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1. I N T R O D U C T I O N  

1.1. M o t i v a t i o n  

Game theory paradigms arise quite naturally in computer science. In recent years, there has 
been a proliferation of applications of noncooperative game theory to computer science, and 
other disciplines. Several problems in computer science can be formulated in terms of games. 
These problems present numerous incentives for developing game theoretic algorithms. On the 
other hand, the notion of computation is essential to the fundamental questions of game theory 
like the outcome problem. The outcome problem can be stated as follows: "Do the players of 
Team T1 have a winning (or nonlosing) strategy, which together would defeat Team To (or save 
Team T1 from defeat) under all circumstances?" 

The development of the theory of games was motivated by economic decision making problems, 
just like the development of calculus was motivated by physics. Game theory was originally 
formulated by yon Neumann and Morgenstern [5]. Subsequently, game theory, like calculus, has 
been applied to a wide range of fields [6]. 

Games are intimately related to models of computation. The fundamental question of concrete 
games (the outcome problem) is closely related to the membership question of languages and 
machines. A game with a computable next-move relation can be treated as a computation 
machine: machine M accepts input w depending on the outcome of the corresponding game G M 

from an initial position encoded by w. 
Computer  scientists usually study games from one of two perspectives. First, developing and 

analyzing decision algorithms for particular games. For example, one can consider the algorithms 
for determining the optimal move in a position of Chess, and the associated complexity issues. 
Second, employing game theoretic models for particular computational paradigms and problems. 
For example, parallel computation models. Our paper bears special relevance to both of these 
concerns, and briefly reviews closely related literature. 

Game theoretic ideas have been applied to design algorithms for distributed systems. In a 
distributed system, the processors are treated as players, and the information content of positions 
is based on the current states of the processes. Ben-Or and Linial [7,8] apply voting schemes 
of game theory to design algorithms that  reconcile processors of a distributed system. Our 
multiplayer games can be used to model distributed computation. 

Our work straddles classical game theory and computer science, and we have an unusual 
expositional burden insofar as we wish our work to be accessible to researchers in both fields. 
For computer scientists, we explain the fundamentals of game theory, including the terminology 
and formalization of finite games. We also motivate the reasons for regarding these objects as 
central in noncooperative game theory. For game theorists, we explain several computer science 
concepts, such as computational procedures, computational models, and algorithmic analysis. 
Subsequently, we show how these computer science concepts are applied to the game algorithms 
under scrutiny. 

1.2. O v e r v i e w  

The rest of Section 1 is devoted to reviews of the fundamentals of games as well as associated 
computational models, and directs the reader toward some related work in the field. 

Section 2 formally defines the term "game" as a set of players faced with a choice of alternatives, 
at every stage of the game, until the game terminates according to a prespecified rule. A player 
may have to choose his/her alternate (move) at a stage with limited knowledge. Every terminating 
position is associated with a payoff, and the object of every player is to maximize their payoff. 
Section 2 emphasizes tha t  we are interested in the most general characterization of games, and 
affords a detailed and mathematically precise description of two-player games and multiplayer 
games. Section 3 defines win outcome problem. This is the problem of ascertaining whether 
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players of Team T1 have a strategy ensuring them of a win by yielding only winning plays 
regardless of opponent strategy. Winning plays must be finite because they must terminate in 
win for T1. A slight variation of the win outcome problem is nonloss outcome problem. This is 
the problem of ascertaining whether Team T1 has a strategy yielding only plays with no losses 
to any player in Team T1. A nonloss play may be infinite, because we can satisfy the nonloss 
criterion as long as the play does not terminate in a loss for T1. We would also consider the 
Markov (m(n)) problem: given an initial assessment of length n, does Team T1 have a winning 
(nonlosing) strategy dependent on the previous m(n) positions of any play? Section 3 also 
introduces complexity theoretic notation to facilitate complexity analysis of the algorithms and 
machines related to games. This section also discusses several varieties of interesting games. 

In Section 4, we provide an algorithm for the Markov (re(n)) outcome problem of any S(n) space 
bounded games. This extends the result of Peterson and Reif [3], which addressed the special 
case of m = 1. We propose a decision algorithm for the outcome problem of any hierarchical 
game with both a space bound and an alternation bound. Finally, in Section 5, we describe a 
decision algorithm for time and branch bounded multiplayer games of incomplete information. 
The algorithmic results of Sections 4 and 5 lead to several corollaries, which give bounds for 
players induced by winning strategies in any hierarchical game as well as for Markov (m(n)) 
winning strategy for any game. 

Section 6 concludes the discussion by summarizing the results of this paper, previewing the 
results of next paper, and highlighting areas of future research. 

The main contribution of this paper is that it establishes the following facts. 

• The time required to simulate a space bounded game of incomplete information increases 
by an exponential for every additional player. 

• The space required to simulate a space bounded blindfold game increases by an exponential 
for every additional player. 

• The time required to simulate time bounded games does not change with increase in 
number of players. 

1.3.  F u n d a m e n t a l s  

This section provides an introduction to game theory for the computer scientists' benefit, and 
surveys the basic computational models for the game theorists' convenience. It describes basic 
terminology, and affords a concise survey of the fundamental principles of computational aspects 
of games. 

Game theory is the theory of rational decisions involving computations of strategies to be 
used against "rational" opponents. By "rational" opponents, we mean actors also involved in 
formulation of optimal strategies in the pursuit of maximizing their payoff. The focus of the 
theory of games is on the fundamental issues, rather than on the development of specific strategies. 
Consequently, the perspective adopted in the theory of games is very different from the approach 
taken in developing algorithms to win in Chess, where the central problem is to formulate winning 
strategies for Chess. Game theorists hoist their study to increasing levels of abstraction by 
attempting to solve the general and basic problems. 

From a game theorist's perspective, the theory of Chess is essentially trivial, since it can be 
reduced to an exhaustive search problem (provided the required computational resources are at 
one's disposal). However, this assumption is far from being realistic or practical. In reality, 
developing efficient algorithms for games like Chess have challenged researchers in computer 
science to develop more efficient models of thinking, reasoning, and searching. In computer 
science, we are not just interested in the underlying game theoretic principles of games, but also 
concerned about the computability issues involved in games. In this paper, we address both 
aspects. 
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In computer science literature, a two-player game is defined by disjoint sets of positions for two 
players (named 0 and 1), and relations specifying legal next moves for players. A position p may 
contain portions that  are private to one of the players, whereas the rest are common portions 
accessible to both players. Reif [1,2] provides a detailed treatment of two-player games. 

The generalization to a two-player game is a multiplayer game (also called team game) 1. In 
multiplayer games, there are at least three players partitioned into two teams, To and T1. A 
multiplayer game is specified by a set of positions, a relation defining the possible next moves, 
division of teams, and access rights of players to view or modify certain components of a game 
position. 

We assume that  positions are strings over a finite alphabet. Every position p may contain 
certain information that  is private to some subset of players. The remaining information is 
common, and may be viewed by all players. The set of legal next-moves for a given player must 
be independent of the information that  is inaccessible to him. These rights remain unmodified 

throughout  the game. 

In any game, every player plays according to a strategy. This paper focuses on investigating 
strategies that  dictate a single next move to the player for every possible sequence of previous 
moves that  can legally occur. Such strategies are called pure strategies. Conversely, mixed 
strategies assign probabilities to all possible next moves that  can be made from a nonterminating 
position. The reader is referred to the papers on mixed strategies by Azhar, McLennan and 
Reif [9] for more detailed treatment of the complexity of finding such mixed strategies. 

A pure strategy of each player can only be dependent on components of the position visible 
to the player. Team T1 is always the team of "preference" in the sense that  we are interested in 
algorithms to formulate strategies for Team T1, and analyze the complexity of these algorithms 
as a function of Team Tl'S size. We model Team To as a single player. 

A winning strategy specifies a set of legal moves from current position to positions guarantee- 
ing T1 a win, regardless of Team T0's response. A nonloss strategy specifies a set of legal moves 
from current position to positions guaranteeing T1 a nonloss, regardless of Team T0's response. 
The win (or nonloss) outcome problem is a fundamental problem in game theory. For a team 
game, it can be described as follows. 

"Do the players of Team T1 have a winning (or nonlosing) strategy, which together 
would defeat Team To (or save Team T1 from defeat) under all circumstances?" 

Besides outcome problems, this paper also considers Markov (re(n)) outcome problem: "Given 
initial position of length n, does Team T1 have a winning strategy dependent only on previous 
re(n) positions?" Markov (1) outcome problem is considered by Peterson and Reif [9]. 

A game has perfect information if no position has any private component, and a game has 
incomplete information if there are certain restricted access components to the game. A player 
may have incomplete information about a position because it does not have rights to view some 
portion of the position. Games in which at least one player has incomplete information are 
naturally known as games of incomplete information. A game is categorized as a blindfold game 
if the Team To never modifies any portion of the positions that  is visible to players of Team T1. 

In this paper, we shall show that  (from a complexity theoretic point of view) multiplayer games 
of incomplete information are more difficult than two-player games of incomplete information. 
Strategies in games of perfect information depend only on the current position. On the other 
hand, strategies in games of incomplete information (as well as blindfold games) depend on the 
history of the visible portion of positions. Intuitively, the history of the visible portions is used 
to deduce limited information about  inaccessible portions of the positions. 

1We will use the two terms, multiplayer games and team games, interchangeably 
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1.4. Computational  Models  

The definition of Turing machine facilitated the development of computability theory by for- 
malization of algorithmic procedures (see [10]). Similarly, several other paradigms of computa- 
tions (nondeterminism, parallel, etc.) were associated with corresponding models of computations 
(nondeterministic Turing machine, parallel random access machine, etc.). The need for a formal 
computational model to address the computational aspects of games was fulfilled by Chandra, 
Kozen and Stockmeyer [11] with the alternating Turing machine (A-TM). Subsequently, this 
model has been extended and enhanced to model more intricate games. Reif [1,2] extended 
A-TM model to incorporate private and blindfold two-player games by introducing private alter- 
nating Turing machine (PA-TM) and blind alternating Turing machine (BA-TM), respectively. 
In this paper, we introduce multiperson private alternating Turing machine (MPAk-TM) and 
multiperson blind alternating Turing machine (MBAk-TM) to model private and blindfold mul- 
tiplayer games, respectively. We also define PAk-TM and BAk-TM to remove the over-generality 
of MPAk-TM and MBAk-TM, respectively. 

