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1. INTRODUCTION 

1.1. Motivation 

The Turing machine was presented as a simple mathematical model of computation, which 

can model a general purpose (deterministic) computer in terms of elementary operations. The 

definition of the Turing machine accentuated the development of computability theory by for- 

malization of algorithmic procedures. Subsequently, several other paradigms of computations 

(nondeterminism, parallel, etc.) have been introduced, and corresponding models of computa- 

tions (the nondeterministic Turing machine, the parallel random access machine, etc.) have been 

developed accordingly. 

The need for a formal computational model to address the computational aspects of games was 

fulfilled by Chandra, Kozen and Stockmeyer [2] with the alternating L&ring machine (A-TM). 

Now, the A-TM has become the most widely accepted fundamental game theoretic model of 

computation. Subsequently, this A-TM model has been extended and enhanced to model more 

intricate games. Reif [3,4] extended the A-TM model to incorporate private and blindfold two- 

player games by introducing the private alternating Turing machine (PA-TM) and the blindfold 

alternating Turing machine (BA-TM), respectively. 

In this paper, we introduce the multiplayer private alternating Turing machine (MPAk-TM) 

and the multiplayer blindfold alternating Turing machine (MBAk-TM) to model private and 

blindfold multiplayer games, respectively. We also define the PAk-TM and the BAk-TM to 

remove the over-generality of the MPAk-TM and the MBAk-TM, respectively. 

Computer scientists are interested in developing and analyzing new game theoretic algorithms, 

as well as modeling computational paradigms with game theory. This paper is particularly 

concerned with the lower bound analysis of the game theoretic problems. We provide lower 

bounds for solving the outcome problem of multiplayer games of incomplete information. These 

lower bounds demonstrate that the corresponding decision algorithms (to decide the outcome) 

presented in the companion paper by Peterson, Reif and Azhar [5] (see also [l]) are asymptotically 

optimal. 

All these new types of machines provide a deeper insight into the relationships between time 

and space bounded computation. Different types of games correspond to different modes of 

computation as shown in the Table 1. In particular, it is fascinating that the simplest type of 

game (solitaire, perfect, information, unique next move) corresponds to our most, natural notion 

of computation (deterministic). On the other hand, some of the most intricate game corresponds 

to novel and abstract models of computation. 

Table 1. Comparing computation and games. 

Computation Mode 

deterministic 

nondeterministic 

alternation 

orivate alternation 

Game 

solitaire, perfect information, unique next move 

solitaire, perfect information, open next move 

two-player, perfect information 

two-player, incomplete information 

multiplayer alternation multiplayer, incomplete information 

1.2. Games Theory in Computer Science 

Reif [3,4] defines a two-player game as a disjoint sets of positions for two players (named 0 

and l), and relations specifying legal next moves for players. A position p may contain portions 

which are private to one of the players, whereas the rest are common portions accessible to both 

players. 
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The generalization of a two-player game is a multiplayer game (also called team game).’ In 

multiplayer games, there are at least three players partitioned into two teams, Ts and Ti. A 

multiplayer game is specified by a set of positions, a relation defining the possible next moves, 

division of teams, and access rights of players to view or modify certain components of a game 

position. 

We assume that positions are strings over finite alphabet. Every position p may contain certain 

information which is private to some player. The remaining information is common, and may 

be viewed by more than one player. The set of legal next-moves for a given player must be 

independent of the information which is inaccessible to him. These rights remain unmodified 

throughout the course of the game. 

In any game, every player plays according to a strategy which dictates a single next move to 

the player for each and every possible sequence of previous moves that can legally occur. (Such 

strategies that dictate a single next move to the player for every possible sequence of previous 

moves that can legally occur are called pure strategies. Conversely, mixed strategies assign 

probabilities to all possible next moves that can be made from a nonterminating position. The 

reader is referred to the papers on mixed strategies by Azhar, McLennan and Reif [6] for more 

detailed treatment of the complexity of finding such mixed strategies.) The strategy of each player 

can only be dependent on components of the position visible to the player. Team TI is always 

the team of “preference”, in the sense that we are interested in algorithms to formulate strategies 

for Team Tr, and we analyze the complexity of these algorithms as a function of Team TI’S size. 

On the other hand, we model Team To as a single player. 

The win (or nonloss) outcome problem is a fundamental problem in game theory. For a team 

game it can be described as follows. “Do the players of Team TI have a winning (or nonlosing) 

strategy, which together would defeat Team To (or save Team Ti from defeat, respectively) under 

all circumstances?” 

In addition to the outcome problem, this paper also considers the following Markow (m(n)) 

outcome problem. “Given initial position of length n, does Team TI have a winning strategy 

dependent only on previous m(n) positions. 7” The Markov(1) outcome problem is considered by 

Peterson and F&if [l]. 

A game has perfect information if no position has any private component, and a game has 

incomplete information if there are certain private components to the game. Furthermore, if 

Team TO never modifies any portion of the position visible to players of Team Tl then the game 

is categorized as a blindfold game. 

In this paper, we shall show that (from a complexity theoretic point of view) multiplayer 

games of inco’mplete information are more difficult than two-player games of incomplete infor- 

mation. In general, multiplayer games of incomplete information can be undecidable. However, 

they are decidable in at least one case, which is that of hierarchical multiplayer games of incom- 
plete information. Hierarchical multiplayer games are multiplayer games in which the informa- 

tion is hierarchically arranged, i.e., players on Team TI (of k members) can be arranged such 
that all information visible to Player i is also visible to Player i - 1 for all existential players 

(i E {2,3,. . , k}). Our formulation of hierarchical games as decidable does not preclude other 

formulations of multiplayer games that are decidable. 

In hierarchical multiplayer games, each additional clique (subset of players with same informa- 

tion) increases the complexity of the outcome problem by a further exponential. Consequently, 
if a multiplayer game of incomplete information with k cliques has a space bound of S(n), then 

its outcome can be k repeated exponentials harder than games of complete information with the 
same space bound S(n). This paper proves that this exponential blow-up must occur in the worst 

case. 

‘We use the two terms, multiplayer games and team games, interchangeably. 
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The results obtained from studying space bounded hierarchical multiplayer alternating ma- 

chines give a more clear understanding of hyper-exponential complexity classes. In particular, 

the elementary recursive languages are characterized by a class of linear space bounded multi- 

player alternating machines. This enables us to exhibit natural problems with super-complexity, 

but that is another topic, and should be addressed in another paper. 

1.3. Main Results 

In this paper, we define computation machines for private and blind multiplayer games. We 

introduce two new machines: the multiplayer private alternating machine (MPA-TM) and the 

multiplayer blind alternating machine (MBA-TM). To remove the evident over-generality of the 

MPA-TM and the MBA-TM, we introduce the PA-TM and the BA-TM, which are restricted ver- 

sions of the respective machines. These machines are used to demonstrate the relations between 

time and space hierarchies. 

The MPAk-TM is a machine model which corresponds to a (k + 1)-player multiplayer (team) 

game of incomplete information with k existential players and one universal player. The MBAk- 

TM is derived from the MI’&-TM by disallowing the V-player from writing on any resource which 

is readable by any g-player. In particular, for k = 1 the MPAk-TM (i.e., the MPAr-TM) bears 

resemblance to the PA-TM. For k = 1 the MBAk-TM ( i.e., the MBAi-TM) bears resemblance 

to the BA-TM. We also introduce the PAk-TM and the B&-TM to remove the over-generality 

of the MPAk-TM and the MB&-TM, respectively. 

Let 3 be a set of functions on variable n. For each 

cr E {D, N, A, PA, BA, MPAI,, MBAk, PAk, BAk, MA}, 

let (u-SPACE (3) be the class of languages accepted by the corresponding a-TMs within some 

space bound in 3, and let a-TIME (3) be the class of languages accepted by the corresponding 

CK-TMs within some time bound in 3. Since the complexity of these games involve multiple 

exponentials, we need to develop notation to represent multiple exponentials. 

