. Let #P be the class of

languages recognized by counting Turing Machines.

Let L,L' be languages over alphabet 2. A polynomial-time (log-space)

reduction from L' to L is a polynomial-time (log-space) computable function
f:I* »I* such that for each xez*, xel' if and only if f(x)el. The

reduction is parsimonious if for each yeL, there is a xeL' such that

f(x) = y. Let L be a class of languages over 5. L is £-hard if there
is a Tog-space reduction from each L' ¢l to L, and L is L-complete if
in addition, L eX.

Let k-CNF be the set of boolean formulas in conjunctive normal form
with k 1iterals per clause. Let k-(UN)SAT be the problem of testing if a

formula of k-SAT is satisfiable. The following will be of use:

Proposition 2.1: 2-SAT is linear-time.

Proposition 2.2: 2-UNSAT is NL-complete [Jones, Lien, and Lauser, 1976].




Proposition 2.3: 3-SAT is NP-complete [Cook, 1971].

Let #k-SAT be the problem of counting the satisfying instances of a
formula in k-SAT.

Proposition 2.4: #2-SAT is #P-complete [Valiant, 19771].

2.2 _Graphs

A graph G = (V,E) consists of a set of vertices V and a set of
edges E consisting of unordered pairs of distinct vertices {u,vlieV. The
size of G is |V| + |E|. The valence of G is the maximum number of edges
containing a given vertex. A graph of valence 3 is cubic. A path is a
sequence of edges {vy,v,},{va,v3},...,{vk-1,vk} and is a cycle if v = vg.
Given graphs G = (V,E) and G' = (V',E'), let G + G' be the graph (VwV', EUE').
~Let G' be a subgraph of G (G'<€G) if V'eV and E' <E.

A graph G = (V,E) will frequently be identified with a 1-simplicial
complex:

each vertex veV is considered a point in
Euclidean 3-space and each edge {u,v}eE is
considered an arc from u to v. A pair of
edges {u,v},{u',v'}eE may intersect only at

their endpoints u, v, u', or v'.



2.3 Topological Surfaces

A 2-manifold M is a connected, topological space in which the
neighborhood of each point is homeomorphic to an open disk. M is closed if
the boundary of M is M itself. A surface will be assumed to be a closed
2-manifold.

A surface M is orientable if the points in the neighborhood of each
curve C on M may be consistently oriented to either the right or left of C

(else M is nonorientable). In general, any orientable surface M may be

characterized (up to homeomorphism) as a sphere with an addition of vy>0
"handles." The integer y is the genus of M.

For example, the torus is of genus 1. Similarly, any nonorientable
surface M may be characterized (up to homeomorphism) as a sphere with x>0
“crosscaps.” For example, the projective plane has exactly one crosscap.

These characterizations of surfaces are due to [Fr&chet and Fan, 19671].

2.4 Graph Imbeddings

Let I:G+M be a homeomorphism of graph G into surface M. Each
maximal, connected region F of I(G) - M is an open face of I. The boundary
of F, B(F). is considered to be oriented in a clockwise fashion and
consists of a cycle of G. The closed face F consists of F plus its

boundary B(F). An (2-cell) imbedding is a homeomorphism I : G+M in whicheach

open face is homeomorphfc to an open disk. An imbedding I is quasiplanar
if each closed face is homeomorphic to a disk. Any imbedding I:G-+M

with f faces satisfies Euler's formula:

|[E] - |V] + f=2 - 2y if M is an orientable surface of genus v,

2 - ¢if M is a nonorientable surface with

k Crosscaps.



2.5 Combinatorial Imbeddings

We describe here an elegant combinatorial characterization of graph
imbeddings given by [Edmonds, 1960, and Youngs, 1963].

Let a combinatorial imbedding of graph G be a set of cycles CI of G

such that each edge of G occurs exactly twice in CI. An imbedding I of G
into surface M is represented by the combinatorial imbedding {B(F) | F is a
face of I}. A combinatorial imbedding CI represents orientable imbeddings
just in the case each edde of «G is traversed in opposite directions in its

two appearances in CI.

Given a combinatorial imbedding CI of G, we construct a surface M by
associating a disk DB with boundary B for each Be DI; then "glueing" these
disks together by identifying pairs of boundary segments associated with a
unique edge of G. The identity mapping I from G into the resulting surface

M is represented by the o~iginal combinatorial imbedding CI. Note that any

pair of isotopic imbeddinjs of G into M are represented by a unique
combinatorial imbedding.

