

958 G. PETERSON et al.

1. INTRODUCTION

1.1. Motivation

The Turing machine was presented as a simple mathematical model of computation, which

can model a general purpose (deterministic) computer in terms of elementary operations. The

definition of the Turing machine accentuated the development of computability theory by for-

malization of algorithmic procedures. Subsequently, several other paradigms of computations

(nondeterminism, parallel, etc.) have been introduced, and corresponding models of computa-

tions (the nondeterministic Turing machine, the parallel random access machine, etc.) have been

developed accordingly.

The need for a formal computational model to address the computational aspects of games was

fulfilled by Chandra, Kozen and Stockmeyer [2] with the alternating L&ring machine (A-TM).

Now, the A-TM has become the most widely accepted fundamental game theoretic model of

computation. Subsequently, this A-TM model has been extended and enhanced to model more

intricate games. Reif [3,4] extended the A-TM model to incorporate private and blindfold two-

player games by introducing the private alternating Turing machine (PA-TM) and the blindfold

alternating Turing machine (BA-TM), respectively.

In this paper, we introduce the multiplayer private alternating Turing machine (MPAk-TM)

and the multiplayer blindfold alternating Turing machine (MBAk-TM) to model private and

blindfold multiplayer games, respectively. We also define the PAk-TM and the BAk-TM to

remove the over-generality of the MPAk-TM and the MBAk-TM, respectively.

Computer scientists are interested in developing and analyzing new game theoretic algorithms,

as well as modeling computational paradigms with game theory. This paper is particularly

concerned with the lower bound analysis of the game theoretic problems. We provide lower

bounds for solving the outcome problem of multiplayer games of incomplete information. These

lower bounds demonstrate that the corresponding decision algorithms (to decide the outcome)

presented in the companion paper by Peterson, Reif and Azhar [5] (see also [l]) are asymptotically

optimal.

All these new types of machines provide a deeper insight into the relationships between time

and space bounded computation. Different types of games correspond to different modes of

computation as shown in the Table 1. In particular, it is fascinating that the simplest type of

game (solitaire, perfect, information, unique next move) corresponds to our most, natural notion

of computation (deterministic). On the other hand, some of the most intricate game corresponds

to novel and abstract models of computation.

Table 1. Comparing computation and games.

Computation Mode

deterministic

nondeterministic

alternation

orivate alternation

Game

solitaire, perfect information, unique next move

solitaire, perfect information, open next move

two-player, perfect information

two-player, incomplete information

multiplayer alternation multiplayer, incomplete information

1.2. Games Theory in Computer Science

Reif [3,4] defines a two-player game as a disjoint sets of positions for two players (named 0

and l), and relations specifying legal next moves for players. A position p may contain portions

which are private to one of the players, whereas the rest are common portions accessible to both

players.

Multiplayer Noncooperative Games 959

The generalization of a two-player game is a multiplayer game (also called team game).’ In

multiplayer games, there are at least three players partitioned into two teams, Ts and Ti. A

multiplayer game is specified by a set of positions, a relation defining the possible next moves,

division of teams, and access rights of players to view or modify certain components of a game

position.

We assume that positions are strings over finite alphabet. Every position p may contain certain

information which is private to some player. The remaining information is common, and may

be viewed by more than one player. The set of legal next-moves for a given player must be

independent of the information which is inaccessible to him. These rights remain unmodified

throughout the course of the game.

In any game, every player plays according to a strategy which dictates a single next move to

the player for each and every possible sequence of previous moves that can legally occur. (Such

strategies that dictate a single next move to the player for every possible sequence of previous

moves that can legally occur are called pure strategies. Conversely, mixed strategies assign

probabilities to all possible next moves that can be made from a nonterminating position. The

reader is referred to the papers on mixed strategies by Azhar, McLennan and Reif [6] for more

detailed treatment of the complexity of finding such mixed strategies.) The strategy of each player

can only be dependent on components of the position visible to the player. Team TI is always

the team of “preference”, in the sense that we are interested in algorithms to formulate strategies

for Team Tr, and we analyze the complexity of these algorithms as a function of Team TI’S size.

On the other hand, we model Team To as a single player.

The win (or nonloss) outcome problem is a fundamental problem in game theory. For a team

game it can be described as follows. “Do the players of Team TI have a winning (or nonlosing)

strategy, which together would defeat Team To (or save Team Ti from defeat, respectively) under

all circumstances?”

In addition to the outcome problem, this paper also considers the following Markow (m(n))

outcome problem. “Given initial position of length n, does Team TI have a winning strategy

dependent only on previous m(n) positions. 7” The Markov(1) outcome problem is considered by

Peterson and F&if [l].

A game has perfect information if no position has any private component, and a game has

incomplete information if there are certain private components to the game. Furthermore, if

Team TO never modifies any portion of the position visible to players of Team Tl then the game

is categorized as a blindfold game.

In this paper, we shall show that (from a complexity theoretic point of view) multiplayer

games of inco’mplete information are more difficult than two-player games of incomplete infor-

mation. In general, multiplayer games of incomplete information can be undecidable. However,

they are decidable in at least one case, which is that of hierarchical multiplayer games of incom-
plete information. Hierarchical multiplayer games are multiplayer games in which the informa-

tion is hierarchically arranged, i.e., players on Team TI (of k members) can be arranged such
that all information visible to Player i is also visible to Player i - 1 for all existential players

(i E {2,3,. . , k}). Our formulation of hierarchical games as decidable does not preclude other

formulations of multiplayer games that are decidable.

In hierarchical multiplayer games, each additional clique (subset of players with same informa-

tion) increases the complexity of the outcome problem by a further exponential. Consequently,
if a multiplayer game of incomplete information with k cliques has a space bound of S(n), then

its outcome can be k repeated exponentials harder than games of complete information with the
same space bound S(n). This paper proves that this exponential blow-up must occur in the worst

case.

‘We use the two terms, multiplayer games and team games, interchangeably.

960 G. PETEWON et al.

The results obtained from studying space bounded hierarchical multiplayer alternating ma-

chines give a more clear understanding of hyper-exponential complexity classes. In particular,

the elementary recursive languages are characterized by a class of linear space bounded multi-

player alternating machines. This enables us to exhibit natural problems with super-complexity,

but that is another topic, and should be addressed in another paper.

1.3. Main Results

In this paper, we define computation machines for private and blind multiplayer games. We

introduce two new machines: the multiplayer private alternating machine (MPA-TM) and the

multiplayer blind alternating machine (MBA-TM). To remove the evident over-generality of the

MPA-TM and the MBA-TM, we introduce the PA-TM and the BA-TM, which are restricted ver-

sions of the respective machines. These machines are used to demonstrate the relations between

time and space hierarchies.

The MPAk-TM is a machine model which corresponds to a (k + 1)-player multiplayer (team)

game of incomplete information with k existential players and one universal player. The MBAk-

TM is derived from the MI’&-TM by disallowing the V-player from writing on any resource which

is readable by any g-player. In particular, for k = 1 the MPAk-TM (i.e., the MPAr-TM) bears

resemblance to the PA-TM. For k = 1 the MBAk-TM (i.e., the MBAi-TM) bears resemblance

to the BA-TM. We also introduce the PAk-TM and the B&-TM to remove the over-generality

of the MPAk-TM and the MB&-TM, respectively.

Let 3 be a set of functions on variable n. For each

cr E {D, N, A, PA, BA, MPAI,, MBAk, PAk, BAk, MA},

let (u-SPACE (3) be the class of languages accepted by the corresponding a-TMs within some

space bound in 3, and let a-TIME (3) be the class of languages accepted by the corresponding

CK-TMs within some time bound in 3. Since the complexity of these games involve multiple

exponentials, we need to develop notation to represent multiple exponentials.

DEFINITION 1.3.1. EXP,(3). For set of functions 3, EXP,(3) is the tower of m repeated

exponential of f(n) E 3. Recursively, EXP, (3) is defined as follows:

EXPl(3) = {cftn) 1 c > 0 and f(n) E 3) ,

EXP,(3) = {cExp’=-l(F) 1 c > 0} , for m > 1.

If 3 consists of just one function f(n), we drop the set notation. For example EXP,(f(n))
is defined as EXP,({f(n)}) where {f(n)} stands for the set with singleton element f(n). Also,

note that we consider EXP(3) = EXPl(3) by default (and perhaps a slight abuse of notation).

Chandra, Kozen, and Stockmeyer [2] relate the time and space complexity of the A-TM and

the D-TM as follows.

For S(n) > log n

ASPACE(S(n)) = DTIME(EXP(S(n))),

ATIME(EXP(S(n))) = DSPACE(EXP(S(n))).

Fteif [3,4] relates the time and space complexity of the D-TM with that the PA-TM and the

BA-TM as follows:

BASPACE(S(n)) = ATIME(EXP(S(n)))

= DSPACE(EXP(S(n))),

Multiplayer Noncooperative Games 961

PASPACE(S(n)) = ASPACE(EXP(S(n)))

= DTIiUE(EXP(EXP(S(n)))),

BATIME(EXP(S(n))) = ATIME(EXP(S(n)))

= DSPACE(EXP(S(n))),

PATIME(EXP(S(n))) = ATIME(EXP(S(n)))

= DSPACE(EXP(S(n))).

It also follows that:

BATIi’vfE(EXP(S(n))) = PATBvfE(EXP(S(n))).

Hierarchical multiplayer games are used to illustrate the relationship between time and space

complexity for k players with several restrictions which are defined later. The results are sum-

marized below.

PROPOSITION 1.3.1. PRIVATE ALTERNATION. For S(n) 2 logn

PAk-SPACE(S(n)) = DTIME(EXPk+i(S(n))).

For T(n) > n, if k = 1 then

NSPACE(T(n)) 5 PAI-TIME (T(n)2) C DSPACE(T(n)2) .

For T(n) 2 n, if k 2 2 then

PAk-TlME(T(n)) = NTIME(EXP(T(n))).

PROPOSITION 1.3.2. BLIND ALTERNATION. For S(n) 2 logn

BAk-SPACE(S(n)) = iVSPACE(EXPk(S(n))) = DSPACE(EXPk(S(n))).

For T(n) > n, if k = 1 then

BA1-TIME(T(n)) = I$?

For T(n) 2 n, if k = 2 then

NSPACE(T(n)) C BAz-TIME (T(n)2) G DSPACE (T(n)2)

For T(n) > n, if k 2 3 then

BAk-TI.ME(T(n)) = NTIME(EXP(T(n))).

Figure 1 illustrates the relations of the space complexity of the multiplayer alternation machines

with deterministic time and space. The deterministic complexity hierarchy shifts by exactly one

level with alternation [2]. It shifts one level further when private alternation is introduced. And

for each additional player added to private alternation, it shifts one more level.

1.4. Overview

Section 2 reviews computational models for two-player games, and then enhances them to in-

corporate multiplayer games. It defines the MI’&-TM, the MB&-TM, the P&-TM, and the

BAk-TM. It formally defines complexity measures, and proves the speed-up and space compres-

sion. Section 2 also describes the concept of universal games.

962 G. PETERSON et al.

TIME SPACE

Figure 1. Complexity shifts for an a-TM’s from (r-SPACE to deterministic time and
space starting from the two-player game of incomplete information. a = “A” for
alternation; a = “PA” for private alternation; (Y = “BA” for blind alternation; o =
“k - 1” for private/blind alternation with one less player.

Section 3 focuses on providing matching lower bounds for the multiplayer game algorithms. It

employs proof techniques using strategy counter game (SCG), a game tailored for lower bound

proofs. It illustrates SCG based proofs for previous results of F&if [3,4]. Subsequently, it applies

SCG techniques to multiplayer games.
Section 4 reviews PEEK games and introduces two new variants: TEAM-PRIVATE-PEEK

and TEAM-BLIND-PEEK. These games are shown to be universal for their respective classes by

using propositional formulae.
Section 5 is concerned with time bounded machines. It derives lower bounds for time bounded

machines, and shows that DQBF to be NEXPTIMEcomplete. It concludes by highlighting the

relationship between blindfold and incomplete information games.

Section 6 extends the idea of multiplayer alternation to finite state automata, pushdown store

automata, and Markov machines.

2. GAMES AND COMPUTATIONAL MODELS

2.1. Computational Models for Two-Player Games

We shall describe how our machines models are derived from the deterministic Turing machine

(D-TM) by successive refinement.

A deterministic Turing machine (D-TM) is defined as a nine-tuple

where t E Z+ is the number of work tapes; Q is a finite set of states; C is a finite set of input
symbols; r is a finite set of tape symbols; b maps (Q x I?) to (Q x I” x {‘left’, ‘right’,‘static’}t)
is the transition relation which defines a unique move for every element of (Q x l?); qo E Q is a
fixed initial state; # E I? - C is a distinguished end marker; b E r - C is a distinguished blank
symbol; F c Q is the set of accepting states.