DEFINITION 1.3.1. EXP,(3). For set of functions 3, EXP,(3) is the tower of m repeated 

exponential of f(n) E 3. Recursively, EXP, (3) is defined as follows: 

EXPl(3) = {cftn) 1 c > 0 and f(n) E 3) , 

EXP,(3) = {cExp’=-l(F) 1 c > 0} , for m > 1. 

If 3 consists of just one function f(n), we drop the set notation. For example EXP,(f(n)) 
is defined as EXP,({f(n)}) where {f(n)} stands for the set with singleton element f(n). Also, 

note that we consider EXP(3) = EXPl(3) by default (and perhaps a slight abuse of notation). 

Chandra, Kozen, and Stockmeyer [2] relate the time and space complexity of the A-TM and 

the D-TM as follows. 

For S(n) > log n 

ASPACE(S(n)) = DTIME(EXP(S(n))), 

ATIME(EXP(S(n))) = DSPACE(EXP(S(n))). 

Fteif [3,4] relates the time and space complexity of the D-TM with that the PA-TM and the 

BA-TM as follows: 

BASPACE(S(n)) = ATIME(EXP(S(n))) 

= DSPACE(EXP(S(n))), 
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PASPACE(S(n)) = ASPACE(EXP(S(n))) 

= DTIiUE(EXP(EXP(S(n)))), 

BATIME(EXP(S(n))) = ATIME(EXP(S(n))) 

= DSPACE(EXP(S(n))), 

PATIME(EXP(S(n))) = ATIME(EXP(S(n))) 

= DSPACE(EXP(S(n))). 

It also follows that: 

BATIi’vfE(EXP(S(n))) = PATBvfE(EXP(S(n))). 

Hierarchical multiplayer games are used to illustrate the relationship between time and space 

complexity for k players with several restrictions which are defined later. The results are sum- 

marized below. 

PROPOSITION 1.3.1. PRIVATE ALTERNATION. For S(n) 2 logn 

PAk-SPACE(S(n)) = DTIME(EXPk+i(S(n))). 

For T(n) > n, if k = 1 then 

NSPACE(T(n)) 5 PAI-TIME (T(n)2) C DSPACE(T(n)2) . 

For T(n) 2 n, if k 2 2 then 

PAk-TlME(T(n)) = NTIME(EXP(T(n))). 

PROPOSITION 1.3.2. BLIND ALTERNATION. For S(n) 2 logn 

BAk-SPACE(S(n)) = iVSPACE(EXPk(S(n))) = DSPACE(EXPk(S(n))). 

For T(n) > n, if k = 1 then 

BA1-TIME(T(n)) = I$? 

For T(n) 2 n, if k = 2 then 

NSPACE(T(n)) C BAz-TIME (T(n)2) G DSPACE (T(n)2) 

For T(n) > n, if k 2 3 then 

BAk-TI.ME(T(n)) = NTIME(EXP(T(n))). 

Figure 1 illustrates the relations of the space complexity of the multiplayer alternation machines 

with deterministic time and space. The deterministic complexity hierarchy shifts by exactly one 

level with alternation [2]. It shifts one level further when private alternation is introduced. And 

for each additional player added to private alternation, it shifts one more level. 

1.4. Overview 

Section 2 reviews computational models for two-player games, and then enhances them to in- 

corporate multiplayer games. It defines the MI’&-TM, the MB&-TM, the P&-TM, and the 

BAk-TM. It formally defines complexity measures, and proves the speed-up and space compres- 

sion. Section 2 also describes the concept of universal games. 
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TIME SPACE 

Figure 1. Complexity shifts for an a-TM’s from (r-SPACE to deterministic time and 
space starting from the two-player game of incomplete information. a = “A” for 
alternation; a = “PA” for private alternation; (Y = “BA” for blind alternation; o = 
“k - 1” for private/blind alternation with one less player. 

Section 3 focuses on providing matching lower bounds for the multiplayer game algorithms. It 

employs proof techniques using strategy counter game (SCG), a game tailored for lower bound 

proofs. It illustrates SCG based proofs for previous results of F&if [3,4]. Subsequently, it applies 

SCG techniques to multiplayer games. 
Section 4 reviews PEEK games and introduces two new variants: TEAM-PRIVATE-PEEK 

and TEAM-BLIND-PEEK. These games are shown to be universal for their respective classes by 

using propositional formulae. 
Section 5 is concerned with time bounded machines. It derives lower bounds for time bounded 

machines, and shows that DQBF to be NEXPTIMEcomplete. It concludes by highlighting the 

relationship between blindfold and incomplete information games. 

Section 6 extends the idea of multiplayer alternation to finite state automata, pushdown store 

automata, and Markov machines. 

2. GAMES AND COMPUTATIONAL MODELS 

2.1. Computational Models for Two-Player Games 

We shall describe how our machines models are derived from the deterministic Turing machine 

(D-TM) by successive refinement. 

A deterministic Turing machine (D-TM) is defined as a nine-tuple 

where t E Z+ is the number of work tapes; Q is a finite set of states; C is a finite set of input 
symbols; r is a finite set of tape symbols; b maps (Q x I?) to (Q x I” x {‘left’, ‘right’,‘static’}t) 
is the transition relation which defines a unique move for every element of (Q x l?); qo E Q is a 
fixed initial state; # E I? - C is a distinguished end marker; b E r - C is a distinguished blank 
symbol; F c Q is the set of accepting states. 

A nondeterministic Turing machine (N-TM) is a nine-tuple 

(6 Q, C, r, 6, qo, #, b, F) 
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which is identical to the D-TM except that the next move function 6 specifies some subset of 

for every (& x l?). Consequently, there may be any one of several possible next moves from a 
given state (unlike the D-TM, which is constrained to a deterministic fixed move). Furthermore, 

the N-TM accepts an input if there is any sequence of transitions leads to an accepting state. 

An alterniting Turing machine (A-TM) is defined as a ten-tuple 

(6 Q, u, -% r, 4 QO, #, b, g), 

where t, Q, C, I?, qo, #, and b are as defined above, and the other symbols are defined as follows. 

l U is a set of universal states (V C Q). 
l Q - U is a set of existential states. 

l g maps Q onto {A, V, accept, reject}, such that for q E l_J : g(q) = A to map universal 

states to conjunction, and for q E Q-U : g(q) = V to map existential states to disjunction. 
. 6 defines some subset of 2(Qxr’ X { ‘left ‘7 ‘right: ‘static’)‘) for every (Q x rt). 

The A-TM models a two-player game in which the existential player has to pick the move that 

will lead to acceptance for all possible moves of the universal player. The alternation takes place 
as the existential states (identified with Player 1) alternate with the universal states (identified 

with Player 0) during the computation. Two-player games of perfect information are related in 

this way to the alternating Turing machines (A-TM) of Chandra et al. [2] in which existential 

and universal states alternate. 

In two-player games of perfect information, the main interest is in solving the outcome problem 

for the existential (3) player, i.e., finding winning strategies for j-player. The A-TM accepts an 

input, corresponding to an initial position, if the existential player has a winning (or a nonloss) 

strategy which would guarantee to a win (or not lead to a loss, respectively) for the existential 

player under all circumstances, regardless of the strategy adopted by the universal player. 

The complexity of various generalized games of perfect information is considered by Schaefer [7], 

Even and Tarjan [8], F’raenkel et al. [9], Robson [lo], Lichtenstein and Sipser [11,12], F’raenkel and 

Lichtenstein [13], Peterson [14]. Stockmeyer and Chandra [15] introduce a game called PEEK, 

and prove that PEEK is universal for two-player games of complete information. 
A string w encoding some position is accepted by an alternating Turing machine if 

the machine is in a universal (V) state, and all transitions from that state (based upon 

the current scanned symbols) are to accepting states, 

OR 

the machine is in an existential (3) state, and there is at least one transition from 

that state (based upon scanned symbols) to an accepting state. 