We assume that the reader is familiar with the usual definitions of Turing machines, and in 
particular, the definitions of tape storage, tape read/write heads, Turing machine configurations 
(which are the positions of these computational games), and legal next moves for Turing machines. 

The A-TM models a two-player game in which the existential states (identified with Player 1) 
alternate with the universal states (identified with Player 0) during the computation. The A-TM 
accepts an input, corresponding to an initial position, if the existential player has a winning 
(or a nonloss) strategy. A winning (or a nonloss) strategy is one that would lead to a win 
(or never lead to a loss) for the existential player under all circumstances, regardless of the 
strategy adopted by the universal player. The complexity of various generalized games of perfect 
information is considered by Schaefer [12], Even and Tarjan [13], Fraenkel et al. [14], Robson [15], 
Lichtenstein and Sipser [16,17], Fraenkel and Lichtenstein [18], and Peterson [19]. Stockmeyer 
and Chandra [20] define a game PEEK, and prove that it is universal for two-player games of 
complete information. 

A string w encoding some position is accepted by an alternating Turing machine if 

• the machine is in a universal (V) state, and all transitions from that state (based upon 
the current scanned symbols) are to accepting states; 

or  

• the machine is in an existential (3) state, and there is at least one transition from that 
state (based upon scanned symbols) to an accepting state. 

The nondeterministic Turing machine (N-TM) is mapped to games of perfect information with 
Player 0 absent because there are no universal states. Deterministic Turing machines (D-TM) 
represent games of perfect information with at most single next-move from any position because 
there is only one possible transition from any given state. The A-TMs are essentially extensions of 
nondeterministic machines to include both existential and universal choices. These choices then 
correspond to moves by the two opposing player in a two-player game of perfect information. 

Reif [1,2] extended the notion of alternation to two-player games of incomplete information by 
restricting the players to limited information for making their strategic decisions. He introduced 
private alternating Turing machine (PA-TM) and blind alternating Turing machine (BA-TM) to 
model two player games of incomplete information and two player blindfold games, respectively. 
PA-TM is derived from a A-TM by not allowing the existential (3) player to access all work tapes 
that are private to the universal (V) player. BA-TM is derived from a PA-TM by not allowing the 
universal (V) player write access to work tapes that can be read by the existential (3) players. PA- 
TM and BA-TM model two-player games of incomplete information (for example, Rummy) and 
two player blindfold games (for example, BLIND-PEEK [1,2]), respectively. Note that Blindfold 
Chess is considered a game of incomplete information blind because a player can deduce certain 
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characteristics of the board when the player at tempts to make a move that  is termed illegal due 
to information that  previously was not known to them. 

In this paper, we present extensions of the alternating machines of Reif [1,2] and Chandra, 
Kozen and Stockmeyer [11]. Our machines model multiplayer games of incomplete information. 

MPAk-TM is a machine model that  corresponds to a (k + 1)-player multiplayer (team) game 
of incomplete information with k existential players and one universal player. The states of the 
machine are labeled with tuples: each element of the state contains a turn indicator, and denotes 
information that  can be read and written by each player. Every player has an associated list of 
tapes to indicate read and write rights of various tapes for the player itself. Thus, the tapes are 
partit ioned according to access rights. 

In particular, for k = 1, the MPAk-TM (that is, MPA1-TM) bears resemblance to PA-TM. 
Similarly, the MPA1-TM with both players sharing resources corresponds to A-TM (without 
logical "NOT" operation). Furthermore, an MPA1-TM with unique next moves for the universal 
(V) player is an N-TM, whereas a MPA1-TM with unique next move for all players is simply 
a D-TM. Hence, evidently MPAk-TM accepts the recursively enumerable (r.e.) languages since 
they are at least as powerful as ordinary D-TM. Similarly, we can show that  MPAk-TM accepts 
only r.e. languages by enumerating all possible accepting subtrees, and subsequently, checking 
recursively whether each tree is a true accepting subtree. 

MBAk-TM is derived from MPAk-TM by disallowing the V-player to write on any resource 
that  is readable by any B-player. Consequently, moves of the V-player are invisible to the 
B-player. Hence, MBAk-TM correspond to blindfold multiplayer games. Observe that  for k = 1, 
the MBAk-TM (that is, MBA1-TM) bears resemblance to BA-TM. We show that  MBAk-TM 
and BAk-TM accept r.e. languages and only r.e. languages. 

We need to realize that analyzing both MPAk-TM and MBAk-TM are too general and powerful 

after we analyze them. We combat their over-generality by introducing restricted versions of 
each machine. A k + 1-player private alternating Turing machine (PAk-TM) is an MPAk-TM 
if resources visible to Player i are also visible to player i - 1 for all existential players (i E 
{2, 3,..., k}). Hence, there is a hierarchical ordering of 3-players. A k+ l-player blind alternating 

Turing machine (BAk-TM) is a PAk-TM where the V-player cannot change a resource visible to 
any other B-player. Examples of PAk-TM and BAk-TM for k = 3 are depicted in Figures 1 and 2, 

respectively. 

1.5. R e l a t e d  W o r k  

Games can be classified into two types: probabilistic games and nonprobabilistic games. Strate- 
gies for nonprobabilistic games involve specifying exactly one alternative at each position: such 
strategies are known as "pure" strategies. Nonprobabilistic games follow a set course of play 
once the participating players have formulated their strategies. On the other hand, the out- 
come of probability-related games can be influenced by random events (such as coin tosses or 
die rolls) which are not in any player's control. Consequently, strategies for probabilistic games 
involve assigning probabilities to various alternatives available at each position: such strategies 
are known as "mixed" strategies. In this paper, we are primarily concerned with games involving 
pure strategies. 

Papadimitriou [21,22] describes games against nature. In these games, one player plays ran- 
domly simulating the randomness we associate with nature, and the other player existentially 
selects a strategy that  maximizes the probability of success against this random player. In this 
framework, the existential player is considered to have won the game, if it can win with a probabil- 
ity greater than 1/2. Games against nature paradigms assist in formulation of decision problems 
under uncertainty. These games are similar to Arthur-Merl in  games of Babai [23], in which 
Arthur plays randomly, and Merlin plays existentially. Interactive proof systems of Goldwasser 
et al. [24] are also among examples of games in which one player plays randomly whereas the 
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Figure 1. Private alternating Turing machine. 
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Figure 2. Blind alternating Turing machine. 

other existentially picks a strategy. Goldwasser and Sipser [25] have proved the equivalence of 
interactive proof systems and Arthur-Merlin games. Shamir [26] proves both problems are in the 
same complexity class (PSPACE-complete). 

Another special class of games is solitaire games. Solitaire games restrict the play of one of the 
players to be completely deterministic after the player's first move. These games are investigated 
by Ladner and Norman [27]. 

In games of incomplete information, the existential player does not have complete knowledge 
of some portions of the positions (which are private to the universal player). In blindfold games, 
the existential player does not have any rights whatsoever to view the moves of the universal 
player. The complexity of such games was first considered by Jones [28]. Reif [1,2] also discusses 
this issue. 

The basic perfect information alternation problem of quantifier Boolean formula (QBF) [11,29] 
has been very useful in demonstrating that natural games are PSPACE-complete (or hard) [12,16- 
19,30]. Similarly, we expect the natural problems in complexity of logical theories may be resolved 
by way of multiple person alternation games of incomplete information and the characteristics 
we formulate. Note that upper bounds for logical theories frequently involve games. A modal 
logic with incomplete information is studied in more detail by Reif and Peterson [31]. In our 
companion paper [4], we prove that dependency QBF (DQBF) is NEXPTIME-complete. 
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2. M U L T I P L A Y E R  G A M E S  

2.1. Prel iminaries  

A game is defined as a set of rules, which specifies the following items. 

1. A set of positions. 
2. A set of players. 
3. A specification of degree of knowledge a player has on its turn, that  is an assignment of 

the rights of the players to view certain components of the game position, 
4. A rule specifying the conditions under which the game starts. 
5. A set of alternatives, depending on the situation (legal position), available to every player 

on its turn to modify certain components of the game position. 
6. Rule specifying when the game terminates. 
7. A set of payoffs (awarded to each player) associated with each possible outcome at the 

termination of the game. In this paper, we restrict ourselves to payoffs of +1, 0, and - 1  
denoting them as win, draw, and loss, respectively. 

We assume that  positions are strings over finite alphabet. A position p may contain certain 
information that  is private to some players (and invisible to others). The remaining information 
is common, and may be viewed by all players. The set of legal next-moves for a given player 
must be independent of the information that  is inaccessible to it. The rights to view components 
of different positions remain unchanged throughout the game. 

REMARK 2.1.1. We take a very general view of games to include as many variants as possible. 
Accordingly, some important  properties to expand the classes of games are listed below. 

1. Players need not take turns in round-robin fashion. The rules of the game will dictate 
whose turn is next. 

2. Players on the same team may communicate only as allowed by the rules of the game. 
3. A player can recall its history of positions, and changes to the visible portions of the 

position which occur between its turns. 
4. A player may not know who can change (or has changed) its visible portion of position. 
5. A player may not know how many turns were taken by other players between its turns. 

2.2. T w o - P l a y e r  G a m e s  w i t h  I n c o m p l e t e  I n f o r m a t i o n  

Before we delve deeper into multiplayer games, we shall first refresh the definitions of two-player 
games. Subsequently, we extend these definitions to multiplayer games. 

DEFINITION 2.2.1. Two-PLAYER GAME: (See [1,2].) A two-player game is a tuple (POS, ~), 

where 

(i) players are named 0 and 1; 
(ii) POS is a set of positions, with POS -- {0, 1} × PPo × PP1 × CP, such that PPo, PP1, CP 

are strings over finite alphabets; 
(iii) t-C POS x POS is a next move relation, which describes all alternatives available at  any 

position. ~- satisfies Axioms 1 and 2 below. 

Consider position p = (a, Ppo,PPl, cp) E POS. Position p is composed of the following. 

1. A number a E {0, 1} indicating which player's turn is next. 
2. A portion PPo that  is private to Player 0. 
3. A portion PPl that  is private to Player 1. 
4. A common portion cp which consists of information accessible to both players (0 and 1). 

Consider a position p = (a, ppo,ppl,cp). For i = 0 or 1, we let 

• vis~(p) = (a, ppi, cp) denote the portion of position p visible to Player I; 
• privy(p) = (pp~) denote the portion private to Player I. 
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We define POSi to be the set of positions in which it is Player i 's turn  to move, and W to be the 
set of positions without any legal next move. The object of the game is to force the opponent  

into a position where it cannot move. 