A nondeterministic Turing machine (N-TM) is a nine-tuple

(6 Q, C, r, 6, qo, #, b, F)

Multiplayer Noncooperative Games 963

which is identical to the D-TM except that the next move function 6 specifies some subset of

for every (& x l?). Consequently, there may be any one of several possible next moves from a
given state (unlike the D-TM, which is constrained to a deterministic fixed move). Furthermore,

the N-TM accepts an input if there is any sequence of transitions leads to an accepting state.

An alterniting Turing machine (A-TM) is defined as a ten-tuple

(6 Q, u, -% r, 4 QO, #, b, g),

where t, Q, C, I?, qo, #, and b are as defined above, and the other symbols are defined as follows.

l U is a set of universal states (V C Q).
l Q - U is a set of existential states.

l g maps Q onto {A, V, accept, reject}, such that for q E l_J : g(q) = A to map universal

states to conjunction, and for q E Q-U : g(q) = V to map existential states to disjunction.
. 6 defines some subset of 2(Qxr’ X { ‘left ‘7 ‘right: ‘static’)‘) for every (Q x rt).

The A-TM models a two-player game in which the existential player has to pick the move that

will lead to acceptance for all possible moves of the universal player. The alternation takes place
as the existential states (identified with Player 1) alternate with the universal states (identified

with Player 0) during the computation. Two-player games of perfect information are related in

this way to the alternating Turing machines (A-TM) of Chandra et al. [2] in which existential

and universal states alternate.

In two-player games of perfect information, the main interest is in solving the outcome problem

for the existential (3) player, i.e., finding winning strategies for j-player. The A-TM accepts an

input, corresponding to an initial position, if the existential player has a winning (or a nonloss)

strategy which would guarantee to a win (or not lead to a loss, respectively) for the existential

player under all circumstances, regardless of the strategy adopted by the universal player.

The complexity of various generalized games of perfect information is considered by Schaefer [7],

Even and Tarjan [8], F’raenkel et al. [9], Robson [lo], Lichtenstein and Sipser [11,12], F’raenkel and

Lichtenstein [13], Peterson [14]. Stockmeyer and Chandra [15] introduce a game called PEEK,

and prove that PEEK is universal for two-player games of complete information.
A string w encoding some position is accepted by an alternating Turing machine if

the machine is in a universal (V) state, and all transitions from that state (based upon

the current scanned symbols) are to accepting states,

OR

the machine is in an existential (3) state, and there is at least one transition from

that state (based upon scanned symbols) to an accepting state.

Games are intimately related to models of computation in general. The fundamental question of

concrete games (the outcome problem) is closely related to the membership question of languages

and machines. A game with a computable next-move relation can be treated as a computation
machine. Game G accepts input w depending on the outcome of the game from an initial position

encoded by w. The correspondence between games and languages is illustrated in Table 2.

Table 2. Natural analogies between games and languages, with examples.

I LANGUAGE I GAME I EXAMPLE I

I string concrete game a blindfold chess endgame I
language

class of languages

game

game type

blindfold chess

two-player, incomplete information

964 G. PETERSON et al.

We assume that the reader is familiar with the usual definitions of Tuting machines, and in

particular the definitions of tape storage, tape read/write heads, Futing machine configurations

(which are the positions of these computational games), and legal next moves for tiring machines.

The nondeterministic Turing machine (N-TM) is mapped to games of perfect information with
Player 0 absent because there are no universal states. The deterministic Turing machines (D-

TM) represent games of perfect information with at most single next-move from any position

because there is only one possible transition from any given state. The A-TMs are essentially

extensions of nondeterministic machines to include both existential and universal choices. These

choices then correspond to moves by the two opposing player in a two-player game of perfect

information.

A PA-TM is derived from the A-TM by not allowing the existential (3) player to access some of

the work tapes that are writable by the universal (V) player. These tapes are considered private

to the universal (V) player. This is another way of restricting the existential (!I) player from

viewing some of the universal (V) player’s moves.

A BA-TM is derived from the PA-TM by not allowing the universal (V) player write access to

work tapes which can be read by the existential (3) players. This is another way of restricting

the existential (2) player from viewing any of the universal (V) player’s moves.

The PA-TM and the BA-TM model two-player games of incomplete information (e.g., rummy)

and two-player blindfold games (e.g., BLIND-PEEK [3,4]), respectively.

2.2. Computational Models for Multiplayer Games

We define multiplayer alternation by building upon the notion of the nondeterministic Turing

machine. These steps can be viewed as an algorithm for defining a game-like machine.

DEFINITION 2.2.1. MULTIPLAYER ALTERNATION. Multiplayer alternation is modeled by an

enhanced N-TM N, where:

1. we partition the states into distinct subsets such that each player is assigned exactly one

subset of states;

2. we assign players various rights to view and modify tapes and portions of states;

3. then, we introduce a multiplayer game, called a computation game, which is used to define

acceptance for the resulting multiplayer alternating Turing machine;

4. we divide the players into two teams; Team TO consists of universal (V) players and Team TI
consists of existential (3) players.

We could have built upon any kind of nondeterministic machine, not necessarily a nondeter-

ministic Turing machine, to lead to the corresponding alternating machine. For example, if we

begin with a nondeterministic random access machine (N-RAM), then we must assign players

rights to view and modify various memory registers rather than tapes. Acceptance of resulting

multiplayer alternating machine would be defined again by a computation game.

Now we can define an MPAk-TM based on an enhanced N-TM as follows.

DEFINITION 2.2.2. MPAk-TM: k+l-PERSON ALTERNATING TURING MACHINE. A k+l-player

alternating Turing machine MPAk-TM is defined as a mapping VIS from (0, . . . , k}, corresponding
to the k players, to (not necessarily proper) subsets of (1, . . . , r} (corresponding to the position

information) and a ten-tuple

(t, Q, U, G I‘, 6, qo, i% b, g),

where

t E Zf is the number of work tapes;
Q is a finite set of states;
U is a set of universal states (U C Q);
C is a finite set of input symbols;

Multiplayer Noncooperative Games 965

r is a finite set of tape symbols;

6 maps (Q x l?) to (Q x rt x {‘left’, ‘right’,‘ststic’}t) is the transition relation which
defines a unique move for every element of (Q x I?);

qe E Q is a fixed initial state;
E I? - C is a distinguished end marker;

b E I? - C is a distinguished blank symbol;

g maps Q onto {A, V, accept, reject}, such that for q E U : g(q) = A, for q E Q-U : g(q) =
V, for final accepting states: g(q) = accept, and for final rejecting states: g(q) = reject.

(t, Q, U; C, r, 4 qo, #, kg) is a nondeterministic Turing machine with the following restrictions.

1. We require the set of states Q E (0,. . . , k} x &I x a.. x Qs where &I,. . . , Q8 are finite

sets denoting state components.

2. A configuration is a sequence (i, q1, . . . , qs, (Xl, Yr), . . . , (X,,Y,)) where q = (i, qr, . . . , q9)
is the current state, and (Xl,Yl), . . . , (X,, Yt) are the current contents of tape 1,. . . , t,
respectively. There are a total of 1 + s + t components in a configuration. Integer i

(0 5 i 2 k) identifies th e player who has to move next. The next s items keep track of
state components qi E Qi for 1 5 i 5 s. The number of state components (s) may be
different from the number of players. The remaining t components keep track of the tape

configurations. X,,, precedes the head of tape m. The head of tape m scans the first
symbol of Y,.

3. The initial configuration has the initial state qs E Q, and the tape contents initialized as

for the nondeterministic Turing machine N.

4. Let POS be the set of all configurations. The next-move relation (l-c POS x POS)
is a binary relation on configurations defined in the usual manner from the transition

function 6.
5. Finally, we require the computation game G M = (PO& I-, VIS, TI) to be a k + 1 player

game satisfying Axioms 1 and 2 of Section 2.4 (with Teams TO = (0) and TI = { 1,. . . , k}).
These axioms simply prevent a player from modifying the information which is invis-

ible to him, and inhibit him from using the invisible information in formulating his

strategy.
6. We say that M accepts w E C* if Team Tr = (1,. . . , k} has a winning strategy in GM

from the initial configuration. Let the language of M be L(M) = {w E C* 1 w is accepted

by Ml.

Let r = s + t (number of state components plus number of tapes). VIS is a mapping

from (0,. . . , k}, corresponding to the k players, to (not necessarily proper) subsets of { 1, . . . , r}
(corresponding to the position information), i.e., VIS : (0,. . . , k} H 2{‘*...7’). Inclusion of si
in VIS(j) denotes right of Player j to view state i, and inclusion of an integer t in VIS(j) denotes
right of Player j to view tape t.

A four player private alternating Turing machine is shown in Figure 2. The visibility rights of

the players are specified by VIS, where

vls(o) = {So,Sl,%,S3,1,2,3}, vIs(l) = {Sl,S2, S3,2,3},

V=(2) = {sz, 33,3), VfS(6) = {33,3),

with an additional constraint that Player 3 cannot write to Tape 3 (even though he can read

from that tape).

A multiplayer blind alternating Turing machine (MBAk-TM) with k + 1 players is a restricted

MPAb-TM in which Player To is not allowed to modify any information visible to players of

Team TI.

G. PETERSON et al.

Input Tape

Tape 3

Figure 2. Multiplayer private alternating Turing machine.

Input Tape

R/W I ape 1
Tape 3

Figure 3. The multiplayer blind alternating Turing machine.

A four player blind alternating Turing machine is shown in Figure 3. The visibility rights of

the players are specified by VIS, where

JqO) = {so, s17 s2, s3,L 2,3), VIs(1) = {Sl, s2, s3,2,3},

VW2) = {sz, s3,3), VW3) = {33,3),

with the additional constrains that Player 0 cannot write to Tapes 2 and 3, and Player 3 cannot

write to Tape 3.
A MPAk-TM is a machine model which corresponds to a (k + 1)-player multiplayer (team)

game of incomplete information with k existent&J players and one universal player. The states

of the machine are labeled with tuples: every element of the state contains a turn indicator, and

denotes information that can be read and written by each player. Every player has a associated

list of tapes to indicate read/write rights of various tapes for the player itself. Thus, the tapes

are partitioned according to access rights.

Multiplayer Noncooperative Games 967

In particular, for k = 1 the MPAk-TM (i.e., the MPAi-TM) bears resemblance to the PA-

TM. Similarly, the MPAi-TM with both players sharing resources corresponds to the A-TM

(without logical “not” operation). Furthermore, an MPAi-TM with unique next moves for the

universal (V) player is an N-TM, whereas, a MPAi-TM with unique next moves for all players

is simply a D-TM. Hence, it is evident that the MPAk-TM accepts the recursively enumerable

(r.e.) languages since they are at least as powerful as an ordinary D-TM. Similarly, we can show

that the MPAk-TM accepts only r.e. languages by enumerating all possible accepting subtrees,

and subsequently checking recursively whether each tree is a true accepting subtree.

An MBAk-TM is derived from the MPAk-TM by disallowing the V-player from writing on any

resource which is readable by any 3-player. Consequently, moves of the V-player are invisible to

the 3-player). Hence, the MBAk-TM correspond to blindfold multiplayer games. Observe that

for k = 1 the MBAk-TM (i.e., the MBAi-TM) bears resemblance to the BA-TM. We show that

the MBAk-TM and the BAk-TM accept r.e. languages and only r.e. languages.

After analyzing the MPAk-TM and the MBAk-TM, we are forced to realize that both these

machines are too general and powerful. We combat their over-generality by introducing restricted

versions of each machine. The k + l-player private alternating Turing machine (PAk-TM) is an

MPAk-TM if resources visible to Player i are also visible to Player i - 1 for all existential players

(i E {2,3,..., k}). Hence, there is a hierarchical ordering of 3-players. A k + l-player blind

alternating Turing machine (BAk-TM) is a PAk-TM where the V-player cannot change a resource

visible to any other 3-player. Examples of the PAk-TM and the B&-TM for k = 3 are depicted

in Figures 2 and 3, respectively.

We have defined for each game type g in B = {two-player incomplete information, two-player

blindfold, multiplayer incomplete information, multiplayer blindfold, perfect information, non-

deterministic, deterministic} a corresponding machine type m(g) in M = {two-person private

alternating, two-person blind alternating, multiplayer private alternating, multiplayer blind al-

ternating, alternating, nondeterministic, deterministic}.

2.3. Complexity of Games

This section defines alternation, time, space, and branch bounds.

For any input string w E C*, let the initial position PO(W) have the initial state ~0, and let tape

contents be described in accordance with Definition 2.2.2. The accepting states are all universal

states with no successors. The rejecting states are all existential states with no successors. Each

play of the computational game G M is called a computation seqzlence, and the corresponding game

tree T is called compzltation tree. The input string w E C* is accepted by M if the existential

player has a winning strategy. The computation sequences induced by winning strate,g form an

accepting subtree of T.