Thus, to determine if graph G has an imbedding into surface M, we can
enumerate all combinatorial imbeddings of G and test (by applying Euler's

formula) if any represents an imbedding of G into M. Consequently, we have:

Theorem 2.1: The imbedding problem is in NP.

Given a combinatorial imbedding CI of graph G and combinatorial
imbedding CI, of some subgraph GoeG, CI is consistent with CI, if CI, may
be derived from CI by repeatedly merging pairs of cycles and deleting their
oppositely directed common subsequences. Note that if imbeddings I : G-+M,
I, : Gop+M are represented by IC, ICy, then I extends I, if and only if CI

is consistent with CIj.



Consider the imbedding extension problem for graph G and partial
imbedding Iy : Gy +M represented by combinatorial imbedding CI,. To
deter‘mine if there is an imbedding I : G+M extending I,, we can enumerate
all combinatorial imbeddings consistent with CI, and test if any represents

an imbedding I:G-+M.. We have shown:

Theorem 2.2: The imbedding extension problem is in NP.



3. The Imbedding Extension Problem is NP-complete

We show that the imbedding extension problem is NP-hard by a
polynomial-time reduction from SAT: satisfiability of Boolean formulas in

CNF form. Let S = {Xj,...X } be a set of boolean variables, taking values

in {0,1} . Let Y} be the negation of boolean variable X; e S and
let 7} = Xi . Let a literal & be a boolean variable or its negation.

Let a clause C be a 1list of literals, and let a boolean formula be a set Q

of clauses.

Let L be the set of literals occurring in BF, and their negations.
Given truth assignment t:S5- {0,1} , let t(Q) = 1 iff for each CeQ there
exists some literal 2eC such that <(C) = 1. Q is satisfiable if there
exists a truth assignment t with «(Q) = 1.

We now define a partially imbedded graph G and will show fhat the
imbedding of G is extendable if and only if Q is satisfiable.

Associated with each clause CeQ, let there be distinguished vertices

u_,v_. . For each literal 2eL, let there be a distinguished vertex W

o
Let C(2) ={C1,...,Ck} be those clauses of Q containing literal 2 .

Let B, be the simple cycle containing distinguished vertices in order

W LU s W_, V. sV

sswsl. w W
% £ %

Cr-1 c

alternating with pairs of non-distinguished vertices unique to B2 i

u .o
L Cl, L

Let FJl be a disk with boundary Bz . See Figure 3.1.

and let ei,e.

Let y be a vertex contained in cycles Bnl”'°’B i

9.
J
be those edges of Bz. containing y, for i = 1,...J . These cycles are

i
merged at y by identifying edges e = e; , e; = €3, ..., € 1 = & and

e, = ef . See Figure 3.2.



Let Go be the graph derived from edge-disjoint cycles {Bz|£eL}
by merging at each vertex w, forall ¢ &L, and merging at each vertex Uo and at each
Vo for all ce Q. Note that these operations have the effect of
"gluing together" the boundaries of the disks { Fz’ |2e L} .. Thus there is a
closed, oriented 2-manifold M containing Go with identity mapping

IO:G—O+ G0 ; such that for each literal ¢¢ L, F_ is a face of IO.

2
Let G be the graph derived from Go by adding edges
E1‘= {4} wx,WX_}IXSS} U {{UC,VC}|C€ Q}

See Figure 3.3.

Lemma 3.1 There exists an imbedding I : G+-M extending IO if and

only if Q is satisfiable.

Proof
(=) Suppose I is an imbedding of G into M with the points of Go

fixed. By construction of G, either I({wz,wz}) ng or I{{wz,wr}) gFT

Let (2) = 1 if I({wl,wr})g FI and let t{2) = 0 else. We claim
7{(Q) = 1. Consider any CeQ . By construction of G, I({uc,vc}) < F2
for some 2¢C. But {wz,wl_} and {uc,vc} cannot both be imbedded into Fz’

3] I({wz,wl_} ) SFE and t(2) = 1. Thus for each CcQ, we have shown <(C) = 1.

(&) Suppose t is a truth assignment with t(BF) = 1. Let I : G+M
so that
(i) the points of GO are fixed,
(ii) for each & ¢ L, imbed {Wz’“’@} into face FE. if r(e) =1
and into Fz if «(2) = 0.
(iii) For each CeQ, imbed {uc,vc} into some face Fz such that
2eC and JT(Z) = 1.