The effect of incomplete information is captured by the following axioms imposing restriction 
on what  a player may modify and access. 

AXIOM 1. A player cannot modify its opponent's private information. 

This axiom effectively states tha t  if p E POSI - W, and p ~- p '  then priv0(p) = privo(P' ). 

AXIOM 2. A player's next moves are independent of the opponent's private information. 

As a consequence of Axiom 2, for any Player i, i fp ,  q E POSi - W and visi(p) = vis~(q), then 

{visi(p') [ p t- p '} = {visi(q') [ q ~- q'}. 

2.3. M u l t i p l a y e r  G a m e  D e f i n i t i o n  

We can extend the definition of two-player games to multiplayer games. Formally, a k + 1-player 
game can be defined as follows. 

DEFINITION 2.3.1. k +  1-PLAYER GAME: A k+ l  player game is a quadruple [G = (POS, ~-, vis, T1)], 
where we have the following. 

1. POS is a set of positions with [POS = { 0 , . . . ,  k} x/°1 x . . .  x Pr], where 0 , . . . ,  k represent 
players 0 , . . . ,  k, and P 1 , . . . ,  Pr are sets of strings over a finite alphabet used to describe 
various components of the positions. Let p = (a, p i l l , . . . ,  p[r]) be a position in POS, where 
for each j -- 1 , . . . ,  r : p[j] is an element of Pj, and is called the jth component of  p. 

2. F-C POS x POS is the next move relation satisfying Axioms 3 and 4 stated below. These 
axioms simply prevent a player from modifying the information that  is invisible to him/her,  
and inhibit h im/her  from using the invisible information in formulating his/her strategy. 

3. Let  p = (a ,p[1] , . . .  ,p[r]) be a position in POS. next(p) = a is the turn indicator specifying 

the player whose turn it is to move next. The turn indicator cannot be used in formulating 
a s t ra tegy according to the requirements listed in Remark  2.1.1. 

4. The mapping vis : { 0 , . . . ,  k} H 2{ 1 ..... r} is a mapping from the set of players to the set of 

all possible subsets of the set of positions. Let p = (a, p i l l , . . . ,  p[r]) be a position in POS. 
We say that  Player i has right to view p[j] i f  j E vis(i). 

5. Team T1 E 2 {0 ..... k} is a subset of the set of players { 0 , . . . , k } .  The opposing team is 

To = { 0 , . . . ,  k} - T1 where " - "  represents the set difference. Players of  Team T1 move 
from existential (3) states, and players from the other Team To move from universal (V) 
states and are called universal (V) players. 

In two-player games, a certain component of position can either be accessible to one of the two 
players, or to both  players. Any information inaccessible to both  players is irrelevant to formulate 
strategy. Hence, we can express the incomplete information content with just  three components  
of any position: PPo, PPl, and cp. On the other hand, in multiplayer games a certain component  
of the game might be simultaneously accessible by some subset of the players. Consequently, we 
need a more expressive notation, such as the mapping vis, to describe the access rights of the 
players. 

DEFINITION 2.3.2. visi: For each player i = 0 , . . . ,  k in a k + 1-player game, we let visi(p) = (v, b), 
where v is the list (in order of occurrence) of  components of position p for which Player i has 
access rights (that is the ordered list (p[j] [ j E vis(i))) 2, and b is a Boolean variable that is 1 i f  
it is Player i's turn to move (and 0 otherwise). 

2We use angled brackets to enclose items in an ordered list. 
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DEFINITION 2.3.3. privi: For each player i = 0 , . . .  ,k  in a k + 1-player game, privi(p) is the 
list of  all components of  the position that axe known only to Player i. Explicit ly privi(p) is 

(p[j]]j • vis(i)>, and j ~ vis(k) for all k ~ i>. 

The object of the multiplayer games is to force the opponents into a position from where they 

cannot move. This corresponds to the objective of the two-player games, which is to force the 
opponent into a position from where (s)he cannot move. Consequently, we define the set of 

winning positions. 

DEFINITION 2.3.4. WINNING POSITION (W): The set of winning position ( W )  is the set of  all 

positions from which there is no next  move for the opponent on its turn to move: 

W = {p • POS [ there is no p 'such tha t  p ~- p~}. 

DEFINITION 2.3.5. POS~: For any Player i, we use POS~ to denote the set of positions such that 

it is Player i's turn to move. 

POSi = {p • POS [ next (p) = i}. 

Player i loses if any position in the set POS~ N W is encountered. The result of any finite play 
is a loss for exactly one player. Any team's  wins and losses are determined by the performance 
of the players on tha t  team: a play 7r is a win for team T1 if it is a loss for some player on the 
other team. A play 7r is a nonloss for team T1 if it is not a loss for any player on the Team T1. 

If players are allowed to compete individually to maximize their winnings (as in mathemat ica l  
game theory), the outcome problem can no longer be transformed so succinctly into a "yes or no 

question". Consequently, there is no simple computational  machine model for such a paradigm. 
One approach would be to t reat  every bit of the vector specifying the winnings as a "yes or no 
question" (i.e., 1 for yes, 0 for no). However, such an approach leads to nontrivial computat ional  

complexity. 
When we are dealing with multiplayer games, we can adapt  Axioms 1 and 2 to incorporate the 

notion of incomplete information. 

AXIOM 3. No player is permit ted to modify  any other player's private information. 

Therefore, if p • POSi - W and p F- if,  then privj(p) = privj(p') for all players j ¢ i. 

AXIOM 4. I f  a pair of  nonterminating positions p, q axe indistinguishable to a player, then the 

set of  next  moves is independent from this pair p, q. 

As a consequence of Axiom 4, if p, q • P O S i -  W and visi(p) = visi(q) then {vis~(ff) [ p  f- 

p'} = {vis (q') I q q'}. 

3. G A M E  P L A Y I N G  

3.1. P l a y s  

We fix an initial position P0 before a play of the game commences. Our definitions accommodate  
games with arbitrary initial positions, even though some popular strategic games have a fixed 
initial position. For example, Chess and Go have only one initial position. Risk is a popular  
s t ra tegy game in which there can be numerous possible initial positions. The initial position may 
be selected randomly, or the turns of players may be randomly permuted at the commencement  

of the game. 

DEFINITION 3.1.1. PLAY: A play is a possibly infinite string 7r = PoPl . . .  of  positions, such that 
for all relevant nonnegative integers i: Pi ~- Pi+l, where Pi E POS and P~+I E POS axe positions. 

For example,  consider the play ~r = PoPIP2P3P4. Here Po is the initial position, and Po ~- Pl, 
Pl ~- P2, P2 ~- P3, and P3 l- P4 are the moves tha t  constitute the play ~r. A play prefix 7r is a finite 
nonnull initial substring of a play that  represents a sequence of legal moves start ing from initial 

position. For example, PoPIP2 is a play prefix of 7r = POPlP2P3P4. 
A function last(Tr) returns the last position in the play ~r. 
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DEFINITION 3.1.2. las t (r) :  I f  play r is finite, then las t ( r )  is defined to be the last element of the 

string r.  

When a finite play terminates,  by definition las t(r)  must be in W las t ( r )  E W). A play is a 
loss for Player i if the player is placed in a position where it is forced to move yet there is no 
legal move available to it. Formally, r is finite and last(r)  E POSi N W. 

vis i ( r )  represents the extent of Player i 's knowledge about  the play in the game up to date. 

We say tha t  the move p ~- p~ is invisible to Player i if 

1. it does not alter any portion visible to Player i (i.e., visi(p) = visi(p')),  and 

2. it is not Player i 's move (i.e., p ¢ POSi). 

The extent to which Player i 's knowledge is modified by some other player's move is determined 
by how much the common knowledge is modified. We inductively define visi(Tr) on a play r as 

follows. 

DEFINITION 3.1.3. visi(r) :  For a play r: I f  the length of ~r is 1 then vis i ( r )  -- {visi( last(r))}.  
Otherwise, suppose that there is a position f f  E POS such that  las t ( r )  ~- ft .  Now, i f  the move 

las t ( r )  t- p '  is a invisible to Player i = then vis i ( rp  t) = visi(r) ,  else vis i ( rp ' )  = vis i(r)O{visi(ff)}.  

3.2.  G a m e  T r e e  

A game can also be represented in the extensive form by a game tree. A game tree consists of 

a set of play prefixes, with the root node representing the start ing position of the game. Each 
node represents a position, and its children are the positions after the next move. Every node is 

connected to its children with branches labeled with each of the alternative moves tha t  can be 

chosen by the player whose turn it is. 
I t  is impor tant  to note here that  two equivalent situations in a game tha t  occur at different 

stages of the game are considered distinct, and they correspond to different nodes in the game 
tree. Similar position may occur at different stages of the game due to several reasons, such as 
transposit ion of moves or repetition. I t  is also possible tha t  the identity of the player who is to 
move next is determined by the situation of the game. A game represented by its game tree is 
said to be represented in its extensive form. 

The root of a game tree is the initial position P0. The nodes of the game tree consist of all 
possible plays tha t  can be enumerated by any sequence of legal moves start ing from the initial 

position P0. The children of r are those play prefixes r ~ of length one more than  r ,  such tha t  r 
is a play prefix of r ~, and there is a next-move relation between las t ( r )  and last(lr~). 

[)EFINITION 3.2.1. GAME TREE: GT = (POS(p0), F -t) is a game tree where 

1. POS(po) C_ POS is the set of all positions reachable from initial position Po; 

2. the root of G T  is the initial position, Po; 

3. F-tC_ POS(po) x POS(po) is the maximal subset of F- with the domain restricted to positions 
which occur in {last(r)  [ r E POS(po)}; 

4. for any r E POS(po): las t (r)  ~- p if and only i f  rp  is a child o f t  and ( las t ( r ) ,p)  E~-'. 