Games are intimately related to models of computation in general. The fundamental question of 

concrete games (the outcome problem) is closely related to the membership question of languages 

and machines. A game with a computable next-move relation can be treated as a computation 
machine. Game G accepts input w depending on the outcome of the game from an initial position 

encoded by w. The correspondence between games and languages is illustrated in Table 2. 

Table 2. Natural analogies between games and languages, with examples. 

I LANGUAGE I GAME I EXAMPLE I 

I string concrete game a blindfold chess endgame I 
language 

class of languages 

game 

game type 

blindfold chess 

two-player, incomplete information 
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We assume that the reader is familiar with the usual definitions of Tuting machines, and in 

particular the definitions of tape storage, tape read/write heads, Futing machine configurations 

(which are the positions of these computational games), and legal next moves for tiring machines. 

The nondeterministic Turing machine (N-TM) is mapped to games of perfect information with 
Player 0 absent because there are no universal states. The deterministic Turing machines (D- 

TM) represent games of perfect information with at most single next-move from any position 

because there is only one possible transition from any given state. The A-TMs are essentially 

extensions of nondeterministic machines to include both existential and universal choices. These 

choices then correspond to moves by the two opposing player in a two-player game of perfect 

information. 

A PA-TM is derived from the A-TM by not allowing the existential (3) player to access some of 

the work tapes that are writable by the universal (V) player. These tapes are considered private 

to the universal (V) player. This is another way of restricting the existential (!I) player from 

viewing some of the universal (V) player’s moves. 

A BA-TM is derived from the PA-TM by not allowing the universal (V) player write access to 

work tapes which can be read by the existential (3) players. This is another way of restricting 

the existential (2) player from viewing any of the universal (V) player’s moves. 

The PA-TM and the BA-TM model two-player games of incomplete information (e.g., rummy) 

and two-player blindfold games (e.g., BLIND-PEEK [3,4]), respectively. 

2.2. Computational Models for Multiplayer Games 

We define multiplayer alternation by building upon the notion of the nondeterministic Turing 

machine. These steps can be viewed as an algorithm for defining a game-like machine. 

DEFINITION 2.2.1. MULTIPLAYER ALTERNATION. Multiplayer alternation is modeled by an 

enhanced N-TM N, where: 

1. we partition the states into distinct subsets such that each player is assigned exactly one 

subset of states; 

2. we assign players various rights to view and modify tapes and portions of states; 

3. then, we introduce a multiplayer game, called a computation game, which is used to define 

acceptance for the resulting multiplayer alternating Turing machine; 

4. we divide the players into two teams; Team TO consists of universal (V) players and Team TI 
consists of existential (3) players. 

We could have built upon any kind of nondeterministic machine, not necessarily a nondeter- 

ministic Turing machine, to lead to the corresponding alternating machine. For example, if we 

begin with a nondeterministic random access machine (N-RAM), then we must assign players 

rights to view and modify various memory registers rather than tapes. Acceptance of resulting 

multiplayer alternating machine would be defined again by a computation game. 

Now we can define an MPAk-TM based on an enhanced N-TM as follows. 

DEFINITION 2.2.2. MPAk-TM: k+l-PERSON ALTERNATING TURING MACHINE. A k+l-player 

alternating Turing machine MPAk-TM is defined as a mapping VIS from (0, . . . , k}, corresponding 
to the k players, to (not necessarily proper) subsets of (1, . . . , r} (corresponding to the position 

information) and a ten-tuple 

(t, Q, U, G I‘, 6, qo, i% b, g), 

where 

t E Zf is the number of work tapes; 
Q is a finite set of states; 
U is a set of universal states (U C Q); 
C is a finite set of input symbols; 
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r is a finite set of tape symbols; 

6 maps (Q x l?) to (Q x rt x {‘left’, ‘right’,‘ststic’}t) is the transition relation which 
defines a unique move for every element of (Q x I?); 

qe E Q is a fixed initial state; 
# E I? - C is a distinguished end marker; 

b E I? - C is a distinguished blank symbol; 

g maps Q onto {A, V, accept, reject}, such that for q E U : g(q) = A, for q E Q-U : g(q) = 
V, for final accepting states: g(q) = accept, and for final rejecting states: g(q) = reject. 

(t, Q, U; C, r, 4 qo, #, kg) is a nondeterministic Turing machine with the following restrictions. 

1. We require the set of states Q E (0,. . . , k} x &I x a.. x Qs where &I,. . . , Q8 are finite 

sets denoting state components. 

2. A configuration is a sequence (i, q1, . . . , qs, (Xl, Yr), . . . , (X,,Y,)) where q = (i, qr, . . . , q9) 
is the current state, and (Xl,Yl), . . . , (X,, Yt) are the current contents of tape 1,. . . , t, 
respectively. There are a total of 1 + s + t components in a configuration. Integer i 

(0 5 i 2 k) identifies th e player who has to move next. The next s items keep track of 
state components qi E Qi for 1 5 i 5 s. The number of state components (s) may be 
different from the number of players. The remaining t components keep track of the tape 

configurations. X,,, precedes the head of tape m. The head of tape m scans the first 
symbol of Y,. 

3. The initial configuration has the initial state qs E Q, and the tape contents initialized as 

for the nondeterministic Turing machine N. 

4. Let POS be the set of all configurations. The next-move relation ( l-c POS x POS) 
is a binary relation on configurations defined in the usual manner from the transition 

function 6. 
5. Finally, we require the computation game G M = (PO& I-, VIS, TI) to be a k + 1 player 

game satisfying Axioms 1 and 2 of Section 2.4 (with Teams TO = (0) and TI = { 1,. . . , k}). 
These axioms simply prevent a player from modifying the information which is invis- 

ible to him, and inhibit him from using the invisible information in formulating his 

strategy. 
6. We say that M accepts w E C* if Team Tr = (1,. . . , k} has a winning strategy in GM 

from the initial configuration. Let the language of M be L(M) = {w E C* 1 w is accepted 

by Ml. 

Let r = s + t (number of state components plus number of tapes). VIS is a mapping 

from (0,. . . , k}, corresponding to the k players, to (not necessarily proper) subsets of { 1, . . . , r} 
(corresponding to the position information), i.e., VIS : (0,. . . , k} H 2{‘*...7’). Inclusion of si 
in VIS(j) denotes right of Player j to view state i, and inclusion of an integer t in VIS(j) denotes 
right of Player j to view tape t. 

A four player private alternating Turing machine is shown in Figure 2. The visibility rights of 

the players are specified by VIS, where 

vls(o) = {So,Sl,%,S3,1,2,3}, vIs(l) = {Sl,S2, S3,2,3}, 

V=(2) = {sz, 33,3), VfS(6) = {33,3), 

with an additional constraint that Player 3 cannot write to Tape 3 (even though he can read 

from that tape). 

A multiplayer blind alternating Turing machine (MBAk-TM) with k + 1 players is a restricted 

MPAb-TM in which Player To is not allowed to modify any information visible to players of 

Team TI. 
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Input Tape 

Tape 3 

Figure 2. Multiplayer private alternating Turing machine. 

Input Tape 

R/W I ape 1 
Tape 3 

Figure 3. The multiplayer blind alternating Turing machine. 