Thus I is the required imbedding of G into M. O
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Since by Theorem 2.2.1 the imbedding extension problem is in NP
and it is known [Cook, 1971] that the problem of testing for satisfiability of
boolean formulas in CNF form is NP-hard, we have;

Theorem 3.1: The imbedding extension problem is NP-complete.

Recall that an imbedding is quasiplanar if each closed face is
homeomorphic to a disk. A slight modification of the above construction
yields:

Theorem 3.2: The imbedding extension problem is NP-complete even if
the given partial imbedding is quasiplanar.
Proof

Each closed face F2 associated with Titeral is homeomorphic to a

disk. However, observe that certain open faces of I0 are not associated

with Titerals, and these will be called induced faces. If F 1ds an

induced face, then the boundary of F can have no repeated nondistinguished
vertices, but may have repeated distinguished vertices--in which case F
is not homeomorphic to a disk.

For each subsequence {y;,y,} , {y,,ys} of the boundary of an induced face
F, such that y;, y3 are distinct nondistinguished vertices and y, is a
distinguished repeated vertex, add a new edge {y;,y3} and imbed this edge into
F. This has the effect of "closing off" any repeated vertex y, . The resulting
graph Gé has identity mapping Ié s 664-66 which is a quasiplanar imbedding
into M.

Let G' be the graph Gé plus the edges E; . The edges of E; can only
be imbedded into the faces of {Fglz e L} . Hence G' has an imbedding extending
Ié if and only if G has an imbedding extending I0 if and only if Q is
satisfiable. O
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Observe that if the boolean formula Q is in 2-CNF (with but 2 literals
per clause) then the constructed graph G' is cubic. Furthermore, this
construction requires only log-space. Since 2-SAT is NL-complete, we have:

Corollary 3.1 : The problem of testing if a cubic graph has no imbedding

extending a quasiplanar imbedding is NL-hard.
Since the reduction of Theorem 3.2 is parsimonious, we have:

Corcllary 3.2 : The problem of counting all nonisotopic imbeddinas of a cubic

graph extending a given quasiplanar imbedding is #P-complete.

Next we demonstrate that
Theorem 3.3 : The imbedding extension problem is NP-complete for cubic
graphs.
Proof

It was shown in [Cook, 1971] that 3-SAT is NP-complete. Let Q
be a boolean formula in 3-CNF with set of literals L.

For each literal & eL, with c(2) = {cl,...,ck} ,

let Bi be the simple cycle containing distinguished vertices in order

e .V v R W
Mooy, e et Ve etV e e

alternating with pairs of nondistinguished vertices unique to Bi .

Also, for each clause ce Q with c = {21,%5,23} Tlet Yer Z¢ be distinguished
vertices and let BC be the cycle containing distinguished vertices in order

y laZ

u zZ_,V v v
cle,e c’uc,gz’ c,23°7¢C’ c,23’yc’ C,%5° c,zl’yc

alternating with pairs of nondistinguished vertices. See Figure 3.4.
Let H0 be the graph derived from edge-disjoint cycles

{Bél 2eLlv {BCI ceBF} , by merging at vertices w u > and V

2’ TC,h 22

for each literal 2e¢Ll and clauses ceC(2) .
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As in the previous construction, H. has an imbedding JO into

0
oriented surface M such that for each s el, there is a face Fi with boundary 89:,

and for each clause ceQ, there is a closed face FC with boundary B .

Let H be the graph H_ plus edges {{wz,w}:}lzel}uﬁuc,z,vc’l}lneL,c;;C(z)%

U{{yC,ZCHC £ Q% '

Lemma 3.2  There exists an imbedding J : H+M' extending JO if and only if

Q is satisfiable.
Proof

(=) Given an imbedding J : H+M' extending Jyo Tet () =1 if
J({wg,wz}) fFT‘L_ and let (&) = 0 else.

[F ¢ 1is a clause of Q, then since it is impossible to simultaneously
imbed all the edges {[ucal,vc’g}lzsC} Y {yc,zc} into FC, it follows that

J({

uc,z’vc,a}) <F, for some ¢eC. Hence I({wl, I}) <F!' and t(C) = <(2) = 1.