3.3 .  O u t c o m e  P r o b l e m  

We categorize the nodes in a game tree by the index of the player whose turn it is to move. 
Let H(p0) denote the set of play prefixes reachable from initial position P0- Let Hi(p0) c_ H(po) 
denote the set of play prefixes reachable from initial position Po with 

1. Player i 's turn to move at  last position of the play; 
2. Player i has at least one legal move available. 

These are the set of play prefixes r such tha t  las t (r)  E POSi - W.  Strategy is the approach 
used by the players to decide which move to select from their alternatives. For a game with 
a s tar t ing position P0, we shall abbreviate Yi(p0) and Hi(po) as H and Hi, respectively. Any 
s t ra tegy a must  satisfy the conditions in the definitions below. 
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DEFINITION 3.3.1. STRATEGY: For a Player i, a strategy is a funct ion a : Hi ~-+ H such that  

1. for any  rr E Hi, a(rr) is a child o f t  (i.e., there is a 7r k- a(rc) relationship in G T ) ;  

2. i f  rt, rr' E Hi and visi(Tr) = visi(rt'), then visi(a(r~)) = visi(a(rr ')).  

Condition 1 above restricts the player to legal moves. Condition 2 ensures tha t  the strategic 
decisions must  be made using only the knowledge visible to the player. 

We say tha t  a play lr is induced by strategy a if whenever rd is a play prefix of 7r, and rr' is in 
the domain of a,  then a(rr ')  is a (not necessarily proper) prefix of rr. 

REMARK 3.3.1. For our purposes, it is sufficient to model all the universal players by one single 
universal player (a "super-player") who has all the information. Consequently, a k +  1-player game 

consists of t eam of k 3-players and one V-player. Since our machine models are formulated with 

the outcome problem in mind, our definition of MPAk-TM, MBAk-TM, PAk-TM, BAk-TM 

accommodates  only one V-player. 

Let a team strategy for the Team T1 be a mapping 

a :  U POSi (P0) ~-+ POS (P0), 
lET1 

where for each Player i E T1, the restriction of a to the domain POSi(p0) is the s t rategy of 
Player i. We say tha t  a play ~r is a play by team strategy a if whenever rr is a prefix of lr', and 
rr is in the domain of a,  then a(rr) is a (not necessarily proper) prefix of rr'. In other words, the 

s t ra tegy a explicitly dictates every move made by all players. 
Strategy g is a winning strategy (or nonlosing strategy) for Team T1 if every play by s t rategy 

results in a loss for some player on Team To (or does not result in a loss for any player on 
Team T1). 3 We can deduce that  all plays by a winning strategy a are finite because the play 

must  terminate  to result in a win for T1. However, a play by a nonlosing strategy may be 

potentially infinite. 
I t  is self-evident tha t  the outcome of a game is not affected if the players of Team To are 

allowed to view the private portions of the players in Team T1. This is a direct consequence of 
the fact tha t  a winning (or nonlosing) strategy of Team T1 should work for all possible responses 
by Team To. For each position p E POS, let pC be the position derived from p by making the 

private portions of Team Tl ' s  players accessible to Team To. Suppose game G c is so derived from 

game G. The following proposition holds. 

PROPOSITION 3.3.1. Team T1 has a winning s t ra tegy  in G from initial posi t ion Po i f  and only  i f  

Team T1 has a winning  s t ra tegy from initial posi t ion p~. 

In order to discuss Markov strategies, we must introduce relevant notation. 

DEFINITION 3.3.2. lastm(~r): Given a p lay  ~r, and an integer m >_ O, let lastm(~r) be the  last 

m posi t ions  o f  ~r i f  m is less than the total number  of  posi t ions in ~r (symbolical ly  m < ITr[), 

otherwise,  let lastm(~r) -- ~r. 

A s t ra tegy is Markov (m) for Player i if Player i 's moves only depend on the last m positions 
of any play. Formally, we say that  s t rategy a for Player i is Markov (m) if ~(~r) = a(Tr') for all 
play prefixes rr, rr' E GTi such tha t  visi(lastm(~r)) = visi(lastm(rd)). A s trategy cr for a Team T1 
is Markov (m) if for every player i E T1 the s trategy a is Markov (m). 

Let G = (POS, k-, vis, T1) be a game. We assume that  the next move relation ~- is represented 
by a next -move  transducer, which is a D-TM transducer with input tape,  and a one-way write- 
only output  tape,  and possibly some work tapes. The symbol alphabet  P. for this transducer 
contains the symbols appearing in the positions of POS. Given p E P.*, the next-move transducer 

3In the case of two-player games, the definitions of winning and nonlosing strategies are slightly different: strategy a 
is a winning strategy for Player 1 if and only if every play by strategy a is a win for Player 1, and a is a nonloss 
strategy for Player 1 if and only if every play by strategy a does not result in a loss for Player 1. 
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outputs,  the set of moves {(p,p') [ p ~ p'} if p E POS, otherwise, if p ¢ POS, it outputs  a 
distinguished symbol $ ~ E to indicate illegal input. Any game G thus can be represented by 
a pair containing the next-move transducer and vis. Traditionally, a next-move relationship is 
required to be log-space computable. 

Now, we can state the outcome problem. 

DEFINITION 3.3.3. OUTCOME PROBLEM: The win outcome problem for a game G is determining 
the existence of a winning (or winning Markov (re(n))) strategy for Team T1 from an initial 
position Po E POS. The nonloss outcome problem for a game G is determining the existence of a 
nonlosing (or nonlosing Markov (m(n) )) strategy for Team T1 from an initial position Po E POS. 

DEFINITION OF SPACE AND TIME BOUNDED GAMES. We say a game has space bound S(n)  if the 
set of positions reached by a single move from any given position of length n can be computed in 
deterministic space S(n). We say a game has time bound T(n) if there are at most T(n) positions 
reachable by any path of a game tree from any given position of length n. 

3.4. D e t e r m i n i s t i c  a n d  N o n d e t e r m i n i s t i c  G a m e s  

This section defines special categories of games, for the sake of completeness. These games are 
important  from a computational point of view, but are not the main focus of this paper. They  
are mentioned here for the sake of completeness. 

DEFINITION 3.4.1. DETERMINISTIC PLAYER: A Player i is a deterministic player i f  for each 
position it has only one move. Symbolically, for all p E POS~, there is at most one p' E POS such 
that that p b p'. 

There are two classes of games depending on the types of players involved: deterministic games 
and nondeterministic gaines. 

DEFINITION 3.4.2. DETERMINISTIC CAME: If  all the players (in both teams are deterministic) 
then the game is also deterministic. 

An example of a deterministic game is "Inni Minnie Miney Moe . . . " .  This is a game often 
used by children to make deterministic choices that  appear fair, but are in reality the initial 
position determines the outcome of the game. 

DEFINITION 3.4.3. NONDETERMINISTIC GAME: A game is nondeterministic i f  a11 the players in 
the (V) Team To are deterministic, whereas the (3) players in the Team T1 can nondeterminis- 
tically select their move from a set of legal moves available on their turn (such that there is at 
least one position that allows more than one legal move). 

Examples of nondeterministic games are adversary games in which an adversary is required to 
respond accurately to the 3-player's guesses. For instance, the 3-players have to deduce the integer 
tha t  the adversary has been privately chosen. When any 3-player guesses, and the adversary has 
to truthfully inform whether the guess was too high, too low, or correct. The process continues 
until the 3-players deduce the correct integer or the maximum number of guesses have been 
exhausted. 

Consequently, the only players that  influence the result of the game are the existential members 
of TI, and this is why such games are classified as nondeterministic games. Nondeterministic 
games can be equivalently defined as games in which all universal (V) players are restricted to 
just  one possible reply in every position. Consequently, all multiple choices occur at existential 
(5) nodes; and that  can be modeled as nondeterministic choices. 

Deterministic games involve exactly one choice for every nonterminating position. This is 
analogous to the deterministic transition function of Turing machine with exactly one transition 
for every nonterminating state. On the other hand, nondeterministic games involve an alternation 
between deterministic moves of universal player and nondeterministic moves of the existential 
player. This is analogous to the nondeterministic transition function of Turing machine with 
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exactly one transition for every universal state and nondeterministic transitions for existential 
moves. This observation is stated formally in the following proposition. 

PROPOSITION 3.4.1. Deterministic games can be mapped onto D-TM, whereas nondeterministic 
games can be mapped onto N-TM. 

DEFINITION 3.4.4. SOLITAIRE GAME: A game is solitaire if  on any play prefix on which Player 1 
has made a t / ea s t  one move, the remaining moves of Player 0 are deterministic. 

Examples of solitaire games are Freecell, Mastermind, and Battleship. 

3.5. Knowledge-Based Classifications of  Games  

In this section, we classify games according to the restrictions on the information visible to the 
players when they formulate their response. 

DEFINITION 3.5.1. PERFECT INFORMATION PLAYER: A Player i E T1 has perfect information 
of Team To if Player i has a t /eas t  as much visible information as any individual player of To, 
i.e., vis(i) _D vis(j) for each j E To. 

Since Team To contains only universal player, we can model Team To as a single universal 
player 0. Consequently, we can restate the above definition more succinctly in the following 
proposition. 

PROPOSITION 3.5.1. PERFECT INFORMATION PLAYER: A Player i E TI has perfect information 
of Team To if  Player i has a t / e a s t  as much visible information as the universal player O, i.e., 
vis(i) _~ vis(0). 

DEFINITION 3.5.2. GAME OF PERFECT INFORMATION: A game G is a perfect information game 
if  all the players of T1 have perfect information of every member of Team To. 

Since there is no nontrivial information in private portions of a game of perfect information, 
we can reference all information as being in a common portion, and represent it by POS = 
{0 . . . . .  k} x CP. Go and Chess are examples of games of perfect information. 

DEFINITION 3.5.3. GAMES OF INCOMPLETE INFORMATION: Games in which at least one player 
of Team T1 does not have perfect information are called games of incomplete information. 

A special category of games called hierarchical games are particularly interesting to us. 

DEFINITION 3.5.4. HIERARCHICAL GAME: A game G is hierarchical if  the players ofT1 can be 

ordered as { i l , . .  •, ih } so that every player has a t /eas t  all the visible information that  the player 
indexed one greater than it has, i.e., for 1 < m < h: 

vis (ira) D vis (im+l) • 

Hierarchical games occur in a variety of situations such as multiplayer games of incomplete 
information of Reif and Peterson [31], where hierarchy of processes are generated by a sequence 
of fork operations. 

DEFINITION 3.5.5. BLINDFOLD: We say a (possibly hierarchical) game G is a blindfold game, if  
no player of T1 can ever view any portion of a position which is modified by a player of  To in G. 

Note that  if G is blindfold, we can disallow the players of To rights to view any portions of 
the game which are viewed by any player of T1 without modifying the outcome problems for the 
game G (by Proposition 3.3.1). The reason is simply that  players in Team To are universal (V) 
players. Consequently, Team T1 has to win for all the strategies of the players of Team To. 