A four player blind alternating Turing machine is shown in Figure 3. The visibility rights of 

the players are specified by VIS, where 

JqO) = {so, s17 s2, s3,L 2,3), VIs(1) = {Sl, s2, s3,2,3}, 

VW2) = {sz, s3,3), VW3) = {33,3), 

with the additional constrains that Player 0 cannot write to Tapes 2 and 3, and Player 3 cannot 

write to Tape 3. 
A MPAk-TM is a machine model which corresponds to a (k + 1)-player multiplayer (team) 

game of incomplete information with k existent&J players and one universal player. The states 

of the machine are labeled with tuples: every element of the state contains a turn indicator, and 

denotes information that can be read and written by each player. Every player has a associated 

list of tapes to indicate read/write rights of various tapes for the player itself. Thus, the tapes 

are partitioned according to access rights. 
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In particular, for k = 1 the MPAk-TM (i.e., the MPAi-TM) bears resemblance to the PA- 

TM. Similarly, the MPAi-TM with both players sharing resources corresponds to the A-TM 

(without logical “not” operation). Furthermore, an MPAi-TM with unique next moves for the 

universal (V) player is an N-TM, whereas, a MPAi-TM with unique next moves for all players 

is simply a D-TM. Hence, it is evident that the MPAk-TM accepts the recursively enumerable 

(r.e.) languages since they are at least as powerful as an ordinary D-TM. Similarly, we can show 

that the MPAk-TM accepts only r.e. languages by enumerating all possible accepting subtrees, 

and subsequently checking recursively whether each tree is a true accepting subtree. 

An MBAk-TM is derived from the MPAk-TM by disallowing the V-player from writing on any 

resource which is readable by any 3-player. Consequently, moves of the V-player are invisible to 

the 3-player). Hence, the MBAk-TM correspond to blindfold multiplayer games. Observe that 

for k = 1 the MBAk-TM ( i.e., the MBAi-TM) bears resemblance to the BA-TM. We show that 

the MBAk-TM and the BAk-TM accept r.e. languages and only r.e. languages. 

After analyzing the MPAk-TM and the MBAk-TM, we are forced to realize that both these 

machines are too general and powerful. We combat their over-generality by introducing restricted 

versions of each machine. The k + l-player private alternating Turing machine (PAk-TM) is an 

MPAk-TM if resources visible to Player i are also visible to Player i - 1 for all existential players 

(i E {2,3,..., k}). Hence, there is a hierarchical ordering of 3-players. A k + l-player blind 

alternating Turing machine (BAk-TM) is a PAk-TM where the V-player cannot change a resource 

visible to any other 3-player. Examples of the PAk-TM and the B&-TM for k = 3 are depicted 

in Figures 2 and 3, respectively. 

We have defined for each game type g in B = {two-player incomplete information, two-player 

blindfold, multiplayer incomplete information, multiplayer blindfold, perfect information, non- 

deterministic, deterministic} a corresponding machine type m(g) in M = {two-person private 

alternating, two-person blind alternating, multiplayer private alternating, multiplayer blind al- 

ternating, alternating, nondeterministic, deterministic}. 

2.3. Complexity of Games 

This section defines alternation, time, space, and branch bounds. 

For any input string w E C*, let the initial position PO(W) have the initial state ~0, and let tape 

contents be described in accordance with Definition 2.2.2. The accepting states are all universal 

states with no successors. The rejecting states are all existential states with no successors. Each 

play of the computational game G M is called a computation seqzlence, and the corresponding game 

tree T is called compzltation tree. The input string w E C* is accepted by M if the existential 

player has a winning strategy. The computation sequences induced by winning strate,g form an 

accepting subtree of T. 

A move p t- p’ is an alternation if the player to move next is on a different team from the player 

which just moved. That is to say that p E PO& and p’ E POSj, where i and j belong to different 
teams. Thus, either 

(1) i E TO and j E Tr, or 

(2) i E TI and j E TO. 

Now we can define alternation bound, time bound, space bound, and branch bounds. 

A game G has a alternation bound A(n) if for each initial position ps E POS of length n, for 

which Team Tr has a winning strategy, there is some such winning strategy u which induces a 

play r containing at most A(n) alternations. 

DEFINITION 2.3.1. ALTERNATION BOUND A(n). For every input string w E Cn (corresponding 

to some initial position pe) accepted by the associated machine M, there exists an accepting sub- 

tree GT’ such that a computation sequence corresponding to any play r, induced by strategy 0, 

does not have more than A(n) alternations for every computation sequence x E GT’. 
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A game G has a time bound T(n) if for each initial position po E POS of length n, for which 
Team Tl has a winning strategy, there is some such winning strategy u which induces a winning 

play r containing at most T(n) moves. 

DEFINITION 2.3.2. TIME BOUND T(n). For every input string w E C” (corresponding to some 

initial position PO) accepted by the associated machine M, there exists an accepting subtree GT’ 

such that a computation sequence corresponding to any play x, induced by strategy o‘, does not 
have more than T(n) moves for every computation sequence r E GT’. 

A game G has a space bound S(n) if for each initial position ps E POS of length n, for which 

Team Tl has a winning strategy, there is some such winning strategy u which induces a winning 

play 7r, where any position reachable from the initial position can be represented in space at 

most S(n). We classify a game as reasonable if it has a space bound of O(n). 

DEFINITION 2.3.3. SPACE BOUND S(n). For every input string w E C” (corresponding to some 

initial position PO) accepted by the associated machine M, there exists an accepting subtree GT’ 

such that a computation sequence corresponding to any play T, induced by strategy u, does not 
use more than S(n) nonblank cells for every computation sequence rr E GT’. 

A game G has a branch bound b if for all positions in POS(p0) there are at most b choices for 

the next transition. 

DEFINITION 2.3.4. BRANCH BOUND b. A game G has a branch bound b if for every starting 

position p, 1 {p’ ( p t p’} 1 I b. 

It is imperative to note that the complexity bound definitions given above are relevant only to 

the win outcome problem of the game. When considering the Markov (m(n)) (nonlosing) outcome 

problem for a game, we bound space, time, and alternations only for plays associated to winning 

strategies. Recall that a nonlosing play can be infinite. 

Our primary objective in introducing the MPAk-TMs is to derive a characterization of full 

elementary recursive hierarchy. However, we discovered that even the MPAz-TMs with constant 

space accept all r.e. languages. This resulted in variant definitions which give a more natural 

extension of the space and time results of Peterson and Reif [il. 

2.4. Languages Accepted by Multiplayer Alternating Machines 

We define the computation game G M = (POS, I-, VIS, Tl) where we have the following. 

1. POS is a set of positions with 

POS = (0,. . . , k} x PI x . . . x P,, 

where 0,. . . , k represent Players 0,. . . , k, and PI,. . . , P, are sets of strings over a finite 

alphabet used to describe various components of the positions. 

2. tc POS x POS is the next move relation satisfying Axioms 1 and 2 stated below. These 

axioms simply prevent a player from modifying the information which is invisible to him, 

and inhibit him from using the invisible information in formulating his strategy. 

3. The mapping VIS : (0,. . . , k} H 2{11...?‘) is a mapping from the set of players to all 

possible subsets of the set of positions. Let p = (a,p[l], . . . ,p[~]) be a position in POS. 

We say that Player i has right to view p[j] if j E VIS(i). 
4. Team Tl E 2{07...>“l is a subset of the set of Players (0,. . . , k}. The opposing team 

is TO = (0,. . . , k} - Tl where “-” represents the set difference. Players of Team TI move 
from existential (3) states, and players from the other Team To move from universal (V) 

states and are called universal (V) players. 

The mapping VIS describes the access rights of the players. For each Player i = 0,. . . , k we 
let visi(p) = (TJ, b), where z1 is the list (in order of occurrence) of components of position p for 
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which Player i has access rights (i.e., the ordered list (pb] 1 j E VIS(i))),2 and b is a Boolean 

variable which is 1 if it is Player i’s turn to move (and otherwise it is 0). pr&(p) is the list of 

all components of the position which are known only to the Player i. More explicitly @vi(p) 

is (p[j] ) j E VIS(i), and j 4 VIS(k), for all Ic # i). 

When we are dealing with multiplayer games, we need the following axioms to incorporate the 

notion of incomplete information. 

AXIOM 1. No player is permitted to modify any other player’s private information. 

Therefore, if p E POS, and p t p’, then privj(p) = privj(p’) for all players j # i. 