A move p t- p’ is an alternation if the player to move next is on a different team from the player

which just moved. That is to say that p E PO& and p’ E POSj, where i and j belong to different
teams. Thus, either

(1) i E TO and j E Tr, or

(2) i E TI and j E TO.

Now we can define alternation bound, time bound, space bound, and branch bounds.

A game G has a alternation bound A(n) if for each initial position ps E POS of length n, for

which Team Tr has a winning strategy, there is some such winning strategy u which induces a

play r containing at most A(n) alternations.

DEFINITION 2.3.1. ALTERNATION BOUND A(n). For every input string w E Cn (corresponding

to some initial position pe) accepted by the associated machine M, there exists an accepting sub-

tree GT’ such that a computation sequence corresponding to any play r, induced by strategy 0,

does not have more than A(n) alternations for every computation sequence x E GT’.

968 G. PETERSON et al.

A game G has a time bound T(n) if for each initial position po E POS of length n, for which
Team Tl has a winning strategy, there is some such winning strategy u which induces a winning

play r containing at most T(n) moves.

DEFINITION 2.3.2. TIME BOUND T(n). For every input string w E C” (corresponding to some

initial position PO) accepted by the associated machine M, there exists an accepting subtree GT’

such that a computation sequence corresponding to any play x, induced by strategy o‘, does not
have more than T(n) moves for every computation sequence r E GT’.

A game G has a space bound S(n) if for each initial position ps E POS of length n, for which

Team Tl has a winning strategy, there is some such winning strategy u which induces a winning

play 7r, where any position reachable from the initial position can be represented in space at

most S(n). We classify a game as reasonable if it has a space bound of O(n).

DEFINITION 2.3.3. SPACE BOUND S(n). For every input string w E C” (corresponding to some

initial position PO) accepted by the associated machine M, there exists an accepting subtree GT’

such that a computation sequence corresponding to any play T, induced by strategy u, does not
use more than S(n) nonblank cells for every computation sequence rr E GT’.

A game G has a branch bound b if for all positions in POS(p0) there are at most b choices for

the next transition.

DEFINITION 2.3.4. BRANCH BOUND b. A game G has a branch bound b if for every starting

position p, 1 {p’ (p t p’} 1 I b.

It is imperative to note that the complexity bound definitions given above are relevant only to

the win outcome problem of the game. When considering the Markov (m(n)) (nonlosing) outcome

problem for a game, we bound space, time, and alternations only for plays associated to winning

strategies. Recall that a nonlosing play can be infinite.

Our primary objective in introducing the MPAk-TMs is to derive a characterization of full

elementary recursive hierarchy. However, we discovered that even the MPAz-TMs with constant

space accept all r.e. languages. This resulted in variant definitions which give a more natural

extension of the space and time results of Peterson and Reif [il.

2.4. Languages Accepted by Multiplayer Alternating Machines

We define the computation game G M = (POS, I-, VIS, Tl) where we have the following.

1. POS is a set of positions with

POS = (0,. . . , k} x PI x . . . x P,,

where 0,. . . , k represent Players 0,. . . , k, and PI,. . . , P, are sets of strings over a finite

alphabet used to describe various components of the positions.

2. tc POS x POS is the next move relation satisfying Axioms 1 and 2 stated below. These

axioms simply prevent a player from modifying the information which is invisible to him,

and inhibit him from using the invisible information in formulating his strategy.

3. The mapping VIS : (0,. . . , k} H 2{11...?‘) is a mapping from the set of players to all

possible subsets of the set of positions. Let p = (a,p[l], . . . ,p[~]) be a position in POS.

We say that Player i has right to view p[j] if j E VIS(i).
4. Team Tl E 2{07...>“l is a subset of the set of Players (0,. . . , k}. The opposing team

is TO = (0,. . . , k} - Tl where “-” represents the set difference. Players of Team TI move
from existential (3) states, and players from the other Team To move from universal (V)

states and are called universal (V) players.

The mapping VIS describes the access rights of the players. For each Player i = 0,. . . , k we
let visi(p) = (TJ, b), where z1 is the list (in order of occurrence) of components of position p for

Multiplayer Noncooperative Games 969

which Player i has access rights (i.e., the ordered list (pb] 1 j E VIS(i))),2 and b is a Boolean

variable which is 1 if it is Player i’s turn to move (and otherwise it is 0). pr&(p) is the list of

all components of the position which are known only to the Player i. More explicitly @vi(p)

is (p[j]) j E VIS(i), and j 4 VIS(k), for all Ic # i).

When we are dealing with multiplayer games, we need the following axioms to incorporate the

notion of incomplete information.

AXIOM 1. No player is permitted to modify any other player’s private information.

Therefore, if p E POS, and p t p’, then privj(p) = privj(p’) for all players j # i.

AXIOM 2. If a pair of nonterminating positions p, q are indistinguishable to a player, then the

sets of next moves he can make from this pair p, q must also be indistinguishable to the player.

As a consequence of Axiom 2, if p, q E PO& - W and visi(p) = visi(q) then { visi(p’) 1 p F

P’} = (visi(9’) I9 I- 9’).

We define the set of winning positions (W) to be the set of all positions from which there is

no next move for the opponent on its turn to move

W = {p E POS) there is no p’ such that p I- p’} .

For any Player i we use POSi to denote the set of positions such that it is Player i’s turn to move

PO% = {p E POS I next(p) = i}.

Player i loses if any position in the set PO& n W is encountered. The result of a finite play is a

loss for exactly one player. Any team’s wins and losses are determined by the performance of the

players on that team: a play K is a win for Team Tl if it is a loss for some player on the other

team. A play A is a nonloss for Team TI if it is not a loss for any player on the Team Tl.

Let the language of M be L(M) = {w E C* 1 w is accepted by M}.

THEOREM 2.4.1. The P&-TM accepts precisely the recursively enumerable sets.

PROOF. The D-TM can be c0nsidered.a special case of the PAk-TM. Since the D-TM accepts

r.e. sets, the P&-TM also accepts r.e. sets.

On the other hand, the winning strategies of a computation game (of incomplete information)

can be recursively enumerated by all possible accepting subtrees and check recursively whether

each tree is a true accepting subtree. Thus, the language of the PAk-TM is r.e. The theorem

follows. I

THEOREM 2.4.2. The B&-TM accepts precisely the recursively enumerable set.

PROOF. The D-TM is a special case of the BAk-TM. Hence, the B&TM accepts r.e. sets.

On the other hand, the winning strategies of a blindfold computation game can be recursively

enumerated. Consequently, the language of the BAk-TM is r.e. I

THEOREM 2.4.3. SPACE COMPRESSION. For any constant E > 0 and a machine M of some

type M, with space bound S(n), there is a machine with space bound ES(~) that accepts the

same language as M, and with the same machine type M with no additional alternations or

tapes.

PROOF. We encode each 21~ consecutive work tape cells as a P/c-tuple in a new tape alphabet.

This technique can be used to achieve desired space compression by any constant factor. m

2We use angled brackets to enclose items in an ordered list.

970 G. PETERSON et al.

THEOREM 2.4.4. SPEED-UP (TIME DILATION). For any constant E > 0 and a machine M of
some type M, with time bound T(n) such that liminf,,, (T(n)/n) = oo and at least one tape,

there is a machine of the same type M with time bound eT(.n) that accepts the same language

as M, with no additional tapes.

PROOF. We construct M’ of same type M which accepts the same language aa M, and is identical

except as described below. We encode t consecutive tape cells of each tape of M as a t-tuple in

the tape alphabet of M’ (cf. Theorem 2.4.3 above). The number of possible next moves from

any position must be finite, so we must have some constant upper bound d on the branching

factor. Since the maximum branching factor is d, there are at most dt positions reachable of M
after t moves. Thus, there are at most 2dt possible strategies of the existential team within next t

moves. M’ will have a distinguished state associated with each of these possible strategies.

Given an input string w E C”, the simulation proceeds in T(n)/t steps, where in each phase M’

simulates t nonprivate steps of M. 3 M’ would also have an additional tape which is private to

the universal player. This contains a counter A (0 5 A 2 t), which keeps track of the number of

nonprivate steps which remain to be simulated by M’ during this phase. A is initialized to t at the

start of a phase. Then, M’ moves one cell left, two cells right, and one cell left (chronologically)

on each of its tape to determine the currently relevant tape contents. Then, the existential team

of 111’ is allowed to choose its strategy for the next t existential steps of M, by a single state

transition. If no such strategy exists then M’ rejects.

Subsequently, the universal player of M’ executes a series of rounds, each of which requires only

a single step of M’. These steps are not detectable by the existential team of M’. Inductively,

t - A nonprivate steps of M have been simulated by M’ during this phase. In the current round,

M’ simulates t’ = min(t, A) steps of M. Some of these steps may be existential, and for these

steps the strategy already chosen by existential team is applied. At the end of the round, A is

privately subtracted by the number of nonprivate (with respect to universal player) steps of the

round. Thus, new A is set to old A minus t - t,, where t, is the number of steps of the round

which were private to the universal player. We are guaranteed that t, will not always be 0, since

we are dealing with a game of incomplete information.

If A > 0 then we proceed with the next round, otherwise we terminate the round. After

the last round, the universal player makes visible (to the existential team) all modifications to
common portion which were made on simulated nonprivate moves during this phase. M’ makes

four additional moves of the tape heads (once left, twice right, once left) to update the tapes,

and then the simulation proceeds to next phase. M’ takes at most ten steps for every t steps

of nil, and the total time bound of M’ is

which is less than ET(n) if we let t = 20/e, and n 5 (9/20) CT(n). Since there are only a constant

number of inputs of length n > (9/20)cT(n), and for these inputs we can use the finite state

control to decide acceptance within time n. The speed-up theorem follows. I

DEFINITION OF SPACE AND TIME BOUNDED GAMES. We say a game has space bound S(n) if the
set of positions reached by a single move from any given position of length n, can be computed in

deterministic space S(n). We say a game has time bound T(n) if there are at most T(n) positions

reachable by any path of a game tree from any given position of length n.

Now, we show that the computation games of various types of machine are universal for the

corresponding classes of games. Fix some functions A(n) and S(n) 2 log(n), and let g be a game
type in 9. Let C be the class of games of the predetermined type g, with space bound S(n)

“A mwe by the universal team is private if it does not modify any portion of a position that is visible by existential
team. Otherwise the move is nonprivate.

Multiplayer Noncooperative Games 971

and alternation bound A(n). For every G = (POS, k, VIS, Tr) of C, let & be deterministic log

space mapping from positions in POS to their binary representation. Let NG be a binary string

encoding the deterministic space MS(n) next move transducer for I-.

THEOREM 2.4.5. If MS(S(n)) = O(S(n)) then the computation game G”c is a universal game

for the game class C.

PROOF. By definition, there is a machine MC such that for each game G E C and position p

of G, M accepts (NG, &(p)) iff Team Ti has a winning strategy in G from initial position p. In

other words, MC decides the outcomes of all games of C. Furthermore, MC has a corresponding

machine type m(g) (i.e., its computation game is of type gj has a tape alphabet (0, 1, b, #},

space bound S(n) + MS(S(n)), and alternation bound A(n). If MS(S(n)) = O(S(n)) then by

Theorem 2.4.3, MC needs to have only space bound S(n). The theorem follows. I

By applying space compression Theorem 2.4.3, we have the following.

COROLLARY. For each game type G E 6, if ‘R is the class of reasonable games (i.e., with space

bound S(n) = n of type g, then there is a linear space bounded machine MR of corresponding

type m(g) such that GM= is a universal game for R.

3. LOWER BOUNDS

3.1. Bounds for Two-Player Games

Fteif [3,4] uses the A-TM complexity to derive the complexity of space bounded machines
representing various two-player games. We shall derive our results by direct comparison to the

D-TMs. The corresponding results for multiplayer games will follow as trivial extensions. We

shall mtroduce a game to facilitate the statement and the proofs of our results.

DEFINITION 3.1.1. STRATEGY COUNTER GAME (SCG). The game involves two players, Play-

er 0 and 1. Player 1 has to convince Player 0 that it can count from 0 up to 22” - 1 [inclusive).

It does so by producing a sequence of numbers from 0 to 22” - 1 in binary as a sequence of

groups in the format #02”#02”-11#02’L-210#02”-211#OY’-3101#~~~ #12”-‘#, and then halt-

ing. Player 1 sends this sequence (via a common state element) of groups to Player 0. Meanwhile,

Player 0 attempts to find a Aaw in the output sequence of Player 1. Player 1 wins if Player 0

fails to find a Aaw in its output.