A classic example of a blindfold game is BLIND-PEEK [1,2]. However, Kriegspiel (Blindfold 
Chess) is not really considered blind by our definition, because a player can deduce certain 
characteristic of the board when the player at tempts to make a move that  is termed illegal due 
to information not previously known to the player. Consequently, Kriegspiel is categorized as a 
game of incomplete information. 
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3.6. Complex i ty  Measures 

Let ~" be a set of functions on variable n. For each 

a C {D, N, A, PA, BA, MPAk,  MBAk,  PAk, BAk, MAk}  

let aSPACE (5 r)  be the class of languages accepted by a-TMs within some space bound in ~-, 
and let a T I M E  (~') be the class of languages accepted by a-TMs within some time bound in ~'. 

4. D E C I S I O N  A L G O R I T H M S  FOR 
G A M E S  OF P E R F E C T  I N F O R M A T I O N  

4.1. General  Results  

This section provides algorithms for deciding the outcome of games of perfect information. We 
assume that  the perfect information game G = (POS, ~-, vis, T1) has a space bound S(n) > log n. 
We will let POS(p0) be the set of positions in POS reachable from P0 by some sequence of moves, 
as defined by the relation ~-, with space bound S(n). 

For noncomputer scientists, we review some results from two-player games. 

PROPOSITION 4.1.1. For any space bounded game with S(n) that is greater or equal to log(n), 
there exists a constant a > 0 such that [POS(p0)[ _< a s('0. 

PROOF. Since the game has a space bound of S(n), the length of each position in POS(p0) is 
at most S(n). Since we can treat the positions of POS as strings over finite alphabet, suppose 
the number of distinct symbols in the alphabet is a. Then there are at most a °(s('~)) distinct 
elements in POS(p0). 1 

PROPOSTION 4.1.2. The win, nonloss, and Markov (m(n) ) outcome of any deterministic game 
with space bound S(n) greater or equal to log(n), can be decided in deterministic space S(n). 

PROOF. The proof follows from Definition 3.4.2 of deterministic games. 1 

PROPOSTION 4.1.3. The win and nonloss of any nondeterministic game with space bound S(n) 
greater  or equal to log(n), can be decided in nondeterministic space S(n). 

PROOF. The proof for win outcome problem follows from Definition 3.4.3 of nondeterministic 
game. The proof for nonloss outcome follows from definitions and Immerman's result [32,33] 
nondeterministic space O ( S ( n ) ) = conondeterministic space O ( S ( n ) ) . | 

Now we can apply Savitch's result [34] that  NSPACE(S(n)) = DSPACE(S(n) 2) and conclude 
the following corollary. 

COROLLARY 4.1.4. Any win, nonloss, and Markov(m(n)) outcome of nondeterministic game 
with space bound S(n) that is greater, or equal to log(n), can be decided in deterministic space 
o(s(n)2). 

4.2. D e c i d i n g  M a r k o v  (m(n)) O u t c o m e  of  a Space  B o u n d e d  G a m e  

We observe the following relationship between the space bound and the t ime bound with respect 
to the Markov (m(n)) outcome problem. 

LEMMA 4.2.1. I r a  team game G has space bound S(n), that is greater or equal to log(n), with 
respect to the Markov (m(n)) outcome problem, then G has a time bound 2°(m('0s(n)) with 
respect to the Markov (re(n)) outcome problem. 

PROOF. If a game G has space bound S(n), that  is greater or equal to log(n), then for some 
constant c, there can be at most c m('Os(n) distinct plays with m(n) positions or less (assuming 
finite set of alphabets). This is due to the fact that  each position has an upper space bound 
of S(n),  and there are at most re(n) positions in the play. 
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Therefore, we observe that there is a constant c > 0 such that if a Markov (re(n)) strategy a 
induces a play 7r of length greater than c m(n)s(n), then ~r contains a repeated play sequence 7rl 

containing re(n) moves. Consequently, lr is of the form lr = 7rOTrlTr27rlTr3, where 7to, 7r2 are either 

play subsequences or empty strings, and 7r3 is a play subsequence. 

1. If the turn to move belongs to a player of Team T1 at last(Trl), then (in the play induced 
by strategy a), the player would make the same choice that it made when it is confronted 

with the position last(Th) again. This would repeatedly force the same plays ~rlTr2 in 

succession. As a result, 7r 3 has an infinite number of occurrences of ~rl. Consequently, 7r 

is infinite. 
2. Otherwise, if the turn to move belongs to a player of To at last(r1), then the universal 

team To tries all of its moves again at the second occurrence of ~h. Thus, there must be 

some play lr t in which the same choice is repeated over and over. In other words, there is 

an infinite play ~r t such that 7r t = 7rO?rlTr27rlTr2 . . .  induced by strategy a. 

Since a leads to infinite play in both cases, it cannot be a winning strategy in either case. Hence, 
a winning Markov (m(n))  strategy induces only plays of length _< c m('~)s(~) = 2 °(m(~)s(n)). It 

follows that  G has a time bound of 20(m(n)s(n)) with respect to Markov (m(n))  outcome. | 

Using Lemma 4.2.1 above, we can show the following. 

THEOREM 4.2.1. The Markov (re(n)) outcome of a game G with space bound S(n)  >_ log(n) 

can be decided in deterministic space 2 °(m(n)s(~)) . 

PROOF. Using Lemma 4.2.1, we can deduce a winning Markov (m(n))  strategy a need only be 

defined for plays of length at most c m(n)s(n) (for some constant c > 0). Therefore, we can verify 
a Markov (re(n)) strategy is a winning strategy within deterministic space at most c m(n)s(n) = 
2°(m(~)s(n)). Moreover, a can be represented by a function A : POS(p0) m(~) ~-~ POS(p0) such 

that  a(zc) = Irp if and only if A(lastm(n)(lr)) = p for all ~r in the domain of a. 

Finally, there are at most c s(n)cm('')s(n) such functions A because (by Proposition 4.1.1). The 

theorem follows. | 

We use MA(m(n) )k  - SPACE to denote space bound of a Markov Alternating machine which 

is abreast of last m(n) moves. The subsequent corollary follows from Lemma 4.2.1 and Theo- 

rem 4.2.1 

C O R O L L A R Y  4.2.1. 

MA(m(n) )k  - SPACE(S(n)) c A T I M E ( E X P ( m ( n ) S ( n ) ) )  

MA(m(n) )k  - S P A C E ( S ( n ) )  C_ DSPACE(EXP(m(n)S (n ) ) )  

PROOF. We know from [11] that  ATIME(T(n)) = DSPACE(T(n)).  Lemma 4.2.1 shows that 

MA(m(n))k - SPACE(S(n)) C_ ATIME(EXP(O(m(n)S (n ) ) ) ) .  The corollary follows. | 

4.3 .  D e c i d i n g  a S p a c e  B o u n d e d  G a m e  o f  P e r f e c t  I n f o r m a t i o n  

Consider a game G of perfect information. We fix an initial position P0 of length n. 

LEMMA 4.3.1. I f  Team T1 has a winning strategy a in a game G of perfect information, then 

Team T1 has a winning Markov(1) strategy. 

PROOF. Let a be any winning strategy, we define a strategy a ~ to be a Markov(1) winning 
strategy by construction. For any play prefix 7r, af(7r) = a(Tr'), where 7d is the lexically minimal 
play prefix such that  last(Tr) = last(Tr'). It follows that a '  is a winning strategy if a is a winning 

strategy. | 

Applying Lemma 4.3.1 above to Lemma 4.2.1, we derive the following lemma that  shall prove 

to be useful in eliminating incomplete information in Sections 5.4 and 5.5. 
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LEMMA 4.3.2. / f  a game G of perfect information has space bound S(n) >_ logn, then G has 
time bound 2 °(s(n)). Symbolically, 

ASPACE(S(n)) C_ ATIME(EXP(S(n))). 

PROOF. Lemma 4.2.1 tells us that  if a game G has space bound S(n) > log(n), with respect to 
the Markov (m(n)) outcome problem, then G has a time bound 2 °(m(n)s(n)) with respect to the 
to the Markov (m(n)) outcome problem. Lemma 4.3.1 assures us that  we can reduce re(n) to 1. 
Consequently, G has a time bound 2 °(s(n)). | 

Now, we will show that  the following theorem can be derived from the above lemmas and 
proposition. 

TItEOREM 4.3.1. The win and nonloss outcome of any game G of perfect information with space 
bound S(n) >_ log(n) can be decided in deterministic time 2 °(s(n)). Symbolically, 

ASPACE(S(n)) c_ DTIME(EXP(S(n))).  

PROOF. Consider a game G = (POS, ~-) of perfect information with space bound S(n) > log(n). 
We will assume that  S(n) is constructable, otherwise we try the following method with S(n) = 
{0,1,...}. 

Civen an initial position Po of length n, we construct a set POS(po) of all the positions reachable 
by moves of G from P0, with space < S(n). Since G has position size bound S(n), there must be a 
constant c (independent of n) such that  POS(p0) _< c S(n). The theorem follows from the standard 
tree labeling algorithm (see Appendix A), which proves ASPACE(O(S(n))) C_ DTIME(2°(s(n))) 
(i.e., every game of perfect information with space bound O(S(n)) can be decided in deterministic 
time 2°(s(n))). 

By a similar procedure, we can develop a labeling corresponding to the nonloss outcome, and 
show the theorem to be true for nonloss outcome as well. Moreover, both labeling (for win and 
nonloss outcome) can be computed in deterministic time 2 °(S(n)). | 

The following theorem is due to Chandra and Stockmeyer [35]. 

COROLLARY 4.3.1. (CS76). For any S(n) > log(n): 

ASPACE(S(n)) = ATIME(EXP(S(n))), 

ASPACE(S(n)) = DTIME(EXP(S(n))).  

PROOF. The proof follows from Lemma 4.3.2 and Theorem 4.3.1 in conjunction with the upper 
bound results of Chandra et al. [35]. | 

5. E L I M I N A T I N G  I N C O M P L E T E  I N F O R M A T I O N  

This section provides methods for converting games of incomplete information to perfect infor- 
mation games by making the incomplete information content explicit. Subsequently, we can use 
algorithms for deciding games of perfect information for deciding games of incomplete informa- 
tion. We assume that  the game G of incomplete information (POS, ~-, vis, T1) has a space bound 
S(n) > log n. We show that  the corresponding perfect information game will have a much higher 
space bound. We shall commence by reviewing two-player games, and then extend the method 
to multiplayer games. 