[}
(=) Given a truth assignment r satisfying Q, we construct an imbedding
J : H>M as follows:

(i) 1let the points of Ho be fixed Jo

(ii) for each literal 2el, let J({wz,w_i.}) SFE if o2) =1

S'Fﬂ, if T(Z) 0

1]

(iii) for each clause ceQ where ¢ = {21,25,23} with (2;) = 1,

}) cFQ' , and

It is easy to show that there is always an imbedding

J({yc,zc})fFC . a
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4. Imbedding Extension Problems Polynomial-Time Reducible to 2-SAT

In the previous section, the imbedding extension problem for graph G
and partial imbedding Io was shown to be NP-complete in the case either

(1) G is cubic, or

(2) IO is quasiplanar.
Here we show that if (1) and (2) both hold, then there is a polynomial-time
algorithm for the imbedding extension problem.

Fix a graph G = (V,E), a subgraph G, = (VO,EO), and imbedding
IO : Go-+M. Let G' be the graph derived from G by

(1) deleting all edges of E0

(2) substituting for.' each edge {u,v}e E-E, with ve¥, .

an attachment edge {u,uv} with new vertex uv.

Let a piece p bea graph derived from a nontrivial connected
component of G' by replacing each vertex uv with the corresponding original
vertex v in each attachment vertex {u,uv} . Note that each piece p is a

connected subgraph of-GO. The attachment vertices of p are those vertices of

p contained in Vo‘ Furthermore, for any imbedding I of G into M extending Io’
I(p) is contained in a single closed face of IO

Each attachment vertex of p must be contained on the boundary B(F).
Lemma 4.1: If F = FuB(F) is homeomorphic to a disk, then p + B(F) is a
planar graph.
Proof

Since F is homeomorphic to a disk, there is a homeomorphism h from F

into the plane. Thus h- I, restricted to p, is a homeomorphism into the plane. O



o

Lemma 4.2: If F is homeomorphic to a disk and Ip is an imbedding of
p + B(F) into a sphere Mo’ then there exists an imbedding I' :G-+M such
that I'(G-p) = I(G-p) and Ip(p), I'(p) are represented by the same
combinatorial imbedding.
Proof

M0 - Ip(B(F)) contains exactly two maximal, connected regions Dl’DZ
each homeomorphic to a disk. Let us assume, without loss of generality, that
Ip(p) <D, . Since F is homeomorphic to a disk, there is a region R <F
homeomorphic to a disk containing I(p) but disjoint from I(G-p).
Since both R and F are homeomorphic to a disk, there is a homeomorphism
h : R+F such that the points of B(F) are fixed in H -Ip. Thus we may
let I'(p) = h(Ip(p)) s I'(p) is contained in R and thus is disjoint from
I'(G-p) = I(G-p) . O

For each piece p, let F(p) be the set of those faces F of I0 such
that

(1) each attachment vertex of p is contained in B(F), and

(2) B(F) + P is planar.

Pieces PysP interfere at face Fe F(pl)n F(pz) if there is no imbedding
from p1+p2 into F in which the attachment vertices are fixed. See Figure 4.1.
Lemma 4.3: If F is homeomorphic to a disk, pieces PysPp interferé at face
Fe F(pl)n F(pz) just in the case there are distinct vertices u;,u;,v; .V,

occurring in this order in B(F) such that s,V are attachment vertices of

Pis for i = 1,27
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Proof
If such vertices UpsUpsVqsVy exist, then there is a path q; in P;
from Uy to Vi for i = 1,2. It is clear that there is no imbedding from

q1+q2 into F , and hence there is no imbedding from p1+p2 into F.

On the other hand, if such vertices ul,ué,vl,v2 do not exist,
then F can be partitioned into a pairof regions D1 and D2’ each homeomorphic

to a disk, with all attachment vertices of Py contained in Di’

for i.= 1,2 and such that DlA 02 contains at most two points of B(F).
But since B(F)+p1 and B(é)+-p2 are both planar, there are
imbeddings I1 : pl-*Dl’and 12 : p2-+D2 which combined form an imbedding
from p; + p, into F= D,ud, . O

Now, let us assume

(1) I0 is quasiplanar, and

(2) for each piece p, |F(p)} < 2.

As a consequence of Lemma 4.3, to find an imbedding of G extending
Io we need only find an assignment of each piece p of G to a face F of I0 such
that B(F)+p is planar, and no pair of pieces interfere relative to this face
assignment.