AXIOM 2. If a pair of nonterminating positions p, q are indistinguishable to a player, then the 

sets of next moves he can make from this pair p, q must also be indistinguishable to the player. 

As a consequence of Axiom 2, if p, q E PO& - W and visi(p) = visi(q) then { visi(p’) 1 p F 

P’} = (visi(9’) I9 I- 9’). 

We define the set of winning positions (W) to be the set of all positions from which there is 

no next move for the opponent on its turn to move 

W = {p E POS ) there is no p’ such that p I- p’} . 

For any Player i we use POSi to denote the set of positions such that it is Player i’s turn to move 

PO% = {p E POS I next(p) = i}. 

Player i loses if any position in the set PO& n W is encountered. The result of a finite play is a 

loss for exactly one player. Any team’s wins and losses are determined by the performance of the 

players on that team: a play K is a win for Team Tl if it is a loss for some player on the other 

team. A play A is a nonloss for Team TI if it is not a loss for any player on the Team Tl. 

Let the language of M be L(M) = {w E C* 1 w is accepted by M}. 

THEOREM 2.4.1. The P&-TM accepts precisely the recursively enumerable sets. 

PROOF. The D-TM can be c0nsidered.a special case of the PAk-TM. Since the D-TM accepts 

r.e. sets, the P&-TM also accepts r.e. sets. 

On the other hand, the winning strategies of a computation game (of incomplete information) 

can be recursively enumerated by all possible accepting subtrees and check recursively whether 

each tree is a true accepting subtree. Thus, the language of the PAk-TM is r.e. The theorem 

follows. I 

THEOREM 2.4.2. The B&-TM accepts precisely the recursively enumerable set. 

PROOF. The D-TM is a special case of the BAk-TM. Hence, the B&TM accepts r.e. sets. 

On the other hand, the winning strategies of a blindfold computation game can be recursively 

enumerated. Consequently, the language of the BAk-TM is r.e. I 

THEOREM 2.4.3. SPACE COMPRESSION. For any constant E > 0 and a machine M of some 

type M, with space bound S(n), there is a machine with space bound ES(~) that accepts the 

same language as M, and with the same machine type M with no additional alternations or 

tapes. 

PROOF. We encode each 21~ consecutive work tape cells as a P/c-tuple in a new tape alphabet. 

This technique can be used to achieve desired space compression by any constant factor. m 

2We use angled brackets to enclose items in an ordered list. 
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THEOREM 2.4.4. SPEED-UP (TIME DILATION). For any constant E > 0 and a machine M of 
some type M, with time bound T(n) such that liminf,,, (T(n)/n) = oo and at least one tape, 

there is a machine of the same type M with time bound eT(.n) that accepts the same language 

as M, with no additional tapes. 

PROOF. We construct M’ of same type M which accepts the same language aa M, and is identical 

except as described below. We encode t consecutive tape cells of each tape of M as a t-tuple in 

the tape alphabet of M’ (cf. Theorem 2.4.3 above). The number of possible next moves from 

any position must be finite, so we must have some constant upper bound d on the branching 

factor. Since the maximum branching factor is d, there are at most dt positions reachable of M 
after t moves. Thus, there are at most 2dt possible strategies of the existential team within next t 

moves. M’ will have a distinguished state associated with each of these possible strategies. 

Given an input string w E C”, the simulation proceeds in T(n)/t steps, where in each phase M’ 

simulates t nonprivate steps of M. 3 M’ would also have an additional tape which is private to 

the universal player. This contains a counter A (0 5 A 2 t), which keeps track of the number of 

nonprivate steps which remain to be simulated by M’ during this phase. A is initialized to t at the 

start of a phase. Then, M’ moves one cell left, two cells right, and one cell left (chronologically) 

on each of its tape to determine the currently relevant tape contents. Then, the existential team 

of 111’ is allowed to choose its strategy for the next t existential steps of M, by a single state 

transition. If no such strategy exists then M’ rejects. 

Subsequently, the universal player of M’ executes a series of rounds, each of which requires only 

a single step of M’. These steps are not detectable by the existential team of M’. Inductively, 

t - A nonprivate steps of M have been simulated by M’ during this phase. In the current round, 

M’ simulates t’ = min(t, A) steps of M. Some of these steps may be existential, and for these 

steps the strategy already chosen by existential team is applied. At the end of the round, A is 

privately subtracted by the number of nonprivate (with respect to universal player) steps of the 

round. Thus, new A is set to old A minus t - t,, where t, is the number of steps of the round 

which were private to the universal player. We are guaranteed that t, will not always be 0, since 

we are dealing with a game of incomplete information. 

If A > 0 then we proceed with the next round, otherwise we terminate the round. After 

the last round, the universal player makes visible (to the existential team) all modifications to 
common portion which were made on simulated nonprivate moves during this phase. M’ makes 

four additional moves of the tape heads (once left, twice right, once left) to update the tapes, 

and then the simulation proceeds to next phase. M’ takes at most ten steps for every t steps 

of nil, and the total time bound of M’ is 

which is less than ET(n) if we let t = 20/e, and n 5 (9/20) CT(n). Since there are only a constant 

number of inputs of length n > (9/20)cT(n), and for these inputs we can use the finite state 

control to decide acceptance within time n. The speed-up theorem follows. I 

DEFINITION OF SPACE AND TIME BOUNDED GAMES. We say a game has space bound S(n) if the 
set of positions reached by a single move from any given position of length n, can be computed in 

deterministic space S(n). We say a game has time bound T(n) if there are at most T(n) positions 

reachable by any path of a game tree from any given position of length n. 

Now, we show that the computation games of various types of machine are universal for the 

corresponding classes of games. Fix some functions A(n) and S(n) 2 log(n), and let g be a game 
type in 9. Let C be the class of games of the predetermined type g, with space bound S(n) 

“A mwe by the universal team is private if it does not modify any portion of a position that is visible by existential 
team. Otherwise the move is nonprivate. 
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and alternation bound A(n). For every G = (POS, k, VIS, Tr) of C, let & be deterministic log 

space mapping from positions in POS to their binary representation. Let NG be a binary string 

encoding the deterministic space MS(n) next move transducer for I-. 

THEOREM 2.4.5. If MS(S(n)) = O(S(n)) then the computation game G”c is a universal game 

for the game class C. 

PROOF. By definition, there is a machine MC such that for each game G E C and position p 

of G, M accepts (NG, &(p)) iff Team Ti has a winning strategy in G from initial position p. In 

other words, MC decides the outcomes of all games of C. Furthermore, MC has a corresponding 

machine type m(g) ( i.e., its computation game is of type gj has a tape alphabet (0, 1, b, #}, 

space bound S(n) + MS(S(n)), and alternation bound A(n). If MS(S(n)) = O(S(n)) then by 

Theorem 2.4.3, MC needs to have only space bound S(n). The theorem follows. I 

By applying space compression Theorem 2.4.3, we have the following. 

COROLLARY. For each game type G E 6, if ‘R is the class of reasonable games (i.e., with space 

bound S(n) = n of type g, then there is a linear space bounded machine MR of corresponding 

type m(g) such that GM= is a universal game for R. 

3. LOWER BOUNDS 

3.1. Bounds for Two-Player Games 

Fteif [3,4] uses the A-TM complexity to derive the complexity of space bounded machines 
representing various two-player games. We shall derive our results by direct comparison to the 

D-TMs. The corresponding results for multiplayer games will follow as trivial extensions. We 

shall mtroduce a game to facilitate the statement and the proofs of our results. 

DEFINITION 3.1.1. STRATEGY COUNTER GAME (SCG). The game involves two players, Play- 

er 0 and 1. Player 1 has to convince Player 0 that it can count from 0 up to 22” - 1 [inclusive). 