PROPOSITION 3.1.1. SCG requires at least 2n bits when played deterministically because each
group has 2n bits.

However, the V-player can do better than that by modeling SCG as a game of incomplete

information in which Player 0 is the V-player, and Player 1 is the El-player. g-player communicates

a sequence of groups #02”#02’“-11#. . . #12”-1 # as described above. The V-player’s strategy is

to nondeterministically choose one of the following verifications.

1. The first group is in O*, and the last is in l*.

2. Choose any group and verify (secretly) that it has length 2n.

3. Choose any particular bit of a group, remember it and its location. Check it against the

same position in the next group, with respect to carry, etc.

LEMMA 3.1.1. SCG requires only n tape cells for the V-player using the above strategy.

PROOF. V-player models SCG as a game of incomplete information as illustrated above. The

first and second check obviously require less than n bits if it counts using an n-bit binary counter.
The third check involves three steps.

1. Store the selected bit and its location as n-bit index.

2. Sequentially decrement the index as we transverse the next group until the index becomes
zero to indicate that we have reached the corresponding bit.

3. Verify the correctness of the chosen bit with respect to its corresponding bit and carry.

972 G. PETERSON et al.

Since all three verifications can be performed using n tape cells, the theorem follows. I

It is critical that Player 1 does not have information of Player O’s verification process, other-

wise Player 1 could cheat. SCG as described is a blindfold game, but if Player 0 is allowed to

communicate with Player 1 then it generalizes to counting (i.e., the V-player can ask the 3-player

to count both up and down). We can apply the SCG game technique after some modifications

to our lower bound proofs.

LEMMA 3.1.2. (See [3,4].) F or constructible S(n) > log(n)

BAI-SPACE(S(n)) 2 DSPACE(EXP(S(n))).

PROOF. We modify the counting technique in SCG game above so that the l-player sends (in-

stead of a sequence of numbers) a sequence of configurations, (Co, Cl, . . . , C,) , of a given N-TM

which uses at most 2S(n) tape cells. The BAl-TM will accept the input if and only if there is an

accepting sequence of configurations for the N-TM on that input (i.e., the input is also accepted

by the N-TM).

The V strategy is similar except

1. it checks that the first configuration (Co) against the input;

2. it ascertains that the last configuration (Cm) is accepting;

3. it compares corresponding tape cells, and confirms that they are the same barring head

motion, state change, tape cell changes, etc., in correspondence with transition rules.

The universal player chooses which condition to check privately from the existential player.

Otherwise, the existential player could cheat.

To verify if (1) is violated, the universal player may utilize the logn cells of a private tape

for a pointer to symbols of input string w. Thus, the universal player can check the first (Co)

against the input. Ascertaining if (2) is violated is trivial. To verify (3), the universal player

compares the corresponding tape cells of two configurations; tracking the location index would

dominate the space cost as shown by Reif [4]. S ince the length of any any configuration Ci is at

most EXP(S(n)), a log(EXP(S(n)))-b t i counter track the index. An S(n)-bit counter is sufficient

because the constants are absorbed in the EXP(S(n)) notation.

Consequently, the V-player only needs to write down the length of a configuration and a few

other bits of information. Consequently, it needs only nondeterministic S(n) space. The conver-

sion to the D-TM affects only the constant in the exponent because

iVSPACE(EXP(S(n))) = DSPACE(EXP(S(n))2) = DSPACE(EXP(S(n))).

The lemma follows.

LEMMA 3.1.2. (See [3,4].) F or constructible S(n) 2 log(n)

PA1-SPACE(S(n)) > DTIME(EXP2(S(n))).

I

PROOF. Recall the proof for ASPACE(S(n)) > DTIME(EXP(S(n))) of Chandra et al. [2] relies

on the fact that when a D-TM with space bound EXP(S(n)) is simulated by an A-TM, the
space requirements axe dominated by keeping track of two counters, of S(n) bits each. These
counters keep up with the configurations number and the tape cell index. Also, observe that

if the universal player is allowed to communicate with Player 1 then it generalizes to counting,

and the V-player can ask the g-player to count both up and down. We can apply the SCG game

technique after some modifications to our lower bound proofs.

We replace these counters by private game counters, and simulate a DTIME(EXP2(S(n)))

D-TM with an S(n) space bounded PAI-TM. The Y-player is counting and making existential

moves of the ASPACE(S(n)) > DTICME(EXP(S(n))) proof. I

The following theorem provides the matching upper bounds, and is obtained as a special case
(substituting k = 1) in Corollaries 5.2.1 and 5.2.3 of [5].

Multiplayer Noncooperative Games 973

THEOREM 3.1.1. (See [1,3-S].) F or constructible S(n) > log(n)

J3A1-SPACE(S(n)) 5 DSPACE(EXP(S(n))),

PAI-SPACE(S(n)) C DTIME(EXP2(S(n))).

The proof of the above theorem is based upon a modified game tree argument.

COROLLARY 3.1.1. For constructible S(n) 2 log(n)

BA1-SPACE(S(n)) = DSPACE(EXP(S(n))),

PA1-SPACE(S(n)) = DTIME(EXP~(O(S(n)))) = ASPACE(EXP(S(n))).

PROOF. Follows from the above Lemmas 3.1.2 and 3.1.3 in conjunction with Theorem 3.1.1 and

Chandra et al.% [2] proof of ASPACE(S(n)) = DTIME(EXP(S(n))). I

3.2. Space Bounds for Multiple Person Alternating Machines

We can readily generalize these results to multiplayer games.

THEOREM 3.2.1. For constructible S(n) 2 log(n)

MPA1-SPACE(S(n)) = PA1SPACE(S(n)) = DTI-ME(EXP2(S(n))).

PROOF. MPAl-TM is by definition also a PAi-TM. Consequently,

implies

PAlSPACE(S(n)) = DTIME(EXP2(S(n)))

AlPAl-SPACE(S(n))

For more than one player of team Tl, the

restricted by space bounds.

= DTIME(EXP2(S(n))). I

MPAk-TM is so powerful that their power is not

THEOREM 3.2.2. For constructible S(n) 1 log(n), if input tape is private to the V-player then

MPAz-SPACE(constant) = r.e.

PROOF. Given a D-TM M we shall construct an MPAs-TM M’ which accepts the same set of

strings in constant time. The game will be based on having each of the 3-players find a se-

quence of configurations of the D-TM M which on an input w lead to acceptance. Accordingly,

upon request each 3-player will give the V-player the next character of its sequence of configura-
tion. Each 3-player does this secretly from the other g-player. The configuration will be of the

form #Ce#Ci# ... #C,#, where Cc is the initial configuration of M on the input, and C,,, is

an accepting configuration of M. .

The V-player will choose to verify the sequences in one of the following ways.

1. Check one of the first configurations against the input, and ensure that it is in the correct

form. This implies that the input tape is private to the V-player.

2. Check the last configuration for accepting state.

3. Check that the 3-players are giving the same sequence by alternating turns between them.

4. Run one of the Y-players ahead of the next #, and check its Ci against the other

S-player’s C-1 for proper head motion, state change, and tape cell changes, in corre-

spondence with the transition rules, etc.

Observe that the V-player need only track the incoming information. Therefore, it does not

have to store anything on the tape, and can remember all information in its private state. Thus,
we have shown MPAZ-SPACE(constant) > r.e.

It is easy to see that the MPAk-TMs accept the r.e. languages since they include ordinary

the D-TMs. Similarly, acceptance by the MPAk-TM is r.e. since one can enumerate all possible

accepting subtrees and check recursively whether each tree is a true accepting subtree. The proof
is now complete. I

974 G. PETERSON et al

COROLLARY 3.2.1. For constructible S(n) > log(n), if input tape is public to the aI players

then

MPA&5’PACE(log(n)) = r.e.

PROOF. Follows from the definitions for MPAk-SPACE(log(n)) with k = 2. a

COROLLARY 3.2.2. Membership for MPAQ-SPACE(constant) is still undecidable.

PROOF. Membership for MPA2SPACE(constant) is undecidable since it is a case of the halting

problem on blank tape. I

3.3. The Hierarchical Private and Blind Alternating Turing Machines

In order to remove the over-generality of the MPAk-TM and the MBAk-TM, we consider

variants of these machines. More specifically, we introduce the PA&-TM and the BAk-TM to

avoid the nonrecursiveness of space bounded computation. In terms of space characterization,
they are evidently natural extensions of the A-TMs, the PA-TMs, and the BA-TMs.

The lower bound techniques of Section 3.1 can be extended to count very high values with n

bits by using ir players. We introduce new notation to facilitate the description of the counting

techniques used in our lower bounds.

DEFINITION 3.3.1. TWOEXP,(f(n)). F or a function f(n), TWOEXP,(f(n)) is the tower ofm

repeated exponential of f(n) to the base 2. Recursively TWOEXP,(f(n)) is defined as follows:

TWOEXPi(f(n)) = TWOEXP(f(n)) = 2f(n),

TWOEXP,(f(n)) = 2TWOEXP~~,-l(f(n)), for‘m > 1.

Using techniques of Section 3.1, k players and n bits can be used to count up to TWOEXPk+i

(n). The earlier method used n bits for one player counting alone on TWOEXPi(n) bits (up

to TWOEXPz(n) = 22”). These bits were used to store lengths of numbers, positions within

numbers, etc. Since we only need to start from 0 and count up to TWOEXPk+i (n), we can

recursively apply the technique. The ith j-player (&-player) will be responsible for supplying

the correct count on TWOEXPi(n) bits, i.e., up to TWOEXPi+i(n), using the count sequence

on TWOEXP+r(n) bits supplied by the $-i-player. Hence, the kth &player (&-player) will
supply the count on TWOEXPk(n) bits, i.e., count up to TWOEXPk+i(n). This will be checked

by the V-player using the count sequence on TWOEXPk_i(n) bits which is supplied by the

&-i-player. The V-player can verify the correctness of &_i-player’s count against the sequence

supplied by 3k._z-player’s counting sequence. Inductively, any $player’s counting sequence can

be checked against 3i-i-player’s counting sequence.

Observe that, since this is a hierarchical machine, the 3i-player knows that its counting sequence

is being used to check 3i+1-player but is not informed that it is being checked by &-i-player. If

the order of hierarchy was not maintained a player might know where it is being checked, and

use that information to cheat.

THEOREM 3.3.1. For constructible S(n) > log(n)

P&-SPACE(S(n)) > DTIME(EXS+i(S(n))).

PROOF. Note that these are blindfold games because the players are blindfolded in the sense that

they only receive turn information. If the 3-players were not blind then the V-player can instruct

them to count up and down. Consequently, the Chandra et al. [2] technique can be used using
the new very large counters to simulate a DTIME(TWOEXPk+i(S(n)) bounded D-TM with a

S(n)-space bounded P&-TM. The theorem follows. I

Multiplayer Noncooperative Games

THEOREM 3.3.2. For constructible S(n) 1 log(n)

BA&PACE(S(n)) 2 DSPACE(EXPk(S(n))).

PROOF. For the blindfold case, the &-player sends out the configuration of sequences of size

DSPACE(TWOEXPk(S(n))) with 3k_i through 31 players sending out their respective counts.

The V-player uses the counts to check other counts, and uses the largest track information for

checking the configurations, etc. The theorem follows. I

The matching upper bounds from Theorems 5.2.2 and 5.2.3, along with Corollaries 5.2.1

and 5.2.3 of [1,5] are as follows.

THEOREM 3.3.3. For constructible S(n) 2 log(n)

PAk-SPACE(S(n)) G DTIME(EXP~+I(S(~))),

BAk-SPACE(S(n)) 2 DSPACE(EXPk(S(n))).

Now, we can combine the upper and lower bounds to deduce the main result of this paper.

THEOREM 3.3.4. For constructible S(n) 2 log(n)

PAk-SPACE(S(n)) = DTIME(EXPk+l(S(n))),

BAk-SPACE(S(n)) = DSPACE(EXPI,(S(n))).

PROOF. Follows from the upper and lower bounds of above Theorems 3.3.1-3.3.3. I

In light of the above result, we can see that the P&TM and the BAk-TM are quite natural

generalizations to the PA-TM and the BA-TM. The well-ordering of the generated hierarchies

indicates that space and time must complement each other extremely well.

As a consequence of Corollary 2.4.1 in conjunction with the results of this section, we have the

following.

1. A space bounded PAk-TM A4 whose computation game G M is universal for all reasonable

multiplayer games of incomplete information.

2. A space bounded BAk-TM M’ whose computation game GM’ is universal for all reasonable

multiplayer blindfold games.

By the hierarchy theorem for deterministic time complexity of Hartmanis and Stearns [16], we

have the following corollary.

COROLLARY 3.3.1. For M defined above, if any D-TM decides the outcome of GM in time T(n),

then T(n) > ExPk+i(n/logn).