For each piece p and face Fe F(p), 1ef there be a boolean variable Xp,F .
Let Q be a set of clauses containing

(1) for each piece p,

(a) a clause (Xp F) if F(p) = {F}

(b) else if F(p) = {Fl,Fz} » a pair of clauses (Xp,Flv Xp,F2
and (X_ - v X .) .
p-’-Fl pst
(2) a clause (Xpl,Fv szaF) for each pair of pieces P1sPy conflicting

relative to face Fe F(Pl)A-F(pz)-
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For example, see Figure 3.2.
Lemma 4.4: Q is satisfiable if and only if there exists an imbedding of G
extending Io'
Proof

Let t be a truth assignment satisfying Q. Imbed each piece p into some face
FeF(p) such that T(Xp,F) = 1. Note that no pair of faces P1:Ps which

conflict are thus imbedded into the same face F, since (Yb F\Jih F)a Q.
1° 2’

Conversely, suppose I is an imbedding from G into M extending Io‘ Let
T(Xp,F) = 1 Jjust in the case I(p) & F for each piece p and face FeF(p).
This truth assignment t may easily be shown to satisfy Q. &3

Observe that if G = (V,E). then the formula Q is of size O(|V|2+|E]|).
Using the results of [Jones, Lien, and Lausar, 1976] and the efficient
graph processing techniques of [Tarjan, 19757, we determine the satisfiability
of a formula in 2-CNF in Tlinear time. Also, the [Hopcroft and Tarjan, 1974]
planar graph recognition algorithm runs in linear time. Thus, we have
established
Theorem 4.1: The imbedding extension problem for graph G = (V,E) and
quasiplanar partial imbedding L in which |F(p)| < 2 for each piece p, can be
solved in time O(|V|2+|E|).

If graph G is cubic and Io is quasiplanar, then it follows that
|F(p)| <2 for each piece p.

Corollary 4.1: The imbedding extension problem for a cubic graph and quaisplanar

partial imbedding can be solved in quadratic time.

This result was also independently discovered by [Miller, 1978].
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5. Conclusion

While this paper has demonstrated that the imbedding extension problem
is NP-complete, the complexity of the imbedding problem for arbitrary surfaces
remains open.

A possible 1ine of attack would be to demonstrate that given an imbedding
oracle for graph G, which provides for free an imbedding of G into an oriented
surface of minimal genus, a known NP-complete problem for G can be solved in
polynomial time.

It is encouraging that certain known NP-complete problems, such as MAX-CUT
and FEEDBACK-ARCS, are polynomial-time for planar graphs. Perhaps these results
will generalize to graphs with imbeddings into fixed surfaces.

As a corollary to our NP-completeness results, we have shown thatA
counting all nonisotopic imbeddings of a graph G extending a given partial
imbedding I, is #P-complete. However, the complexity of counting nonisotopic
imbeddings of a graph G into a surface M is open.

A1l known [Hopcroft and Tarjan, 1973; Fontet, 1976; Colbourn and Booth,
19771 efficient algorithms for testing isomorphism and computing the auto-
morphism partitioning of planar graphs rely on the (apparently crucial) fact
that the 3-connected components of a planar graph have a unique (up to isotopy)
imbedding into the sphere. A characterization of those graphs rigid on surface M
(i.e., with a unique imbedding into surface M, up to isotopy) would be of some
interest. Given an imbedding oracle,.isomorphism and automorphism partitioning
of rigid graphs is polynomial-time. Perhaps there is a relationship between’
recognition problems for rigid graphs and for formulas in CNF with unique

satisfying instances.
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Postscript

Gary Miller has also shown the imbedding extension problem NP-complete,
although his proof does not tighten to the restricted cases of cubic graphs
or quasiplanar imbeddings. His proof uses a complex reduction from the coloring

problem for circular arc graphs, recently shown NP-complete [Papadimitriou,

19781].
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Figure 3.1: Face Fg’ where c;,C3, ..., C, are the

clauses containing literal .
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Figure 3.2: A merge at vertex v.
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Figure 3.3: Partially imbedded graph GF constructed from boolean
formula F = C NG where ¢y = (le 72) and

c, = (le x2) .
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Fl

Figure 3.4: The face FC associated with clause c. Note that
edges {Euc,zi,vc,zi} ]1=1,2,%}tJ {yc,zc}

cannot all be simultaneously imbedded into Fc'