5.1. Unrave l ing  Informat ion  in a Two-Player  G a m e  

Reif [1,2] presents a powerset construction for transforming a two-player game G = (POS, }-) 
of incomplete information into a corresponding game G + = (POS +, }-+) of perfect information, 
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whose positions are sets of positions of G. The construction is reminiscent of the subset con- 
struction in finite automata (FA) to prove the relation between DFA (deterministic FA) and NFA 
(nondeterministic FA). The resulting decision algorithms are characterized by exponential blow 
up in space complexity. We prove in the companion paper [4] that  this exponential blow up in 
space complexity must occur in the worst case. 

Since the procedure described of unraveling incomplete information from two-player games will 
assist us in understanding the corresponding procedure for multiplayer games, we will summarize 
the powerset construction of Reif [1,2] for sake of completeness. 

ALGORITHM 1. 

1. Fix some initial position P0 E POS. 
2. Assuming that  the set of positions reachable from P0 is finite, for each play prefix r of G we 

construct a position P(zr) of G + with common portion the set {last(zrl)lrqs a prefix with 
visl(Tr) = visl(~r~)}. This is the set of all possible positions after lr from the perspective of 
Player 1 (viewing only the information visible to Player 1). Let private portions of P ( r )  
be NULL to make G + a game of perfect information. 

3. In P ( r ) ,  let the next player to move be the same as the next player to move in last(w). 
Observe that  P(Tr) = P ( r ' )  if and only if visl(zr) = visl(Tr'). 

4. If Player 1 is supposed to move next, and r is some play prefix of G with last(w) E W,  
then we do not allow any next-move from P(~r) e POS +. Otherwise, let P ( r )  ~-+ P(Tr') 
be the move of G + if 7r, r '  are play prefixes of G and zr' is a child of r in G. Thus, moves 
from a position P(zr) of G + simulate all possible moves of G from last(~r). 

5. Finally, let P(Po) be the initial position of G +. 

The following theorem is also due to [1,2]. 

THEOREM 5.1.1. (See [1,2,].) Player 1 has a winning strategy in G from position Po if  and only 

if Player 1 has a winning strategy in G + from P(Po). 

PROOF. We can prove this by establishing a one-to-one correspondence between winning strate- 
gies of G and winning Markov strategies of G +. The proof is a special case of Lemma 5.2.1, 
which is proven later in this paper. The details can also be found in Reif's paper [1,2]. | 

Since there are no more than 2 °(8(n)) positions reachable from any starting position Po, the size 
of any position P of G + is at most 2 °(s(n)). So, Reif's algorithm [1,2] for eliminating incomplete 
information can be executed by an A-TM with space bound 2 °(s(n)). 

REMARK 5.1.1. Reif's discussion [1,2] continues to show that  the outcome of any two-player 
game of incomplete information with space bound S(n) can be decided by alternating Turing 
machine with space bound 2 °(S(n)), and it presents an algorithm to that  effect. Moreover, 
Theorem 4.3.1 implies that  the outcome of any two-player game of incomplete information with 
space bound S(n) can be decided in deterministic time 22°(s('')) . 

5.2. U n r a v e l i n g  I n f o r m a t i o n  in a H i e r a r c h i c a l  M u l t i p l a y e r  G a m e  

If a multiplayer game with three or more players is not hierarchical, then it can be undecidable 
because the universal player can deceive the existential players to play a game which can be 
mapped to the halting problem as shown by Peterson and Reif [1,2]. 

Consider a hierarchical game G = (POS, F-,vis, T1). Fix some initial position P0 E POS for 
Teams To, T1. We present a method for transforming G to a game of perfect information assuming 
the set of positions reachable from P0 is finite. First, we need to state a couple of definitions. 

DEFINITION 5.2.1. CLIQUE: We define a clique to be maximal set of players of a game with 
exactly the same rights to view components of positions. 
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DEFINITION 5.2.2. k: Let ¢0 C_ T1 be the maximal set of players with perfect information of To 
(hence, no player in T1 - ¢0 has perfect information). We define the parameter k to be the 

number of cliques of T1 - ¢0. 

We will perform the transformation in stages. At every stage, we effectively eliminate from 
the game the incomplete information associated with a clique ¢ of players in Team T1. The 
players still remain in the game. However, the information content is unraveled. In the resulting 
game G 1, the players of ¢ have perfect information. After a finite number of applications of this 
t reatment  (to all the cliques in the game G), we succeed in defining a game of perfect information 
which corresponds to the original game G. We extend the definition of vis to encompass a set as 
argument. For any set ¢ of players of G, let 

vis(¢) = U vis(i). 
lee 

PROPOSTION 5.2.1. If we are given a game G, we can derive a corresponding game G O by 
substituting for each clique ofT1 a single "super-player" with the same information access rights 
as the players of that clique, and allowing the "super-player" to more the same as the players of 
that clique. 

Let ¢0 be the clique with perfect information of To. Let ¢1 be the clique of T1 - ¢0 with "most 
knowledge", i.e., vis(¢l) D vis(i) for all players i • T1 - ¢0. We shall unravel the incomplete 
information of clique ¢1, thus deriving a new hierarchical game G 1 = (POS + , F -+ , vis +, T1 ), where 
G 1 has the same Teams To, T1, but  ¢0, ¢1 c T1 have perfect information. We define a new variable 
vis + to denote the rights to knowledge of various information of the individual players, vis + (i) 
denotes the rights of Player i in the new game G 1, and is defined as follows: vis+(i) = { 1 , . . . ,  r + l }  
for each player i • ¢1U¢o, and vis+(i) = vis(i) for all other players. Observe that  vis + is different 
from vis, and that  by this assignment of rights, the players of ¢I and ¢0 have perfect information. 
For each position p = (i ,p[1], . . .  ,p[r]) • POS, and every play prefix re of G, with p = last(re), we 
derive a new position P(re) = (i ,p[1], . . .  ,p[r],p[r + 1]) • POS +, where 

1. the r + 1 st component of P(re) (i.e., p[r + 1]) is defined to be {last(re') I re' is a play prefix 

with vise1 (re) = vise, (re')}, 
2. visj (re) = vise1 (re) for any j • ¢1. 

Intuitively, the r + 1 st component of P ( r )  is the set of all possible positions after re from the 
perspective of the players of ¢1, each one of who is allowed to view only vise1 (re). Observe that  
P(r)  = P(re') if and only if vise, (re) = vise~ (re'). We do not allow any legal next moves from 
P(lr) • POS + if it is Team Tl 's  turn to move and re is some play prefix with last(re) • W. Hence, 
Team To wins at P(re) for any re which is winning for Team To. Otherwise, let P ~-+ P '  be a 
move of G 1 if P = P(rr) and P '  = P(re') for some child re' of re in the original game G. By 
this definition, a move of G 1 from P simulates all possible moves of G from any position last(re), 
where P = P(re). Finally, we need to fix Po = P(Po) to be the initial position of G 1. 

REMARK 5.2.1. Observe that  G 1 is space bounded 20(S(n)) where n is the length of the original 
position P0 in G, and S(n) is the space bound of game G. Consequently, we have exponential 
blow-up in space complexity. 

Now, we turn our attention to the relationship between the game G and the derived game G 1. 

LEMMA 5.2.1. Team T1 has a winning (nonloss) strategy in G from the initial position Po if and 
only if Team T1 has a winning (nonloss) strategy in G 1 from the initial position Po. 

PROOF. We will prove this by establishing a one-to-one correspondence between winning (non- 
loss) strategies in G, and winning (nonloss) strategies in G 1. Let us first establish a correspon- 
dence between the winning strategies of the two games G and G 1. 

Suppose a is a winning strategy for Team T1 in G. Consider all play prefixes re+ of G 1 in 
which the turn to move belongs to one of the players in Team T1. For each such play, we 
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define a+(Tr +) = 7r+P(cr(Tr)) where 7r is the play prefix (of G) from which 7r + is derived (i.e., 
P(Tr) = last(r+)) .  This simply states that  the method of selecting the next move at ~r + by a + 
is looking up the move selected by a for the corresponding play prefix 7r in G for that  situation, 
and then translating that  move to the corresponding move in G 1. Now, in anticipation of a 
contradiction, suppose a + induces a play zr + of G 1 which is not a win for Team TI in G I. If so, 
then there is a corresponding play zr of G induced by a where last(Tr) is contained in the r + 1 st 
component of P(zr), and some such zr is not a winning play for Team T1 in G. However, this 
contradicts our supposition that  a is a winning strategy in G. Consequently, a + is a winning 
strategy in G 1. 

Now to prove the implication in other direction, suppose o + be a winning strategy for Team T1 
in G 1. Consider all play prefixes zr of G in which the turn belongs to one of the players in Team 
T1. For each such play, we define a(Tr) to be the child of zr such that  a+(~r +) = 7r+P(a(Tr)), where 
r + is the play prefix of G 1 which corresponds to the play prefix 7r of G. Now, in anticipation of a 
contradiction, suppose a induces a play 7r of G which is not a win for Team T1 in G. If so, then 
there is a corresponding play 7r + of G 1 induced by 0 + where P(Tr) is 7r +, and some such r + is 
not a winning play for Team T1 in G 1. However, this contradicts our supposition that  a + is a 
winning strategy in G 1. Consequently, ~ is a winning strategy in G. In a similar fashion, we can 
develop one-to-one correspondence between the nonloss strategies of the two games G and G 1. 
The lemma follows. | 

DEFINITION 5.2.3. EXPm(~'):  For set of functions J:, EXPm(~)  is the tower of m repeated 
exponentials of f ( n )  E ~ .  Recursively, EXPm(9 r)  is defined as follows: 

EXPI(5 w) = {e -f(n) e > O  a n d f ( n )  E ~ ' } ,  

{e EXP .... 1(~')]c > 0} ,  for m > 1. EXPm(~ r)  

I f  Y: consists of just  one function f (n ) ,  we drop the set notation. For example, EXPm(f (n ) )  is 
defined as E X P m ( { f ( n ) } )  where {f(n)} stands for the set with singleton element f (n ) .  Also, 
note that EXP(5 r)  = EXPI(5 r)  by default. 

The following theorems relate the space bound of a hierarchical game to its deterministic time 

bound. 