By space hierarchy results.

COROLLARY 3.3.2. For M’ defined above, if any D-TM decides the outcome of GA”’ in

space S(n), then S(n) > Ex&(n/logn).

4. TEAM-PEEK GAMES

4.1. Extensions of PEEK games

Chandra et al. [2] and Reif [3,4] have used PEEK games as concrete examples to illustrate and

support the computation game theory results. We review these definitions, and in their tradition,
introduce three enhanced versions of PEEK with more than two players (that are partitioned into

two teams).
The game PEEK consists of a box containing a number of vertical plates each of which can

be positioned either dn or out. The original definition of PEEK described the plates to be

976 G. PETERSON et al.

horizontal [2]. However, in order to extend it to multiplayer (team) PEEK, we need to improvise

the original definition for aesthetic reasons that will be evident later. A subset of the plates is

controlled by Player 0, and the remaining plates are controlled by Player 1. On its turn, each

player can adjust the state of any (not necessarily nonempty) subset of its plates by pushing in

or pulling out the plates not in the desired positions.

Every plate has uniform sized holes cut in it. During the course of the game, the players know

where these holes are. The winner is the first player to adjust the plates so that the holes are

placed in a horizontal alignment to allow it to peek from one end to the other. PEEK is a game

of perfect information in the sense that the players know the pattern of holes as well as the

positioning of all the plates. Figure 4 exhibits a typical plate and Figure 5a illustrates the set up

of the game.

0.0000~

00000.0

0.0000.

0ee.0.0

Figure 4. A side view of an isolated plate of PEEK.

Reif [3,4] described PRIVATEPEEK, an extension of PEEK which introduces private portions

of positions by using barriers. As shown in Figure 5b, partial barriers are used to conceal the

location of some of the opponent’s plates. Another barrier is placed on the “peeping end” of

the box restricting the players to be able to peep only on their side of the box. Reif [3,4] also

defined BLIND-PEEK by requiring the barriers on Player l’s side to obscure the locations of all

opponent’s plates (as shown in Figure 5~).

n
I I I

< 4

Playeri t-----_
<

Player 1 2 d

<
f

> Z Player 0
r I

(a) The original PEEK.

Play ccl*

n *

>

-= P1ayer O
(b) The PRIVATEPEEK game.

II, Player O
(c) The BLIND-PEEK game.

Figure 5. (a) A position of PEEK; (b) PRIVATEPEEK set-up; (c) BLIND-PEEK
game.

In this paper, we describe three versions of PEEK involving at least three players (that are

partitioned into two teams). The simplest one of these is TEAM-PEEK, which extends the

original PEEK to accommodate several players. The players are divided into two teams that
stand on each side of the box. The players move in turn as they do in original PEEK. A subset

Multiplayer Noncooperative Games 977

i ; Playt3; :F: 3 Player 2 II
. . . .

Player 1
<
< 0

>

nz p1ayer O
Figure 6. A position of TEAM-PEEK.

c
II

>

n, P1ayer O
Figure 7. A position of TEAM-PRIVATEPEEK.

n

Figure 8. A position of TEAM-BLIND-PEEK.

of plates is controlled by each player, such that the elements of the set of all these subsets are

mutually exclusive and collectively exhaustive with respect to the plates in the box. On its turn,

each player can adjust the state of any (not necessarily nonempty) subset of its plates by pushing
in or pulling out the plates that are not in the desired positions already. The winner is the first

player to adjust the plates so that the uniform sized holes are placed in a horizontal alignment

to allow it to peek from one side to the other.

TEAM-PEEK is a multiplayer game of perfect information in the sense that players know the

pattern of holes as well as the positioning of all the plates. Figure 6 describes the set up of the

game TEAM-PEEK.
TEAM-PRIVATE-PEEK is devised by placing one-way mirrors so that certain members of

the team cannot see the positions of other plates. A barrier is also placed on the “peeping” side

of the box to restrict the players to peeping only on their side of the box. A game of TEAM-
PFUVATEPEEK is considered hierarchical if the players of the Team Tr can ordered in way such

that each player has at most as much information as the player appearing just before him in the
ordering. A hierarchical TEAM-PFUVATEPEEK is sketched in Figure 7.

978 G. PETERSON et al.

TEAM-BLIND-PEEK is an extension of TEAM-PRIVATE-PEEK which does not allow the
players of Team TI to see any of the plates controlled by Team To. TEAM-BLIND-PEEK is
sketched in Figure 8.

4.2. Games on Propositional Formulae

In this section, we define a sequence of games on propositional formulae which can be used to
encode states of a computational machine. These games are used to prove completeness results
for various flavors of PEEK.

Formula refers to well-formed parenthesized Boolean expression involving Boolean variable
symbols, binary connectives, and a unary connective. The Boolean variable symbols are denoted
by lower case alphabets like t, u, 21, ZU, 2, y, Z. The binary connectives consist of conjunction (A),
disjunction (V), and ezclwive-or (63). The unary connective is negation (7). A literal is a
Boolean variable or its negation. A formula F is categorized to be in conjunctive normal form
(CNF) if it is a conjunction of sub-formulae Fl A . . . A Fp such that each Fi is a disjunction of
literals. F is further classified to be in I+CNF if each Fi is a disjunction of at most Ic literals.
Disjunctive normal form (DNF) and Ic-DNF are defined analogously.

V(F) is the set of variable symbols in F, and size(F) is the number of occurrences of variable
symbols in F. F(X) denotes the formula on variables in set X, i.e., V(F) 2 X. Similarly,
F(X1,. . . , Xn) denotes a formula on variables in set X1 U . . . X,, i.e., V(F) C_ X1 U . . . X,, where
every XI, X2, . . . ,X, are disjoint sets of variable symbols. For the set S, an S-assignment is a
truth assignment to the variables in the set S. Consequently, a formula F maps V(F)-assignment
to true or false (i.e., 1 and 0, respectively).

We will extend this notation to allow the Xi to denote sets of variables allow universal and
existential quantification over these sets of variables, and also allow U to be the union of all the
elements of a list of sets.

We will define a few games GI , Gz, and G 2~. We shall show that Gz is universal for games of
incomplete information, and G 2~ is universal for blindfold games. Subsequently, we shall exhibit
a mapping between these games and their corresponding PEEK games.

DEFINITION 4.2.1. GAME GI. We define G1 to be a lc + l-player game defined by a triple

where

l 7 E o,... , k is a turn indicator which serves to identify the player who is going to take
the initiative to move next;

l positions are encoded in the propositional CNF formula F(Xo, XI, . . . , Xk, VO, VI, . . . , Vk,
a,~) whereXo,Xl,..., XkandVo,Vl,..., Vk are sets of Boolean variables with each Xi c
Vi, and a and s axe individual Boolean variables;

0 (I! is a truth assignment on S = X0 U X1 U. . . U xk, mapping elements of S to 0 or 1 (false
or true, respectively);

l for any Player i E (0,. . . , k}, i controls the truth assignment to ail the variables in the
set Xi;

l for any Player i E (0,. . . , k}, i knows the truth assignment to all the variables in the
set Vi; to maintain consistency, Xi c Vi; furthermore, to maintain hierarchical structure
of the game, we require Vi 2 Vi+1 for all valid i.

When r = 0, Player 0 moves by

(i) setting a to 0;
(ii) setting s to its complement (that is a);

(iii) choosing a truth assignment to the variables of X0.

Multiplayer Noncooperative Games 979

All other Players i (i # 0) move by setting a to 1, and choosing a new truth assignment for

variables in set Xi.

The formula F is not modified by any of these moves, except for the changes in the truth

assignment of its variables. The loser is the first player whose move yields truth assignment for

which the formula F is false.

We shall prove that G1 is as a stepping stone in our main goal to prove that TEAM-PEEK

games universal for reasonable games of their respective classes.

LEMMA 4.2.1. G1 is universal for reasonable hierarchical games of incomplete information.

PROOF. Let M be a PAk-TM with space bound n. Suppose w E Cn is an input string to M. We

encode each position of GM as a bit vector of length n’ = CMn, where cM depends only on the

size of M’s tape alphabet. Our encoding arranges bits 1,2,. . . , hi to be those in v&(p) (i.e., the

portions of position p which are visible to Player i). hi 2 hi+1 to maintain hierarchical structure.

In particular, ho = n’, and the bits hl + 1,. . . , 12' are private to Player 0 (V-player).

Using the techniques of Stockmeyer 1171, we may construct a linear size propositional formulae

NEXT(Z1, 22, T), where &,Zz, T are sequences of n’ variables each. Furthermore, if 21 encodes

(by some fixed encoding which is computable in O(logn) space by a D-TM) a position pl, then

there exists an assignment to variables of T, such that NEXT(Z1,&, T) is true if and only if Z2

encodes a position p2 derived from pl by a move of M.

We introduce a sequence of variables Yc, Ypo, Yp’,X, (where X is the concatenation of

x1,x2,. . . ,X,) such that

l Yc is of length mo = hl +n’ (and denotes portions of X which are common to all players);

l Ypo and Ys are of length 1 = n’-hl (and denotes portions which are private to Player 0);

0, Xi is of length rni = hi + n’. Xi for i > 0 denotes portions visible to Player i; X is the

COrEatenatiOn Of X1, X2,. . . , xk.

Let X[a.. . b] denote X(a), . . . , X(b) for a < b and a, b within range of X’s indices. YC[a.. . b],

YPo[a...b], and YP1[a . . . b] are defined analogously.

Players of the game take turns every round. Let the permutation which defines the order of

moves in a around be II = (7ro,7rl, 7r2,. . . , rk), where players follows one another in the order

their indices occur in H. We insist that ~0 = 0, so that Player O’s turn makes lI unique for every

order of turns of players. However, regardless of what order the permutation is, we can emulate

the moves of all players of Team Tl by a single move by a “super-player”.

For s, s E (0, l}, let NEXT,,,(X, Y) be the formula derived from NEXT(Zl,Zz, T) by sub-
stituting for Z~,ZQ,T depending on whose turn it is. The substitution is shown in Tables 3

and 4.

Without loss of generality, we can assume that the teams are in strictly alternating order,

and the first team to move is Team Tl. For each a E (0, l}, NEXT,,, defines a legal moves by

Team T, on switch variable s E (0, 1). Now, we consider the formula

F(X,YC,YPo,YP1,a,s) = (a As + NEXTIJ(X,Y))

A (a A 7s + NEXTl,o(X, Y))

A (-a A s -+ NEXTo,l(X, Y))

A (Ta A 7.s + NEXTo,o(X, Y)) .

F can easily transformed into 5-CNF of size O(n), and is constructible in O(log(n)) space by
a D-TM.

Let pO(w) be the initial configuration of M on input w. Initially set s = 1 and a = 1. Also

let variables Yc[l.. . lc],Ypl[l . . . l] be assigned to encode PO(W), and let all other variables be

assigned arbitrarily. Let F and this initial truth assignment be the initial position of game GI.

“Team Tl wins G1” iff “Team Tl wins computation game GM” iff “M accepts input w”. Thus,

980 G. PETERSON et al.

Table 3. Team TO’S move.

Table 4. Tl’ s move.

we have a log-space reduction from acceptance problem for M to the outcome problem for G1.

By Corollary 2.4.1, G M is universal for universal games. We conclude that G1 is universal for

reasonable games. I

Now, we define another formula game G2, which is equivalent to TEAM-PRIVATEPEEK

game. G2 uses Gl as a sub game.

DEFINITION 4.2.2. FORMULA GAME G2. Let G2 be a game in which each position contains the

formulae WIi$ (VI, U2 , . . . , Uk, Vc, VP) and WIN0 (VI, U2, . . . , uk, Vc, VP) in disjunctive normal
form and the truth assignments to the sequence of variables of VI, U,, . . . , Uk, Vc, VP. Let U

be the concatenation of all Vi (U = VI . U2. . ’ Ukj. We can emulate the moves of the individual

players of the existentid Team Tl by a single move of a “super-player” as in game G1.

The formulae WI& and WINI and the truth assignments to U U Vc are views by the universal
player and the “super-player” emulating the existential team. However, VP can only be viewed

by the universal Player 0. Player 0 moves by changing at most one variable in Vc UVp. For i > 0,

Player i moves by changing at most one variable in Ui. The existential Team TI moves can be

emulated by a ‘Super-player” changing at most one variable in every Vi.

Team T, wins if WIN, is true after a move by Team T,.

The following theorem is crucial to the main result of this section.

THEOREM 4.2.1. Game G2 is universal for reasonable games of incomplete information.