It does so by producing a sequence of numbers from 0 to 22” - 1 in binary as a sequence of 

groups in the format #02”#02”-11#02’L-210#02”-211#OY’-3101#~~~ #12”-‘#, and then halt- 

ing. Player 1 sends this sequence (via a common state element) of groups to Player 0. Meanwhile, 

Player 0 attempts to find a Aaw in the output sequence of Player 1. Player 1 wins if Player 0 

fails to find a Aaw in its output. 

PROPOSITION 3.1.1. SCG requires at least 2n bits when played deterministically because each 
group has 2n bits. 

However, the V-player can do better than that by modeling SCG as a game of incomplete 

information in which Player 0 is the V-player, and Player 1 is the El-player. g-player communicates 

a sequence of groups #02”#02’“-11#. . . #12”-1 # as described above. The V-player’s strategy is 

to nondeterministically choose one of the following verifications. 

1. The first group is in O*, and the last is in l*. 

2. Choose any group and verify (secretly) that it has length 2n. 

3. Choose any particular bit of a group, remember it and its location. Check it against the 

same position in the next group, with respect to carry, etc. 

LEMMA 3.1.1. SCG requires only n tape cells for the V-player using the above strategy. 

PROOF. V-player models SCG as a game of incomplete information as illustrated above. The 

first and second check obviously require less than n bits if it counts using an n-bit binary counter. 
The third check involves three steps. 

1. Store the selected bit and its location as n-bit index. 

2. Sequentially decrement the index as we transverse the next group until the index becomes 
zero to indicate that we have reached the corresponding bit. 

3. Verify the correctness of the chosen bit with respect to its corresponding bit and carry. 
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Since all three verifications can be performed using n tape cells, the theorem follows. I 

It is critical that Player 1 does not have information of Player O’s verification process, other- 

wise Player 1 could cheat. SCG as described is a blindfold game, but if Player 0 is allowed to 

communicate with Player 1 then it generalizes to counting (i.e., the V-player can ask the 3-player 

to count both up and down). We can apply the SCG game technique after some modifications 

to our lower bound proofs. 

LEMMA 3.1.2. (See [3,4].) F or constructible S(n) > log(n) 

BAI-SPACE(S(n)) 2 DSPACE(EXP(S(n))). 

PROOF. We modify the counting technique in SCG game above so that the l-player sends (in- 

stead of a sequence of numbers) a sequence of configurations, (Co, Cl, . . . , C,) , of a given N-TM 

which uses at most 2S(n) tape cells. The BAl-TM will accept the input if and only if there is an 

accepting sequence of configurations for the N-TM on that input (i.e., the input is also accepted 

by the N-TM). 

The V strategy is similar except 

1. it checks that the first configuration (Co) against the input; 

2. it ascertains that the last configuration (Cm) is accepting; 

3. it compares corresponding tape cells, and confirms that they are the same barring head 

motion, state change, tape cell changes, etc., in correspondence with transition rules. 

The universal player chooses which condition to check privately from the existential player. 

Otherwise, the existential player could cheat. 

To verify if (1) is violated, the universal player may utilize the logn cells of a private tape 

for a pointer to symbols of input string w. Thus, the universal player can check the first (Co) 

against the input. Ascertaining if (2) is violated is trivial. To verify (3), the universal player 

compares the corresponding tape cells of two configurations; tracking the location index would 

dominate the space cost as shown by Reif [4]. S ince the length of any any configuration Ci is at 

most EXP(S(n)), a log(EXP(S(n)))-b t i counter track the index. An S(n)-bit counter is sufficient 

because the constants are absorbed in the EXP(S(n)) notation. 

Consequently, the V-player only needs to write down the length of a configuration and a few 

other bits of information. Consequently, it needs only nondeterministic S(n) space. The conver- 

sion to the D-TM affects only the constant in the exponent because 

iVSPACE(EXP(S(n))) = DSPACE(EXP(S(n))2) = DSPACE(EXP(S(n))). 

The lemma follows. 

LEMMA 3.1.2. (See [3,4].) F or constructible S(n) 2 log(n) 

PA1-SPACE(S(n)) > DTIME(EXP2(S(n))). 

I 

PROOF. Recall the proof for ASPACE(S(n)) > DTIME(EXP(S(n))) of Chandra et al. [2] relies 

on the fact that when a D-TM with space bound EXP(S(n)) is simulated by an A-TM, the 
space requirements axe dominated by keeping track of two counters, of S(n) bits each. These 
counters keep up with the configurations number and the tape cell index. Also, observe that 

if the universal player is allowed to communicate with Player 1 then it generalizes to counting, 

and the V-player can ask the g-player to count both up and down. We can apply the SCG game 

technique after some modifications to our lower bound proofs. 

We replace these counters by private game counters, and simulate a DTIME(EXP2(S(n))) 

D-TM with an S(n) space bounded PAI-TM. The Y-player is counting and making existential 

moves of the ASPACE(S(n)) > DTICME(EXP(S(n))) proof. I 

The following theorem provides the matching upper bounds, and is obtained as a special case 
(substituting k = 1) in Corollaries 5.2.1 and 5.2.3 of [5]. 
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THEOREM 3.1.1. (See [1,3-S].) F or constructible S(n) > log(n) 

J3A1-SPACE(S(n)) 5 DSPACE(EXP(S(n))), 

PAI-SPACE(S(n)) C DTIME(EXP2(S(n))). 

The proof of the above theorem is based upon a modified game tree argument. 

COROLLARY 3.1.1. For constructible S(n) 2 log(n) 

BA1-SPACE(S(n)) = DSPACE(EXP(S(n))), 

PA1-SPACE(S(n)) = DTIME(EXP~(O(S(n)))) = ASPACE(EXP(S(n))). 

PROOF. Follows from the above Lemmas 3.1.2 and 3.1.3 in conjunction with Theorem 3.1.1 and 

Chandra et al.% [2] proof of ASPACE(S(n)) = DTIME(EXP(S(n))). I 

3.2. Space Bounds for Multiple Person Alternating Machines 

We can readily generalize these results to multiplayer games. 

THEOREM 3.2.1. For constructible S(n) 2 log(n) 

MPA1-SPACE(S(n)) = PA1SPACE(S(n)) = DTI-ME(EXP2(S(n))). 

PROOF. MPAl-TM is by definition also a PAi-TM. Consequently, 

implies 

PAlSPACE(S(n)) = DTIME(EXP2(S(n))) 

AlPAl-SPACE(S(n)) 

For more than one player of team Tl, the 

restricted by space bounds. 

= DTIME(EXP2(S(n))). I 

MPAk-TM is so powerful that their power is not 

THEOREM 3.2.2. For constructible S(n) 1 log(n), if input tape is private to the V-player then 

MPAz-SPACE(constant) = r.e. 

PROOF. Given a D-TM M we shall construct an MPAs-TM M’ which accepts the same set of 

strings in constant time. The game will be based on having each of the 3-players find a se- 

quence of configurations of the D-TM M which on an input w lead to acceptance. Accordingly, 

upon request each 3-player will give the V-player the next character of its sequence of configura- 
tion. Each 3-player does this secretly from the other g-player. The configuration will be of the 

form #Ce#Ci# ... #C,#, where Cc is the initial configuration of M on the input, and C,,, is 

an accepting configuration of M. . 

The V-player will choose to verify the sequences in one of the following ways. 

1. Check one of the first configurations against the input, and ensure that it is in the correct 

form. This implies that the input tape is private to the V-player. 

2. Check the last configuration for accepting state. 

3. Check that the 3-players are giving the same sequence by alternating turns between them. 

4. Run one of the Y-players ahead of the next #, and check its Ci against the other 

S-player’s C-1 for proper head motion, state change, and tape cell changes, in corre- 

spondence with the transition rules, etc. 

Observe that the V-player need only track the incoming information. Therefore, it does not 

have to store anything on the tape, and can remember all information in its private state. Thus, 
we have shown MPAZ-SPACE(constant) > r.e. 