THEOREM 5.2.1. Given a hierarchical k-player game G with space bound S(n)  >_ log(n). G can 
be transformed into a game G* such that Team T1 has a winning (nonlosing) strategy from 
initial position Po in G if  and only if  it has a winning (nonlosing) strategy from the position 
corresponding to Po in G*. The win outcome and the nonloss outcome of G* can be decided in 
deterministic space EXPk ( S ( n ) ). Symbolically, 

PAkSPACE (S (n)) C_ ASPACE (EXPk (S (n))) .  

PROOF. G* is obtained by applying the procedure of eliminating incomplete information for each 

clique in succession. 
Fix an initial position P0 of G with length n. If there are any cliques with two or more players, 

we replace these cliques by "super-players" (cf. Proposition 5.2.1). The ith clique is represented 
by 3i-player. Now, the construction method of Lemma 5.2.1 can be applied k times to yield a 
game G* of perfect information. The 31-player knows everything all other players know except 
the V-player. Therefore, we create intermediate configurations which combine the current state 
of the 31-player with all possible states of V-player. Each of these new configuration will have 
the space bound 2 °(s(n)). 

Subsequently, we create new configurations that  represent the 32-player's private states and 
the set of possible states of 31-player (which now include the set of possible states of V-player). 

Each of these new configuration will have the space bound 22°(s(~)) . 
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The process is repeated until we have only 3k-player's private states and the set of possible 
states of the 3k_l-player, which includes the set of possible states of the 3k_2-player, which 
includes the set of possible states of the 3k_3-player, etc. 

Removal of each clique contributes a further exponential (cf. Remark 5.2.1). The space bound 
of this game would be EXPk(O(S(n))). Team T1 would have a winning strategy the initial 
position P~ (of G*) if and only if Team T1 has a winning strategy from the corresponding initial 
position P0 of G (as a consequence of k repeated applications of Lemma 5.2.1.). | 

THEOREM 5.2.2. The win outcome and the nonloss outcome of any k-p/ayer hierarchical game G 
of incomplete information with space bound S(n) > log(n) can be decided in deterministic time 
EX P k + I ( S ( n ) ) . Symbolically, 

PAkSPACE(S(n)) C_ DTIME(EXPk+I(S(n))). 

PROOF. Suppose, we have a game G with space bound S(n). From Theorem 5.2.1, the space 
bound of the corresponding perfect information game G* would be S*(n) = EXPk(O(S(n))). 
Theorem 4.3.1 states that a game with space bound S*(n) can be decided in time 2 °(s*(n)). 
Hence, we can conclude that G* can be decided in deterministic t ime 2 EXPk(O(S(n))), i.e., deter- 
ministic time EXPk+I (O(S(n))). | 

The following corollary is a consequence of Theorems 5.2.1 and 5.2.2. 

COROLLARY 5.2.1. For any S(n) >_ log(n) and k >_ O, 

PAkSPACE(S(n)) C_ ASPACE (EXPk(S(n))), 

PAkSPACE(S(n)) c_ DTIME (EXPk+I (S(n))). 

THEOREM 5.2.3. The win (nonloss) outcome of any hierarchical blindfold game G with space 
bound S(n) >_ log(n) can be decided in nondeterministic (conondeterministic) space EXPk(O 

PROOF. Fix an initial position P0 (in G) of length n. As in Theorem 5.2.1, the construction of 
Lemma 5.2.1 can be applied k times to yield a game G* of perfect information with space bound 
EXPk(O(S(n))). However, since G is blindfold, any winning or nonloss strategy of Team T1 
can be made oblivious to moves of Team To. Using this fact, G* can be transformed into a 
nondeterministic game G~v by allowing Team T1 to nondeterministically choose a strategy al 
(this can be done nondeterministically in space EXPk(O(S(n)))), and then allowing Team To 
to iteratively choose each possible strategy a0 of To (this can be done deterministically in space 
EXPk(O(S(n)))). During the simulated play of game G*, Team To must move by strategy a0, 
and the players of T1 must move by strategy al. 

By Proposition 4.1.2, the win (nonloss) outcome of the game G~v can be decided nondetermin- 
istic (conondeterministic) space EXPk(O(S(n))). | 

COROLLARY 5.2.2. By the result of Immerman [32,33], the nonloss outcome of the game G* g 
can be decided nondeterministic space EXP k( O( S(n) ) ). 

PROOF. The corollary follows from Immerman's result [32,33] that: 

NSPACE( O( S(n) ) ) = co-NSPACE( O( S(n) ) ). | 

The above Theorem 5.2.3 and Corollary 5.2.2 lead to the following result. 

COROLLARY 5.2.3. For any S(n) > log(n) and k > O: 

BAkSPACE( S(n) ) C_ NSPACE(EXP}(S(n))) 
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5.3. De c i s i on  Algor i thms  for Games  with  Space and Alternat ion  B o u n d s  

In this section, we study games with both space and alternation bounds. To facilitate our 
discussion, we define several predicates: PATH(p, p'), APATH(p,p') ,  DIVERGE(p) are defined 
in Figures 3, 4, and 5, respectively. Function PATH(p, ff)  returns TRUE if and only if there is 
a sequence of moves from p to p' with no Mternations. Function APATH(p, if)  returns TRUE 
if and only if there is a sequence of moves from p to p' with no alternations, except the last 
move must be an alternation. Function DIVERGE(p) returns TRUE if and only if there is an 
infinite nonalternating play from p, or if there is a move from p to a position which exceeds the 
space bound S(n). We assume that  all the transitory positions visited are in POS(p0) in all these 

function computations. 

LEMMA 5.3.1. We can see that the predicates PATH(p,p') ,  APATH(p,p ') ,  DIVERGE(p),  and 
membership in POS(p0) can be decided in nondeterministic space S(n),  and deterministic space 
S(n) 2. 

PROOF. This is a consequence of the space bound of S(n) in the computation of each move. From 
Savitch's theorem [34], we know that  NSPACE(S(n))  = DSPACE(S(n)2). Hence, PATH(p, ff),  
APATH(p, ff),  DIVERGE(p),  and membership in POS(p0) can be decided in deterministic 
space S(n) 2. | 

Now, we describe a recursive function DECIDE(p, a) in Figure 8 that  employs two functions 
DECIDE-universal(p, a) and DECIDE-existential(p, a) (illustrated in Figures 6 and 7). DECIDE 
returns TRUE if Team T1 has a winning strategy from position p where all plays have less than 
a alternations, and returns FALSE otherwise. In other words, DECIDE(p,A(n))  decides the 
outcome of C (with alternation bound A(n)). 

THEOREM 5.3.1. (See [11].) Ira perfect information game G has space bound S(n) >_ log(n) and 
alternation bound A(n),  then the win outcome and the nonloss outcome of G can be computed 
in deterministic space ( A ( n ) + S ( n ) ) S ( n ) . 

PROOF. We can utilize the aforementioned Mgorithm for deciding acceptance of alternating 
Turing machines with space and alternation bounds. Let P0 E POS be an initial position of 
length n. We assume S(n) is constructable (otherwise we can t ry  S(n) -- 0, 1 , 2 , . . . ) .  Let 
POS(p0) C_ POS be exactly the set of positions reachable from P0 within space S(n).  Each 
invocation of the functions Decide-ExistentiM and Decide-Universal and can be implemented in 
deterministic space S(n), and the depth of recursive calls is at most A(n) (because A(n) is a 
nonnegative integer which is decreased by 1 every time the depth of recursion is increased by 1). 
Moreover, S(n) 2 global space is required to compute the predicates APATH and DIVERGE. 
Consequently, the total space requirement is (A(n) + S(n))S(n) .  The procedure for deciding 
nonloss outcome of C is similar, except that  we replace 

if (DIVERGE(p) -- TRUE) 
then 

return(FALSE) 
with 
if (DIVERGE(p) = TRUE) 

then 
return(TRUE) 

This is done because an infinite play is not a "win", but it is certainly "nonloss". Of course, 
the rest of the procedure remains the same. | 

The following corollary is a consequence of Theorem 5.3.1. 

COROLLARY 5.3.1. (See [36,37].) For S(n) >_ log(n) and A(n) > O, 

ASPACE, ALT(S(n),  A(n)) c DSPACE((A(n) + S(n))S(n)) .  
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f u n c t i o n  PATH(p, if): returns B o o l e a n  
Input: Positions p and p~ in POS(po) 

Output:  TRUE if there is a sequence of moves from p to p~ with no alternations, 
and where all the transitory positions visited are in POS(po). 

and returns FALSE otherwise. 

b e g i n  
if p~ c {p ~-* pt I there are no alternations } 

t h e n  return(TRUE) 
else return(FALSE); 

end;  

Figure 3. Function PATH(p, pl). 

f u n c t i o n  APATH(p, pt): returns B o o l e a n  
Input: Positions p and pP in POS(po) 
Output:  TRUE if and only if there is a sequence of moves from p to p~ with no alternations, 

except the last move is an alternation, and where all the transitory positions visited 
are in POS(po). 

begin 
if (p" c {p F-* p~ I there are no alternations )) 

a n d  (p" S p~ with an alternation) 
t h e n  return (TRUE) 
else return(FALSE); 

end;  

Figure 4. Function APATH(p, pt). 

f u n c t i o n  DIVERGE(p): returns B o o l e a n  
Input: Position p E POS(po) 
Output:  TRUE if and only if there an infinite nonalternating play from p, 

or if there is a move from p to a position which exceeds the space bound S(n). 

begin 
if ((3p' e POS(po)) a n d  (PATH(p,p')) 

a n d  ( (PATH(p ' ,p ' )  ) 
or  (3p" E POS(po): p' F-p" and space bound > S(n)))) 
t h e n  return(TRUE) 
else  return(FALSE); 

end;  

Figure 5. Function DIVERGE(p). 

TttEOREM 5.3.2. Consider a hierarchical game of incomplete information G with k distinct 
cliques has a space bound S(n) >_ log(n) and an alternation bound A(n). The win and nonloss 
outcomes of G can be decided in deterministic space ( A ( n ) q- 1) EXP k ( S ( n ) ) . 

PROOF. Let G be a hierarchical game of incomplete information with k distinct cliques. Sup- 
pose G has a space bound of S(n) >_ log(n) and alternation bound of A(n). Fix an initial 
position P0 of length n. By Theorem 5.2.1, G can be transformed into a game G* such that  
Team T1 has a winning (nonlosing) strategy from initial position P0 in G if and only if it has 
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f u n c t i o n  Decide-Universal(p, a): returns B o o l e a n  
Input: Position p E POS(p0), and Alternation bound a 
Output:  TRUE if and only if T1 has a winning strategy from p 

with an alternation bound of a and a space bound S(n). 