PROOF. We introduce a sequence of variables UA, U , B VA, VB of length m’ = 4m + 21+ 4. Let
the concatenation of UA and UB be U, and let the concatenation of VA and VB be V. Recall,

that U is also U1’ Us . . . uk. The variables of the sequences X, Y defined in previous construction

will, in legal plays of our game G2 be contained in U, V as in Table 5. The private portion VP

of V has a value of Ypo, Ypl, whereas Vc contains the values of the other elements of V.

For each s E (0, 1) and a E (0, l}, let NEXTh,,(U, V) be the formula derived from NEXT,,,

(X, Y) by substituting variables as in Table 5,,,.

We define legal play such that if both teams play legally then Team TI wins iff M accepts w.

Let legal cycle be a play which satisfies the restriction L for i = 1, . . . , m’:

universal player changes the truth assignment of either VA(i) or V’(i),

existential team changes the truth assignment of either VA(i) or UB(i).

We also require restriction L’ to hold within a cycle.

For distinct s, B E (0, 1) and each i, tl,,- (mod m’) < i 5 to+, universal Team TO assigns

variables so that NEXTo+ = true when i = tO,s, and for tl,, (mod m’) < i 5 t~,~,

Team Tl assigns variables so that NEXTI,, = true when i = tl,,.

Thus, M accepts input w iff Team Tl has a winning strategy within legal plays satisfying

restrictions L and L’. The following construction forces legal plays for both teams.

cm--r

X

Multiplayer Noncooperative Games

Table 5. The structure of game G2.

cm-+ cl--, +-m+ cm--, cl+

YPO YC YP1

981

LO

170

19

04
YPO YC YP1

We introduce operation 63’ and A on any sequence Y, 2 of Boolean variables of length m’. @’

is defined as follows:

Y CB’ 2 = (Y(1) Cr3 Z(l), . . . , Y(n) CI3 Z(n)),

where CEI is the conventional Boolean exclusive or operative.

A is defined as follows:

AZ = (-(Z(n) @ Z(l)), Z(1) @ Z(2), . . . , Z(n - 1) 69 Z(n)).

We also introduce a threshold-two function to prevent any player from modifying two variables

in the same turn. For a sequence B of Boolean variables, THRESHTWO is defined as follows:

THRESHTWO = v (B(i) A B(j)).
l<i<jlm

Observe that THRESHTWO becomes true if two or more variables in the sequence B are

true.

To detect illegal play we need to ensure that players move in turn. We introduce U’ and V’ as
follows:

U’=A(UA@UB),

V’=A(VA@VB).

Now, we have developed all the notation required to define ILJ& and II&.

II&, = THRESHTWO (V’) v v (V’(i), A U’(i + 2) A -V’(i)) ,

l<ilTA’

ILL1 = // THRESHTWO V v (V’(i) A V’(i -t 1) A lV’(i - 1)).

iET1 l<iSm’

982 G. PETERSON et al.

ILL0 is true if the universal player changes more than one variable on its turn, or moves out
of turn. ILLi is true if the any player in the existential team changes more than one variable on

its turn, or any player in the existential team moves out of turn. Consequently, if either ILL0

or ILLi is true then the corresponding team has violated the aforementioned restriction L.
Also for Team T,, we define ILL; to be true if restriction L’ is violated:

ILL:, = v (v’(t,,,) A V’(&,) A ~NEX&(U, V))

sE{O,lI

Now we can define the winning formulae in terms of ILL, and ILL:. Team TO wins if any

player in Team Tl violates condition L or condition L’. Hence, WINa and WINi are defined as

follows:

WIN0 = ILLi v ILL:,

WIN1 = ILL0 v ILL;.

Given an input w E Cn, let pa be the initial position of the formula game Gi defined previously.

Let p; be the initial position of formula game G2 contain formulae WIN1 and WIN0 as defined

above, with initial truth assignments of pb as in Table 51,i and U’ = V’ = (1, 0, 0, . . . , 0) initially.

It can be shown that Team TI wins game GO from initial position pb if and only if M accepts w.

Thus, by Corollary 2.4.4, G2 is also a formula game universal for all reasonable games. I

DEFINITION 4.2.3. FORMULA GAME GOB. Let GPB be the blindfold game derived from GS by

requiring that universal player does not modify any variables visible to Team Tl.

THEOREM 4.2.2. GOB is universal for all reasonable blindfold games.

PROOF. We just need to observe if M would be restricted to a BAk-TM, and mimic the proof

of Theorem 4.2.1. I

4.3. Completeness Proofs for TEAM-PEEK Games

We first recall two known results.

THEOREM 4.3.1. (See [IS].) PEEK is DTIME(EXP(n))-complete.

THEOREM 4.3.2. (See [3,4].) PRIVATEPEEK is DTIME(EXP2 (n))-complete.

Peterson and Reif [l] use a TEAM-PRIVATEPEEK game which is not hierarchical to prove

the following undecidability result.

THEOREM 4.3.3. (See [Il.) I n g eneral, a TEAM-PIUVATEPEEK can be undecidable with two

or more players on Team TI .

We get a hierarchical TEAM-PRIVATE-PEEK if Team Tl side is restructured so that Player 1

looks over the shoulder of all other players, Player 2 looks over the shoulder of Player 3 through k
(but not l), etc. Hierarchical TEAM-PRIVATE-PEEK is not undecidable, and we can derive its

complexity using the formula game G2 of Section 4.2.

THEOREM 4.3.4. Hierarchical TEAM-PRIVATEPEEK is a universal reasonable multiplayer

game of incomplete information.

PROOF. TEAM-PRIVATE-PEEK is practically identical to the game G2, which has been shown

to be universal for hierarchical reasonable games of incomplete information (by Theorem 4.2.1).

The variables of G2 can be put in l-l correspondence with the plates in TEAM-PRIVATE-PEEK

game box. The variables private to the universal team correspond to the plates not visible by the
existential team. The clauses of WIN1 and WIN0 can be put in l-l correspondence with locations

of holes which perforate the plates so that the players can peek from one side to another of the
box iff a clause of WIN, is satisfied. Since G2 is universal for reasonable games in its class

(cf. Theorem 4.2.1), hierarchical TEAM-PRIVATE-PEEK is a universal reasonable multiplayer

game of incomplete information. I

Multiplayer Noncooperative Games 983

THEOREM 4.3.5. Hierarchical TEAM-BLIND-PEEK is a universal reasonable multiplayer blind-

foJd game.

PROOF. TEAM-BLIND-PEEK is practically identical to the game Gzn. In fact, we can establish

a l-l correspondence between GOB and TEAM-BLIND-PEEK by a mapping analogous to the

one used for proof of Theorem 4.3.4. Since Gs is universal for reasonable games in its class (cf.

Theorem 4.2.2), hierarchical TEAM-BLIND-PEEK is a universal reasonable multiplayer blindfold

game. I

Our log-space reduction from GM to G2 has an O(n logn) length bound. Thus, by Corol-

lary 3.3.1 and Theorem 4.2.1, we can conclude the following.

THEOREM 4.3.6. There is a D-TM which decides the outcome of G2 or TEAM-PRIVATE-PEEK

in time T(n) then . ,

Furthermore, by Corollary 3.3.2 and Theorem 4.2.2, we can conclude the following.

THEOREM 4.3.7. There is a D-TM which decides the outcome of G2B or TEAM-BLIND-PEEK

in space S(n) then

S(n) > EXPk
U-l

?-_ .
log n

The following corollaries follows from above theorems.

COROLLARY 4.3.1. Hierarchical TEAM-PRJVATEPEEK is DTIME(EXPk+i (O(n)))-complete.

COROLLARY 4.3.2. HierarchicaJ TEAM-BLIND-PEEK is DSPACE(EXPk(O(n)))-complete.

As a general rule, we can generate games which for unbounded number of players are nonele-

mentary to decide. Hence, we have natural problems with both elementary and nonelementary

complexity (in addition to undecidability) .

5. TIME BOUNDED MACHINES

This section extends the previous results of Borodin [19,20] and Reif [3,4] to multiplayer games

of incomplete information. We shall use dependency quantifier Boolean formula (DQBF) to

illustrate the time bounded MPAk-TMs. We use the results to classify the time complexity of

the new machines introduced in this paper.

5.1. Previous Results

DEFINITION 5.1.1. C,(,). T(n) CTtn) is defined to be the class of languages accepted with time A(n)
bound T(n) and alternation bound A(n), and existential initial state.

The following result is due to Borodin (19,201.

THEOREM 5.1.1. For each T(n) > n

DSPACE(T(n)) c Ez{E’, c NTIME(T(n)A(n)).

The proofs of the following two theorems are due to Reif [3,4].

THEOREM 5.1.2. (See [3,4].) For each T(n) >_ n:

BATJME(T(n)) = ET(n).

984 G. PETERSON et al.

THEOREM 5.1.3. (See [3,4].) For eaclr T(n) 2 n

PATIME(T(n)) = ATIME(T(n)).

Chandra et al. [18,2] show that for T(n) 2 n

NSPACE(T(n)) C_ ATIME (T(n)2) ,

ATIME(T(n)) C_ DSPACE(T(n)).

Using these results in conjunction with Theorem 5.1.3, we can conclude the following.

COROLLARY 5.1.1. For T(n) 1 n

NSPACE(T(n)) C PA1-TIME (T(n)2)

and

PAr-TIME(T(n)) G DSPACE(T(n)).

COROLLARY 5.1.2. For T(n) 2 n

NSPACE(T(n)) G BA2-TIME (T@z)~)

and
BA2-TIME(T(n)) G DSPACE(T(n)).

The reader is referred to [21,22] for the case of lower bounds for the PA1-TMs and the A-TMs

with less than n2 time.

5.2. Dependency Quantifier Boolean Formula

Time bounded complexity for all our machines with three or more players is identical. We

also introduce an analog to QBF [18,23] extended to multiplayer games. QBF was originally

defined by Henkin, and later discussed by Barwise. Later, QBF was used by Chandra, Kozen

and Stockmeyer [18,2] to demonstrate the complexity of the time bounded A-TMs. We shall use

dependency quantifier Boolean formula (DQBF) to illustrate the time bounded MPAk-TMs.

Consider the following QBF formula:

VXr3YrVXz3Y2, F(X1,Xz,Y1,Yz),

where X1, X2, Y1, Y2 denote the tuples of Boolean variables, and F(X1, X2, YI, Y2) denotes some

function over the Boolean variables X1, X2, Y1, Yz. We assume F and the sets of variables has

size O(n). Note that selecting Y1 depends on the value of X 1. Selecting Y2 depends on both X1

and X2. We can denote this in a notation akin to Skolemization by Yr(X1) and Yz(Xr, X2). This

allows us to modify the order of the variables

~Xl~‘23~(X1)3Y2(Xl,X2), F(Xl,X2,K,Yz).

We call a formula in the above form a dependency quantifier Boolean formula (DQBF). DQBF

consist of universal variables and existential variables with dependencies, followed by a Boolean

function. Whereas all QBF formulae have an associated succinct DQBF formula, the reverse is

not true. For example, the following DQBF is not likely to have a succinct QBF:

~Xl~~23~(X1)3EJ(X2), F(X1,X2,%rY2).

All DQBF can be transformed into a functional form. For example, the above formula can be

written as follows:

3G13GzVX1VXz, P(X1, X2, G1(Xr), Gz(X2).

However, the size of Gr and Gz can be exponential in the size of their inputs. Hence, this
cannot be classified as a succinct representation.

QBF has been shown to be PSPACEcomplete by Stockmeyer and Meyer [23]. In this paper, we
show DQBF to be NEXPTIMEcomplete. Consequently, DQBF is more succinct representation

than QBF if we assume that there is a language in NEXPTIME which is not in PSPACE. We

now present our main result for DQBF.

Multiplayer Noncooperative Games 985

THEOREM 5.2.1. DQBF is NEXPTIMEcomplete.

PROOF. The proof is based on Lemmas 5.2.1 and 5.2.2 presented below. Lemma 5.2.1 shows that

DQBF validity & NEXPTIME, and Lemma 5.2.2 shows that DQBF validity is NEXPTIMEhard.

Note that the reduction is logarithmic space, since we can construct in logarithmic space a linear

size DQBF formula that is valid iff the input is accepted by the nondeterministic TM. The

theorem follows. I

LEMMA 5.2.1. DQBF validity E NEXPTIME.

PROOF. Our proof is based on the aforementioned functional interpretation of DQBF formula.

We follow a two-phase procedure.

l In the first phase, the functional dependencies (i.e., truth tables) for all existential (3)

variables are guessed. This can be done in no more than nondeterministic exponential

time.
l In the second phase, the function is evaluated for all possible assignments to the univer-

sal (V) variables, looking up in the truth tables the values of existential (3) variables to

use in the evaluation. Each evaluation takes at most exponential time, and there are at

most an exponential number of these evaluations. Consequently, the time consumed by

the second phase is within the nondeterministic exponential bound.