It is easy to see that the MPAk-TMs accept the r.e. languages since they include ordinary 

the D-TMs. Similarly, acceptance by the MPAk-TM is r.e. since one can enumerate all possible 

accepting subtrees and check recursively whether each tree is a true accepting subtree. The proof 
is now complete. I 
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COROLLARY 3.2.1. For constructible S(n) > log(n), if input tape is public to the aI players 

then 

MPA&5’PACE(log(n)) = r.e. 

PROOF. Follows from the definitions for MPAk-SPACE(log(n)) with k = 2. a 

COROLLARY 3.2.2. Membership for MPAQ-SPACE(constant) is still undecidable. 

PROOF. Membership for MPA2SPACE(constant) is undecidable since it is a case of the halting 

problem on blank tape. I 

3.3. The Hierarchical Private and Blind Alternating Turing Machines 

In order to remove the over-generality of the MPAk-TM and the MBAk-TM, we consider 

variants of these machines. More specifically, we introduce the PA&-TM and the BAk-TM to 

avoid the nonrecursiveness of space bounded computation. In terms of space characterization, 
they are evidently natural extensions of the A-TMs, the PA-TMs, and the BA-TMs. 

The lower bound techniques of Section 3.1 can be extended to count very high values with n 

bits by using ir players. We introduce new notation to facilitate the description of the counting 

techniques used in our lower bounds. 

DEFINITION 3.3.1. TWOEXP,(f(n)). F or a function f(n), TWOEXP,(f(n)) is the tower ofm 

repeated exponential of f(n) to the base 2. Recursively TWOEXP,(f(n)) is defined as follows: 

TWOEXPi(f(n)) = TWOEXP(f(n)) = 2f(n), 

TWOEXP,(f(n)) = 2TWOEXP~~,-l(f(n)), for‘m > 1. 

Using techniques of Section 3.1, k players and n bits can be used to count up to TWOEXPk+i 

(n). The earlier method used n bits for one player counting alone on TWOEXPi(n) bits (up 

to TWOEXPz(n) = 22”). These bits were used to store lengths of numbers, positions within 

numbers, etc. Since we only need to start from 0 and count up to TWOEXPk+i (n), we can 

recursively apply the technique. The ith j-player (&-player) will be responsible for supplying 

the correct count on TWOEXPi(n) bits, i.e., up to TWOEXPi+i(n), using the count sequence 

on TWOEXP+r(n) bits supplied by the $-i-player. Hence, the kth &player (&-player) will 
supply the count on TWOEXPk(n) bits, i.e., count up to TWOEXPk+i(n). This will be checked 

by the V-player using the count sequence on TWOEXPk_i(n) bits which is supplied by the 

&-i-player. The V-player can verify the correctness of &_i-player’s count against the sequence 

supplied by 3k._z-player’s counting sequence. Inductively, any $player’s counting sequence can 

be checked against 3i-i-player’s counting sequence. 

Observe that, since this is a hierarchical machine, the 3i-player knows that its counting sequence 

is being used to check 3i+1-player but is not informed that it is being checked by &-i-player. If 

the order of hierarchy was not maintained a player might know where it is being checked, and 

use that information to cheat. 

THEOREM 3.3.1. For constructible S(n) > log(n) 

P&-SPACE(S(n)) > DTIME(EXS+i(S(n))). 

PROOF. Note that these are blindfold games because the players are blindfolded in the sense that 

they only receive turn information. If the 3-players were not blind then the V-player can instruct 

them to count up and down. Consequently, the Chandra et al. [2] technique can be used using 
the new very large counters to simulate a DTIME(TWOEXPk+i(S(n)) bounded D-TM with a 

S(n)-space bounded P&-TM. The theorem follows. I 
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THEOREM 3.3.2. For constructible S(n) 1 log(n) 

BA&PACE(S(n)) 2 DSPACE(EXPk(S(n))). 

PROOF. For the blindfold case, the &-player sends out the configuration of sequences of size 

DSPACE( TWOEXPk(S(n))) with 3k_i through 31 players sending out their respective counts. 

The V-player uses the counts to check other counts, and uses the largest track information for 

checking the configurations, etc. The theorem follows. I 

The matching upper bounds from Theorems 5.2.2 and 5.2.3, along with Corollaries 5.2.1 

and 5.2.3 of [1,5] are as follows. 

THEOREM 3.3.3. For constructible S(n) 2 log(n) 

PAk-SPACE(S(n)) G DTIME(EXP~+I(S(~))), 

BAk-SPACE(S(n)) 2 DSPACE(EXPk(S(n))). 

Now, we can combine the upper and lower bounds to deduce the main result of this paper. 

THEOREM 3.3.4. For constructible S(n) 2 log(n) 

PAk-SPACE(S(n)) = DTIME(EXPk+l(S(n))), 

BAk-SPACE(S(n)) = DSPACE(EXPI,(S(n))). 

PROOF. Follows from the upper and lower bounds of above Theorems 3.3.1-3.3.3. I 

In light of the above result, we can see that the P&TM and the BAk-TM are quite natural 

generalizations to the PA-TM and the BA-TM. The well-ordering of the generated hierarchies 

indicates that space and time must complement each other extremely well. 

As a consequence of Corollary 2.4.1 in conjunction with the results of this section, we have the 

following. 

1. A space bounded PAk-TM A4 whose computation game G M is universal for all reasonable 

multiplayer games of incomplete information. 

2. A space bounded BAk-TM M’ whose computation game GM’ is universal for all reasonable 

multiplayer blindfold games. 

By the hierarchy theorem for deterministic time complexity of Hartmanis and Stearns [16], we 

have the following corollary. 

COROLLARY 3.3.1. For M defined above, if any D-TM decides the outcome of GM in time T(n), 

then T(n) > ExPk+i(n/logn). 

By space hierarchy results. 

COROLLARY 3.3.2. For M’ defined above, if any D-TM decides the outcome of GA”’ in 

space S(n), then S(n) > Ex&(n/logn). 

4. TEAM-PEEK GAMES 

4.1. Extensions of PEEK games 

Chandra et al. [2] and Reif [3,4] have used PEEK games as concrete examples to illustrate and 

support the computation game theory results. We review these definitions, and in their tradition, 
introduce three enhanced versions of PEEK with more than two players (that are partitioned into 

two teams). 
The game PEEK consists of a box containing a number of vertical plates each of which can 

be positioned either dn or out. The original definition of PEEK described the plates to be 
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horizontal [2]. However, in order to extend it to multiplayer (team) PEEK, we need to improvise 

the original definition for aesthetic reasons that will be evident later. A subset of the plates is 

controlled by Player 0, and the remaining plates are controlled by Player 1. On its turn, each 

player can adjust the state of any (not necessarily nonempty) subset of its plates by pushing in 

or pulling out the plates not in the desired positions. 

Every plate has uniform sized holes cut in it. During the course of the game, the players know 

where these holes are. The winner is the first player to adjust the plates so that the holes are 

placed in a horizontal alignment to allow it to peek from one end to the other. PEEK is a game 

of perfect information in the sense that the players know the pattern of holes as well as the 

positioning of all the plates. Figure 4 exhibits a typical plate and Figure 5a illustrates the set up 

of the game. 

0.0000~ 

00000.0 

0.0000. 

0ee.0.0 

Figure 4. A side view of an isolated plate of PEEK. 

Reif [3,4] described PRIVATEPEEK, an extension of PEEK which introduces private portions 

of positions by using barriers. As shown in Figure 5b, partial barriers are used to conceal the 

location of some of the opponent’s plates. Another barrier is placed on the “peeping end” of 

the box restricting the players to be able to peep only on their side of the box. Reif [3,4] also 

defined BLIND-PEEK by requiring the barriers on Player l’s side to obscure the locations of all 

opponent’s plates (as shown in Figure 5~). 

n 
I I I 

< 4 

Playeri t-----_ 
< 

Player 1 2 d 

< 
f 

> Z Player 0 
r I 

(a) The original PEEK. 