COMMENT: This block decides the moves of Team To 

b e g i n  
if  (DIVERGE (p) = TRUE) 

t h e n  
return(FALSE) 

else  
i f  (a is 0) 

t h e n  

else 
return(TRUE) 

COMMENT: Deterministically check each position pr E POS(p0) 
such that  APATH(p, pt) holds. If Decide-Existential(p, a - 1) 
is TRUE for all such p~ then return TRUE. 

b e g i n  
set  flag to  TRUE; 
for  all p' e {p' E POS[ APATH(p,p')  -- TRUE) 

beg in  
if  flag is TRUE 

t h e n  
set  flag to  Decide-Existential(p', a -  1); 

end;  

return(flag); 
e n d  

e n d  

Figure 6. Function Decide-Universal. 

a winning (nonlosing) strategy from the position corresponding to P0 in G*. The win outcome 
and the nonloss outcome of G* can be decided in deterministic space bound EXPk(S(n)), and 
the alternation bound remains A(n). Consequently, by Theorem 5.3.1, G has deterministic space 
bound of (A(n) + EXPk(S(n)))EXPk(S(n)). This is the same as (A(n) + 1)EXPk(S(n)) .  | 

The  following corollary is a direct consequence of Theorem 5.3.2. 

COROLLARY 5.3.2. For S(n) >_ log(n) and A(n) > O, 

PAk SPACE, ALT(S(n) ,A(n))  C_ DSPACE(A(n) + 1)EXPk(S(n)).  

5.4.  D e c i s i o n  for G a m e s  w i t h  T i m e  and  B r a n c h  B o u n d s  

In this section, we consider the games with time and branch bounds. Recall that  a game G 
has a time bound T(n) if the outcome problem can be solved in at most T(n) moves for every 
play sequence in the game tree. Analogously, a game G has a branch bound b if for each position 
p E POS : [{ptlp }- p'}[ _< b. In other words, at any position in POS, there are at most b choices 
for the next transition. Consider a game G of incomplete information with time bound Tin ). In 
order to decide the win outcome of G, we only need to choose each strategy a for Team T1, and 
verify that  Team T1 wins for any play 7r induced by a. Observe that  each such play has at most 

T(n) moves. 
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function Decide-Existential(p, a): returns B o o l e a n  
Input: Position p E POS(po), and Alternation bound a 
Output: TRUE if and only if T1 has a winning strategy from p 

with an alternation bound of a and a space bound S(n). 

COMMENT: This block decides the moves of Team T1 
b e g i n  
if (.DIVERGE (p) = TRUE) 

t h e n  
return(FALSE) 

else 
i f  (a is 0) 

t h e n  

else 
return(FALSE) 

COMMENT: Deterministically check each position p' E POS(p0) 
such that  APATH(p,p') holds. If Decide-Universal(p, a - 1) 

is TRUE for any such p' then return TRUE. 
beg in  
set  flag to  FALSE; 
for all {p' E POS I APATH(p, p') -- TRUE) 

beg in  
if flag is FALSE 

t h e n  
set  flag to  Decide-Universal(p ~, a - 1); 

end;  
return(flag); 
e n d  

e n d  

Figure 7. Function Decide-Existential. 

f u n c t i o n  Decide(p, a): returns B o o l e a n  
Input: Position p E POS(p0), and Alternation bound a 
Output: TRUE if and only if T1 has a winning strategy from p 

with an alternation bound of a and a space bound S(n). 

COMMENT: This function calls Decide-Universal or Decide-Universal 
depending upon which team moves first. 

b e g i n  
if  (p E POSo) 

t h e n  
Decide-Universal(p, a) 

else 
Decide-Existential(p, a) 

e n d  

Figure 8. Function Decide. 

THEOREM 5.4.1. The win outcome and Markov (re(n)) outcome of any multiplayer game of 
incomplete information with time bound T(n) > n, and branch bound b can be decided in 
deterministic space T(n) log(b). 
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PROOF. Consider the aforementioned game G of incomplete information with time bound S(n) 
> n. We assume that T(n) is constructable, otherwise we try T(n) = O, 1 ,2 , . . . .  

As described above, we only need to choose each possible strategy a for Team T1, and verify 
that Team T1 wins for any play 7r induced by some such strategy a. Observe that each such play 
has at most T(n) moves. Consequently, it can be stored in T(n)log(b) bits, because we need 
log(b) distinct bits to indicate one of b branches for each move in a play of at most T(n) moves. 
Then, using this storage, the determination that a given strategy a is winning can be made by 
computing the outcome labeling of the game tree within deterministic space T(n). Moreover, this 
space also suffices to deterministically verify that a is Markov (re(n)). The theorem follows. | 

The following corollary is an immediate consequence of Theorem 5.4.1. 

COROLLARY 5.4.1. For any T(n) > n and a maximum branch factor b = o(2nT(n)), 

PAk TIME(T(n)) c_ DSPACE(O(T(n))). 

6. C O N C L U S I O N  

This paper has provided algorithms to decide the outcome of any multiplayer game of in- 
complete information. The algorithms are shown to be optimal in our companion paper [4]. 
Multiplayer games of incomplete information can be undecidable in general, unless the informa- 
tion is hierarchically arranged (as defined earlier in this paper). Hierarchical multiplayer games 
of incomplete information are decidable, and each additional clique (subset of players with same 
information) compounds the complexity of the outcome problem by a further exponential. Con- 
sequently, if multiplayer games of incomplete information with k cliques have a space bound 
of S(n), then their outcome is k repeated exponentials harder than games of complete infor- 
mation with space bound S(n). Blindfold games are related to the nondeterministic space in a 
similar way. The main results are summarized in Corollaries 5.2.1 and 5.2.3, and are for any 
S(n) >_ log(n) and k > 0, 

PAk SPACE(S(n)) _C DTIME(EXPk+I(S(n))), 

BAk SPACE(S(n)) C_ NSPACE(EXPk(S(n))). 

If in addition to space bound S(n) > log(n), alternation bound A(n) > 0 is also present then 
Corollary 5.3.2 states: 

PAk SPACE, ALT(S(n),A(n)) C_ DSPACE(A(n) + 1)EXPk(S(n)). 

Our algorithms for deciding the outcome problem are based on the extension of Reif's method 
[1,2] of eliminating incomplete information (for two-player games) to multiplayer games. Our 
method can prove to be useful in other problems involving ambiguity and incomplete infor- 
mation; e.g., natural language understanding. Time bounded games are shown not to exhibit 
such complexity of towering exponentials. In this paper, we provided an algorithm to decided 
T(n)-time bounded games in deterministic space T(n) (independent of the number of players and 
cliques). The main result appears in Corollary 5.4.1, and is reiterated below: for any T(n) > n: 

PAkTIME(T(n)) C_ DSPACE(T(n)). 

Our decision algorithms yield upper bounds that are shown to be asymptotically optimal by 
providing matching lower bounds in the second part [4] of this pair of papers. Our algorithm for 
space bounded games is utilized to decide certain formulae in multiprocessor logic of incomplete 
information. It would be interesting and useful to investigate techniques for (heuristically and 
otherwise) reducing the search to decide games of incomplete information. 
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A P P E N D I X  

T R E E  L A B E L I N G  A R G U M E N T  

We will construct a sequence of mappings from POS(p0) ~-* { TRUE, FALSE }. Initially, let l(p) 
---- FALSE for each p E POS(p0). We also introduce a labeling f ( l )  such that  for each p E POS(p0), 
we define: 

f ( l)(p) = False, 

Vpt-p, l(p'), 

True, 

Ap~-p' l(pl), 

if p E W A POS1, 

if p E POS1 - W, 

i fp  E W A POSo, 

if p E POSo - W. 

Let a = ]POS(p0)]. Now, by Proposition 4.1.1, ]POS(p0)I = 2 °(S(n)). f ( l )  can be computed 
from l in deterministic time a 2. Furthermore, we define l* to be the labeling derived by re- 
peatedly applying f to l 4 until there is no change induced by an application of f.5 Note that  
sequence of mappings lo, f(lo), f ( f ( l o ) ) , . . ,  is monotone in the sense that  fm(lo)(p) = TRUE 
implies fm+l(lo)(p) = TRUE for all m > 0 and p E POS(p0). Hence, the computation converges 
to fixed point of f6 after at most a = ]POS(p0)I iterations, and each iteration can be completed 
in 2 °(s(~)) deterministic time (since we have assumed that  next-move relations in any game is 
computable in linear space). Consequently, a total time of 2 °(s(~)) is required. We can show 
one-to-one correspondence between Markov strategies a of player and the labelings l* constructed 
by the above process. More specifically, the positions mapped by l* to TRUE correspond to the 
positions appearing as winning plays induced by some strategy a, and the positions mapped by l* 
to FALSE correspond to the positions not appearing as winning plays induced by any strategy a. 
Consequently, we can deduce that  l*(po) is TRUE if and only if Team T1 has a winning Markov 
strategy for P0. We show this by induction on the length of plays. The basis is trivial because it 
is obviously true for plays of length 0. By induction hypothesis, assume for any m > 0, and for 
any p E POS(p0) that  fm(lo)(p) = TRUE if and only if Team T1 has a winning strategy from p 
where all plays are of length smaller than m. I f p  E W, then by definition fm+l(lo)(p) = TRUE 
if and only if the turn to move at p belongs to a player on Team To, and that  is true if and only 
if Team 7"1 has a trivial winning strategy from p. If the turn to  move at p ~ W belongs to a 
player on Team To, then by definition fm+l(lo)(p) = TRUE if and only if fm(lo)(p')  = TRUE 
for all p' E POS(p0) such that  p ~- p', and by induction this is true if and only if Team T1 has 
a winning strategy of length less than m from each p' E POS(p0) such that  p F- p'. And, if a 
player of T1 has to move at p ~ W, then by definition fm+l  (lo)(p) = TRUE if and only if for some 
p' .~ POS(Po) such that  p ~- p', and by induction hypothesis this holds if and only if Team T1 
has a winning strategy of length less than m from some p' E POS(p0) such that  p ~- p'. In either 
case, fm+l  (lo)(p) = TRUE if and only if Team T1 has a winning strategy of length less than m + 1 
from p. 
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