Since each phase take at most nondeterministic exponential time, the problem is within non-

deterministic exponential time. I

LEMMA 5.2.2. DQBF validity is NEXPTIMEhard.

PROOF. We shall prove DQBF is NEXPTIMEhard by showing that: given a single tape, nonde-

terministic exponential time bounded N-TM and an input string, we can construct (in log-space)

an O(n) length DQBF formula which is valid if and only if the input is accepted by the N-TM.

The DQBF formula will have the general form

This formula is in direct correspondence with a three player game where the universal player

requests each of the existential players for a complete description of the activities of the N-TM

at two times, Tl and T2, on an accepting sequence of moves on the input of their choosing.

In particular, Ti and TZ are each sets of O(n) Boolean variables, that can therefore represent

exponential time. The Yi are tuples of variables representing the information

OldStatei, NewStatei, OldSymi, NewSymi, Headi, Ladi, Motioni,

where

OldStatei denotes previous state of the machine,
NewStatei denotes current state of the machine,

OldSymi denotes previous symbol of the machine,

NewSymi denotes current symbol of the machine,

Headi is the head position, and

Lasti is the last time the head was at that position (Las& is assigned as 0 for the first

visit by default), and

Motioni indicates the direction the head takes at that time (-1 for left, 0 for stationery,
+l for right).

OldStatei, NewStatei, OldSymi, NewSymi, and Motioni need a constant number of variables to

represent. Headi and Las& need O(n) variables to represent. Consequently, the entire information
OldStatei, NewStatei, OldSymi, NewSymi, Headi, La&i, Motioni can be represented in O(n)
space.

986 G. PETERSON et al.

The universal checking of the V-player is represented by the set of conjunctive clauses forming

the function F. We employ the following.

1. Both players choose the same nondeterministic set of moves. Symbolically, if Ti = T2
then Yi = Yz and the state, symbol, motion transition is allowed. That is to say that both

players choose the same nondeterministic set of moves when TI = Tz.

2. The players initiate correctly, i.e., if Tl = 1 then the OldState is the initial state and

Head1 = 1 is the initial position, Lasti = 0, etc.

3. Whenever two players give the same head location, the time given by the first player for

the previous time it was at that position (La&l) cannot be earlier than the time for the

second player at that position (Lutz). Furthermore, if the times are the same then the

symbol written by the second player is the symbol read by the first player.

In other words, if Headi = Head2 and TI > Tz then Last1 < Tz, and if TI = T2 then

OldSymi = NewSymz. ,

4. The first visit to a cell gives the old symbol according to the initial contents of the tape,

i.e., if Last1 = 0 then OldSymi is the Hea&ih input symbol if Head1 < n and blank

otherwise.
5. The motion of machine is legal and the state is preserved, i.e., if Tl + 1 = T2 then

Head2 = Head1 + Motioni and OldState = NewStatei.

6. If Tl = T(n) (the exponential time limit) then NewStater is accepting.

Hence, we are existentially choosing the complete operation of the N-TM without writing it

all down, and it is being tested by universal quantification.

The lemma follows since we have shown that

V’Ti, T23 Yi(Ti)y2(%), F(Ti,T2,Yi,Y2),

is NEXPTIMEhard. I

5.3. Time Bounded Machines

We are now ready to classify the time complexity of the new machines introduced in this

paper. Unlike space bounded computations, time bounded multiple person alternation games

do not form a hierarchy. The MPAk-TM and the PAk-TM when k > 2 as well as the BAk-TM

when k 2 3, are all of same complexity for same time bound. We can prove this by using DQBF

verification. Consequently, space is a much more powerful and critical resource than time for

the aforementioned types of multiple person alternating Turing machines. There is not a clear

division between two person games and three (or more) person games based on time complexity.

LEMMA 5.3.1. For countable T(n) 2 n and k > 2

NTIME(EXP(T(n))) c PAI, - TIME(T(n)).

PROOF. In a game with two existential players and a universal player, we can simulate the

evaluation of the lower bound formula in the DQBF = NEXPTIME proof as follows:

1. The universal player sends a time to the &-player.

2. The &-player replies with Yr tuple as a response.

3. Similarly, the universal player sends a time to the &-player.

4. The &-player replies Y2 tuple as a response.
5. The universal player then checks the responses as in the lower bound proof.

Consequently, in time T(n) we can verify the acceptance of an N-TM with time bound

NTIME(EXP(T(n))). The lemma follows. I

Observe that this game is also hierarchical since the &-player is asked first without it knowing
what 32 player would be asked. Since the PAk-TM is a special case of the MPAp-TM, we can

extend Lemma 5.3.1 to the MPAk-TM.

Multiplayer Noncooperative Games 987

COROLLARY 5.3.1. For countable T(n) 2 n and k 2 2

NTIME(EXP(T(n))) C MPAk-TIME(T(n)).

Similarly, we can construct an analogous result for the BAk-TM.

COROLLARY 5.3.2. For countable T(n) 2 n and Ic 2 3

NTIME(EXP(T(n))) E B&-TIME(T(n)).

PROOF. The lower bound proof for B&-TIME is based on a trick which allows the universal

and existential players to get around to the blindfold rule and communicate with each other. The

trick enables the universal player to send information to the &-player as well as get its response.

Subsequently, the universal player can send information to &-player, and get its response as well.

The 32-player is initially shuttling between two designated states on first 2T(n) moves. The

universal player can advance the $-player to one of those states, advance the 3i-player, which

will see the 32-player’s state and a information bit has been sent. This process is repeated until

all T(n) bits have been sent. The 3i-player now sends the Yi-tuple to the universal player via

shared tape cells.

The universal player again sends T(n) more pieces of information to the 3i-player who relays

it back to the &-player.

The 32-player does not know when 3r-player makes its move, so it does not know what time

was sent to the 3i-player. Similarly, the 3r-player has already sent its response when 32-player’s
time is received. Consequently, the hierarchical structure is preserved.

The proof follows from DQBF simulation. I

Now, we turn our attention to upper bounds proofs. Since the MPAk-TM is the most powerful

of our machines we need only to show that the MI’&-TM is contained in NTIME(EXP(T(n)))

to complete our results.

LEMMA 5.3.2. For countable T(n) 2 rz, and k 2 2

&fPAk-TIME 2 iVTIME(EXP(T(n))).

PROOF. In general, this proof follows the argument used for upper bound proof for the DQBF.

We first modify the machines so that the existential players’ strategies only depend on the

current visible position. This is accomplished by requiring each player record on extra tapes

the complete history of visible information up to that point. This shall consume O(T(n)) time

per player. The resulting machine is Markov machine. Since each position implicitly contains

the history of visible position, Markov machines have the property that the existential players’

strategies only depend on the current visible position (not the history of visible positions).

We simulate the running of this machine by first guessing the correct strategy for each player.

This is like a “truth table” method where we record what each existential player is supposed to
do in each situation. This takes nondeterministic time 2°(T(n)).

Each player’s strategy is written on separate tape in time order. The time is equal to length
of history. The machine is now simulated deterministically. The universal player is represented
by a set of states as in the previous section. A set of configuration for V-player takes no longer

than 2°(T(n)) space to write down. The existential players’ moves are simulated by looking up

the appropriate move for each situation from the tapes.

Each simulated move will be made in time exponential in time (T(n)) for either the univer-

sal player or the existential player. There are T(n) simulated moves, hence, the total time is
nondeterministic exponential in T(n). I

988 G. PETERSON et al.

THEOREM 5.3.1. For countable T(n) 2 n and k > 2

hilPAk-TIME(T(n)) = NTIME(EXP(T(n))),

PAk-TIME(T(n)) = NTIME(EXP(T(n))),

BAk-TIME(T(n)) = NTIME(EXP(T(n))).

PROOF. MPAk-TI&fE(T(n)) = NTIME(EXP(T(n))) f 11 o ows Corollary 5.3.2 and Lemma 5.3.1.

Since the P&-TM and the B&TM are special cases of the MI’&-TM, we can deduce that

PAk-TIME(T(n)) C MPAk-TIME(T(n)), and that BAk-TIME(T(n)) G MPAk-TIME(T(n)).

Consequently, P&-TIME(T(n)) = NTIME(EXP(T(n))) f o 11 ows from Corollary 5.3.1 and Lemma

5.3.1, BAle-TIME(T(n)) = NTIME(EXP(T(n))) f o 11 ows from Corollary 5.3.2 and Lemma 5.3.1.

The proof is now complete. I

5.4. Relationship Between Private and Blind Machines

It follows from definition that any B&-TM is a P&-TM with additional constraints. However,

the converse relationship is more involved.

THEOREM 5.4.1. For any PAk_i-TM, there is an equivalent B&TM.

PROOF. From Theorem 3.3.4,

and

PAk_i-SPACE(S(n)) = DTIiVfE(EXPk(S(n)))

BAk-SPACE(S(n)) = DSPACE(EXPk(S(n))).

We also know from fundamental complexity theory that

DTIME(EXPk(S(n))) > DSPACE(EXPk(S(n))).

Consequently, PAk-i-SPACE(S(n)) 2 BAk-SPACE(S(n).

From Theorem 5.3.2, PAk_i-TIiE(T(n)) = BAk-TIME(T(n)). Combining the time and space

bounds, the theorem follows. I

6. OTHER ALTERNATING MACHINES

6.1. Alternating Finite State Machines

Intuitively, we would have defined the PAk-FA and the BAk-FA to be a constant space P&TM

and BAk-TM, respectively. However, if we do so, these machines would not even be able to accept

regular languages. On the other hand, if the input tape were private to the universal player it

could be used as a size n upward only counter. Since all players know the input initially, the

privacy of input tape to the universal team really amounts to the privacy of input head position

for the universal player. Hence, the technique of Section 3 can be applied all over again, since we

can count to large numbers. Observe that the universal player can count up to n only, so a game

with k existential players can count up to TWCEXPk(n) with size n counter. Consequently, it

is trivial to generalize the results of Section 3.

THEOREM 6.1.1.

and

PAk-SPACE(constant) = DTIME(EXPk (n))

BAk-SPACE(constant) = DTI&fE(EXPk_ i (n)),

This is where the fact that the B&-TMs simulate, and are simulated by, the N-TMs becomes

important. For k = 1, the nondeterminism cannot be eliminated without affecting the order of

growth.

To get the PAk-TM that accept only regular languages, we need to make the input tape a

public resource.

Multiplayer Noncooperative Games 989

DEFINITION 6.1.1. PAk-FA. A PAk-FA is a constant space PAk-TM with input tape one-way

and public to all.

DEFINITION 6.1.2. BAk-FA. A BAk-FA is a constant space B&-TM with input tape one-way

and public to all.

Now we can characterize the languages accepted by these machines.

LEMMA 6.1.1. P&-FA and BAk-FA accept only the regular languages.

PROOF. The extended subset construction of Sections 3.1 and 3.3 when applied to PAk-FA

results in configurations in the modified game tree of constant size. The only nonconstant size of

information is the input head position which does not need to be put into configurations since it

is public to all. Hence, the whole game tree is constant size, and can be explored for acceptance

by an NFA with ExPk(n) states, where n is the number of states of PAk-FA.

The proof for BAk-FA is analogous. I

Chandra and Stockmeyer [18] prove that alternating finite automata (A-FA) is exponentially

more succinct, in some cases, than NFAs. We show that our PAk-I?As are even more succinct.

Consider the variant of language used by Chandra and Stockmeyer [18]

L, = {{o,l}*zu{o, 1)*&U (w E {o,l}n} *

It is easy to show (via counting arguments) that L, is not accepted by any DFA with one-way

input head which has fewer than 22” states, or any NFA with fewer 2n states. It can be accepted

by an O(n) state A-FA (but not by any A-FA with fewer states). Given PAk-FA with O(n) states,

we can again apply our counting methods again to count up to TWOExPk(n). It is a simple

matter to use this to accept L, with a O(log n) state PAI-FA. Intuitively, one can expect that L,

can be accepted by O(log”(n))-state PAk-FA, where logk(n) refers to lc repeated logarithms of n.

However, not all L,s can be represented by O(loglogn) state PAZ-FAs. Some can be accepted

by O(loglog n) state PAZ-FA, for example when n is a power of two. Hence, we have to phrase

our main succinctness theorem accordingly.

THEOREM 6.1.2. LTWOEXP,(nI is accepted by O(n) state P&-l% (and also a BAk-FA), but no

DFA with fewer than TWOExPk+z(n) states, nor any NFA with fewer than TWOEXPk+l(n)

states, nor any A-FA with fewer than TWOEXPk(n) states. The constant factor for PAk-FA

includes a ck term.

As a direct application of PAk-FA and B&-F& we consider the “(not) emptiness of language”

question. Given a TWOEx&(O(n)) p s ace bounded N-TM and an input, it is quite easy to

construct an O(n) state BAk-FA which accepts only the accepting sequence of configurations of

the N-TM on the input, if it exists.

The technique uses the ability to count to large numbers to check length of configurations,

corresponding positions in adjacent configurations, etc. Similarly, for PAk-FA the upper bounds

follow from the extended “subset construction” for the DFA, which results in an NFA with

TWOEXPk(O(n)) states. Hence, only strings up to that length have to be checked, with the

space to write down the string being the dominant factor in the analysis.

THEOREM 6.1.3. The (not) emptiness of language question is NSPACE(TWOEXPk(O(n)))-

complete for PAk-FA as well as for BAk-FA, where n is the number of states. In terms of

representation of the machine, a log n factor is introduced using a standard form which reduces

the top exponent of the lower bound by a factor of logn.

Stockmeyer [24] proves the “not empty complement’: question for extended regular expressions

with nested complements at most k deep is NSPACE(TWOEx&(O(n)))-complete (with poly-

linear reduction). Hence, nesting of players in a hierarchical PAk-FA is indirectly related to
nesting of complements in extended regular expressions.

990 G. PETERSON et al.

6.2. Private Pushdown Store Automata

A large number of results based upon alternating versions of pushdown store automata (A-
PDA) are due to Lsdner, Lipton and Stockmeyer [25,26,27]. Characteristics of several versions
resulted in well-defined time and space complexity classes. We do not expect that studying
multiplayer PDAs will provide any such insights as even very simple forms accept r.e. languages.

DEFINITION 6.2.1. MPAk-PDA. An MPAk-PDA is an Ml’&-TM with only two tapes: a ogle
way, read only tape public to all players, and pushdown store tape. The pushdown store tape
simulates a pushdown store by printing blanks whenever it moves left.

THEOREM 6.2.1. All r.e. languages are accepted by MPAi-PDA.

PROOF. The pushdown store is allowed to be private to the universal player. For a given single
tape D-TM, the existential player of the game for that D-TM has the task of sending to the
universal player, a character at a time, the sequence of configurations leading to acceptance on
the input (if it exists). Every other configuration will be in reverse order: (Cc, CF, Cz, . . . , Cg”).
The universal player checks the first against the input to ascertain if it is the initial configuration.
It chooses to check two adjacent configurations to verify that one legally follows from the other.
The first one it chooses is secretly copied over to the pushdown store as it comes in. It is then
popped in phase with the next configuration as it comes in. The player verifies that corresponding
tape cells match up right, head motion, and symbol written are correct, etc. The fact that
every other configuration is in reverse order enables the MPAi-PDA to use the pushdown store
like a stack to check adjacent configurations. Finally, the universal player checks the last tape
configuration to ensure that it is associated with an accepting state. I

6.3. Markov Alternating Machines

We have referred to Markov alternating Turing machines (MAk-TMs) in several places in
this paper. These machines restrict the existential players’ access to the history of positions
in formulating their strategy. We are interested in obtaining a (nondeterministic) hierarchy of
machines to go along with our deterministic time and nondeterministic space hierarchies. While
we obtain a nondeterministic time class with a space bounded MAi-TMs, they do not generalize
for more players. Our

THEOREM 6.3.1. For

main theorem for a time bounded MAk-TMs is as follows.

countable T(n) > n and any k > 1

MAk-TIME(T(n)) = NTIME(EXP(T(n))).

PROOF. The time bounded MAk-TMs represent the PAk-TMs which have written their histories
down. Since the MAk-TM is a special case of the MPAk-TM, the upper bound then follows from
Theorem 5.3.1., which states that MPAk-TIME(T(n)) = iVTIME(EXP(T(n))).

For the lower bound, we just need to show that the MAi-TM can play DQBF lower bound
game in O(T(n)) time. The universal player initiates by sending the existential player the first
time, which it writes down. The existential player responds with appropriate Yr-tuple, and erases
its tape. Subsequently, the universal player sends the second time. Observe that the existential
player has forgotten the first time, and must respond to as if it were another player (like the
second player of the DQBF game). Consequently, it sends the Yz-tuple. The universal player is
responsible for checking both the Yr and Yz tuples. The theorem follows. I

Now, we derive the corresponding space result. Unlike other alternating machines, we find that
“SPACE = TIME”‘.

THEOREM 6.3.2. For countable S(n) 2 logn and any k >_ 1

MAk-SPACE(T(n)) = NTIME(EXP(S(n))).

Multiplayer Noncooperative Games 991

PROOF. The lower bound simply follows from the previous theorem since a S(n) space bounded

machine has at least S(n) time available to it. (The case for S(n) < n is a simple extension to

the previous proof.)
For the upper bound, we will first show that any MA&-TM with space bound S(n) can be

simulated by an MAi-TM with the same space. We arrange for one player to make moves for all

players. This technique as in the proof of Theorem 6.3.1. When it is time for Z&-player to make

a move, the universal player sends the existential player of the MAi-TM the information visible

to that player along with that player’s number. The existential player must respond as if it were

that player by sending the new visible position back to the universal player. Subsequently, it

clears its tapes and state to prepare for the next request. This results in the existential player

to forget what move it made for that player. It involves no increases in space. To simulate

a MAi-TM with bounded space, we first note that any path of the game tree which is deeper

than exponential in S(n), contains an infinite loop. For the MAk-TMs, unlike the PAk-TMs,

any repetition of configurations (an exponential in space number) causes an infinite loop. If the

existential player has a winning strategy, then it must also have one that corresponds with the

accepting subtree whose depth is at most exponential in S(n). This, we have to explore the game

tree to only a depth of EXP(S(n)).

The tree is explored as in proof of Corollary 5.3.3. First, the complete set of moves to be

made in any situation by the existential player is written down, taking (nondeterministic) time

EXP(S(n)). Th en, the game tree is explored using the extended “subset construction” to rep-

resent the universal player’s private configurations. There will be EXP(S(n)) steps, each taking

time EXP(S(n)). The total time therefore, is NTIME(EXP(S(n))). The proof is now com-

plete. I

7. CONCLUSION

This paper has provided matching lower bounds for algorithms to decide the outcome of mul-

tiplayer game of incomplete information in our paper [1,5]. We define enhanced alternating

Turing machines to capture the notions of these multiplayer games. We also extend the idea of

multiplayer alternation to other machines, like FA, PDA, and Markov machines.

In general, multiplayer games of incomplete information can be undecidable, unless it the

information is hierarchically arranged (as defined earlier in this paper). Hierarchical multiplayer

games of incomplete information are decidable, and each additional clique (subset of players with

same information) increases the complexity of the outcome problem by a further exponential.

Consequently, if multiplayer games of incomplete information with k cliques have a space bound

of S(n), then their outcome is k repeated exponentials harder than games of complete information

with space bound S(n). The space bound of blindfold multiplayer games is related to deterministic

space bound. The main results are summarized in Theorem 3.3.4 as follows.

For S(n) 2 log(n)

P&-SPACE(S(n)) = DTIi%fE(EXPk+i(S(n))),

EL&SPACE(S(n)) = DSPACE(EXPk(S(n))).

Time bounded games are shown not to exhibit such complexity of towering exponentials.

The main results are summarized in Theorem 5.3.1, Corollaries 5.1.1, and 5.1.2. For countable

T(n) > n and k 2 2:

NSPACE(T(n)) C PA1-TIME (T(n)‘) C DSPACE (T@I)~) ,

NSPACE(T(n)) c BA2-TIME(T(n)2) C DSPACE (T(n)2) ,

hfPAk-TIME(T(n)) = NTIME(EXP(T(n))),

PAk-T&fE(T(n)) = NTIME(EXP(T(n))),

BAk-TME(T(n)) = NTIME(EXP(T(n))).

992 G. PETERSON et al.

Two variants TEAM-PRIVATE-PEEK and TEAM-BLIND-PEEK are defined and shown to

be universal for their respective classes of games. DQBF is shown to be NEXPTIMEcomplete.

It would be interesting to research more general game theoretic models with arbitrary payioffs.

Our models can be enhanced to reflect a more economics-oriented approach to games.

1.

2.
3.

4.

5.

6.

7.

8.

9.

10.
11.

12.
13.

14.

15.

16.

17.
18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

REFERENCES

G.L. Peterson and J.H. Reif, Multiple-person alternation, In Proceedings of the 20th IEEE Symposium on
Foundations of Computer Science, pp. 348-363, (October 1979).
A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation, J. of ACM28 (l), 114-133, (1981).
J.H. I&if, Universal games of incomplete information, In Proceedings of the l’Yth Annual ACM Symposium
on Theory of Computing, pp. 288-308, (May 1979).
J.H. Reif, The complexity of two-player games of incomplete information, J. Comp. Sys. Sci. 29 (2), 274-301,
(1984).
G.L. Peterson, J.H. Reif and S. Azhar, Decision algorithms for multiplayer noncooperative games of in-
complete information, Computers Math. Applic. (to appear); http: //www. cs .duke . edu/-reif /paper/
games/alg/alg.pdf.
S. Azhar, A. McLennan and J.H. Reif, Computation of equilibria in noncooperative games, TR CS-1991-36,
Computer Science Department, Duke University, Durham, NC, (October 1991); http: //w . cs . duke. edu/
Nreif/paper/games/mixed/mixed.pdf.
T.J. Schaefer, On the complexity of some two player perfect information games, J. Comput. System Sci. 16
(2), 185-225, (1978).
S. Even and R.E. Tarjan, A combinatorial problem which is complete in polynomial space, J. of ACM 23,
710-719, (1976).
A.S. Fraenkel, M.R. Garey, D.S. Johnson, T.J. Schaefer and Y. Yesha, The complexity of checkers on an
N x N board-Preliminary report, In Proceedings of the 19 th Annual IEEE Symposium on Foundations of
Computer Science, pp. 55-64, (October 1978).
J.M. Robson, N by N checkers is Exptime complete, SIAM J. of Comput. 13, 252-267, (1984).
D. Lichtenstein and M. Sipser, Go is PSPACE hard, In Proceedings of the lSth Annual IEEE Symposium
on Foundations of Computer Science, pp. 48-54, (October 1978).
D. Lichtenstein and M. Sipser, Go is PSPACE hard, J. of ACM 27, 393-401, (1980).
A.S. Fraenkel and D. Lichtenstein, Computing a perfect strategy N x N chess requires time exponential in N,
In Proceedings of the gth Znt’l COIL Automata, Lang., d Programming, pp. 278-293, (July 1981).
Gary L. Peterson, Succinct representation, random strings, and complexity classes, In Proceedings of the ,Wt
IEEE Symposium on Foundations of Computer Science, pp. 86-95, (October 1980).
L.J. Stockmeyer and A.K. Chandra, Provably difficult combinatorial games, SIAM J. Comput. 8 (2), 151-174,
(1979).
J. Hartmanis and R.E. Stearns, On the computational complexity of algorithms, Trans. Amer. Math. Sot.
117, 285-306, (1965).
L.J. Stockmeyer, The polynomial time hierarchy, Theoretical Computer Science 3, l-22, (1977).
A.K. Chandra and L.J. Stockmeyer, Alternation, In Proceedings of the 17th Annual IEEE Symposium on
Foundations of Computer Science, pp. 98-108, (October 1976).
A. Borodin, Complexity classes of recursive functions and the existence of complexity gaps, In Proceedings
of the lSt Annual ACM Symposium on Theory of Computing, pp. 67-78, (May 1969).
A. Borodin, Complexity classes of recursive functions anf the existence of complexity gaps, J. of ACM 19,
158-174, (1972).
W.J. Paul, E.J. Prauss and R. Reischuk, On alternation, In Proceedings of the !~‘4’~ IEEE Symposium on
Foundations of Computer Science, pp. 113-122, (October 1978).
W.J. Paul, E.J. Prauss and R. Reischuk, On alternation, Acta Inform. 14, 243-255, (1980).
L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential time: Preliminary report, In Pro-
ceedings of the 5 th Annual ACM Symposium on Theory of Computing, pp. 1-9, (May 1973).
L.J. Stockmeyer, The complexity of decision problems in in automata theory and logic, Ph.D. Thesis, MIT
Project MAC, TR-133, (July 1974).
R.E. Ladner, R.J. Lipton and L.J. Stockmeyer, Alternating pushdown automata, In Proceedings of the lSth
Annual IEEE Symposium on Foundations of Computer Science, pp. 92-106, (October 1978).
R.E. ,Ladner, R.J. Lipton and L.J. Stockmeyer, Alternating Pushdown and Stack Automata, SIAM J. of
Comput. 13, 135-155, (1984).
R.E. Ladner, L.J. Stockmeyer and R.J. Lipton, Alternation bounded auxiliary Pushdown Automata, Znfor-
mation and Control 62, 93-108, (1984).