Play ccl* 

n * 

> 

-= P1ayer O 
(b) The PRIVATEPEEK game. 

II, Player O 
(c) The BLIND-PEEK game. 

Figure 5. (a) A position of PEEK; (b) PRIVATEPEEK set-up; (c) BLIND-PEEK 
game. 

In this paper, we describe three versions of PEEK involving at least three players (that are 

partitioned into two teams). The simplest one of these is TEAM-PEEK, which extends the 

original PEEK to accommodate several players. The players are divided into two teams that 
stand on each side of the box. The players move in turn as they do in original PEEK. A subset 
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i ; Playt3; :F: 3 Player 2 II 
. . . . 

Player 1 
< 
< 0 

> 

nz p1ayer O 
Figure 6. A position of TEAM-PEEK. 

c 
II 

> 

n, P1ayer O 
Figure 7. A position of TEAM-PRIVATEPEEK. 

n 

Figure 8. A position of TEAM-BLIND-PEEK. 

of plates is controlled by each player, such that the elements of the set of all these subsets are 

mutually exclusive and collectively exhaustive with respect to the plates in the box. On its turn, 

each player can adjust the state of any (not necessarily nonempty) subset of its plates by pushing 
in or pulling out the plates that are not in the desired positions already. The winner is the first 

player to adjust the plates so that the uniform sized holes are placed in a horizontal alignment 

to allow it to peek from one side to the other. 

TEAM-PEEK is a multiplayer game of perfect information in the sense that players know the 

pattern of holes as well as the positioning of all the plates. Figure 6 describes the set up of the 

game TEAM-PEEK. 
TEAM-PRIVATE-PEEK is devised by placing one-way mirrors so that certain members of 

the team cannot see the positions of other plates. A barrier is also placed on the “peeping” side 

of the box to restrict the players to peeping only on their side of the box. A game of TEAM- 
PFUVATEPEEK is considered hierarchical if the players of the Team Tr can ordered in way such 

that each player has at most as much information as the player appearing just before him in the 
ordering. A hierarchical TEAM-PFUVATEPEEK is sketched in Figure 7. 



978 G. PETERSON et al. 

TEAM-BLIND-PEEK is an extension of TEAM-PRIVATE-PEEK which does not allow the 
players of Team TI to see any of the plates controlled by Team To. TEAM-BLIND-PEEK is 
sketched in Figure 8. 

4.2. Games on Propositional Formulae 

In this section, we define a sequence of games on propositional formulae which can be used to 
encode states of a computational machine. These games are used to prove completeness results 
for various flavors of PEEK. 

Formula refers to well-formed parenthesized Boolean expression involving Boolean variable 
symbols, binary connectives, and a unary connective. The Boolean variable symbols are denoted 
by lower case alphabets like t, u, 21, ZU, 2, y, Z. The binary connectives consist of conjunction (A), 
disjunction (V), and ezclwive-or (63). The unary connective is negation (7). A literal is a 
Boolean variable or its negation. A formula F is categorized to be in conjunctive normal form 
(CNF) if it is a conjunction of sub-formulae Fl A . . . A Fp such that each Fi is a disjunction of 
literals. F is further classified to be in I+CNF if each Fi is a disjunction of at most Ic literals. 
Disjunctive normal form (DNF) and Ic-DNF are defined analogously. 

V(F) is the set of variable symbols in F, and size(F) is the number of occurrences of variable 
symbols in F. F(X) denotes the formula on variables in set X, i.e., V(F) 2 X. Similarly, 
F(X1,. . . , Xn) denotes a formula on variables in set X1 U . . . X,, i.e., V(F) C_ X1 U . . . X,, where 
every XI, X2, . . . ,X, are disjoint sets of variable symbols. For the set S, an S-assignment is a 
truth assignment to the variables in the set S. Consequently, a formula F maps V(F)-assignment 
to true or false (i.e., 1 and 0, respectively). 

We will extend this notation to allow the Xi to denote sets of variables allow universal and 
existential quantification over these sets of variables, and also allow U to be the union of all the 
elements of a list of sets. 

We will define a few games GI , Gz, and G 2~. We shall show that Gz is universal for games of 
incomplete information, and G 2~ is universal for blindfold games. Subsequently, we shall exhibit 
a mapping between these games and their corresponding PEEK games. 

DEFINITION 4.2.1. GAME GI. We define G1 to be a lc + l-player game defined by a triple 

where 

l 7 E o,... , k is a turn indicator which serves to identify the player who is going to take 
the initiative to move next; 

l positions are encoded in the propositional CNF formula F(Xo, XI, . . . , Xk, VO, VI, . . . , Vk, 
a,~) whereXo,Xl,..., XkandVo,Vl,..., Vk are sets of Boolean variables with each Xi c 
Vi, and a and s axe individual Boolean variables; 

0 (I! is a truth assignment on S = X0 U X1 U. . . U xk, mapping elements of S to 0 or 1 (false 
or true, respectively); 

l for any Player i E (0,. . . , k}, i controls the truth assignment to ail the variables in the 
set Xi; 

l for any Player i E (0,. . . , k}, i knows the truth assignment to all the variables in the 
set Vi; to maintain consistency, Xi c Vi; furthermore, to maintain hierarchical structure 
of the game, we require Vi 2 Vi+1 for all valid i. 

When r = 0, Player 0 moves by 

(i) setting a to 0; 
(ii) setting s to its complement (that is a); 

(iii) choosing a truth assignment to the variables of X0. 
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All other Players i (i # 0) move by setting a to 1, and choosing a new truth assignment for 

variables in set Xi. 

The formula F is not modified by any of these moves, except for the changes in the truth 

assignment of its variables. The loser is the first player whose move yields truth assignment for 

which the formula F is false. 

We shall prove that G1 is as a stepping stone in our main goal to prove that TEAM-PEEK 

games universal for reasonable games of their respective classes. 

LEMMA 4.2.1. G1 is universal for reasonable hierarchical games of incomplete information. 

PROOF. Let M be a PAk-TM with space bound n. Suppose w E Cn is an input string to M. We 

encode each position of GM as a bit vector of length n’ = CMn, where cM depends only on the 

size of M’s tape alphabet. Our encoding arranges bits 1,2,. . . , hi to be those in v&(p) (i.e., the 

portions of position p which are visible to Player i). hi 2 hi+1 to maintain hierarchical structure. 

In particular, ho = n’, and the bits hl + 1,. . . , 12' are private to Player 0 (V-player). 

Using the techniques of Stockmeyer 1171, we may construct a linear size propositional formulae 

NEXT(Z1, 22, T), where &,Zz, T are sequences of n’ variables each. Furthermore, if 21 encodes 

(by some fixed encoding which is computable in O(logn) space by a D-TM) a position pl, then 

there exists an assignment to variables of T, such that NEXT(Z1,&, T) is true if and only if Z2 

encodes a position p2 derived from pl by a move of M. 

We introduce a sequence of variables Yc, Ypo, Yp’,X, (where X is the concatenation of 

x1,x2,. . . ,X,) such that 

l Yc is of length mo = hl +n’ (and denotes portions of X which are common to all players); 

l Ypo and Ys are of length 1 = n’-hl (and denotes portions which are private to Player 0); 

0, Xi is of length rni = hi + n’. Xi for i > 0 denotes portions visible to Player i; X is the 

COrEatenatiOn Of X1, X2,. . . , xk. 

Let X[a.. . b] denote X(a), . . . , X(b) for a < b and a, b within range of X’s indices. YC[a.. . b], 

YPo[a...b], and YP1[a . . . b] are defined analogously. 

Players of the game take turns every round. Let the permutation which defines the order of 

moves in a around be II = (7ro,7rl, 7r2,. . . , rk), where players follows one another in the order 

their indices occur in H. We insist that ~0 = 0, so that Player O’s turn makes lI unique for every 

order of turns of players. However, regardless of what order the permutation is, we can emulate 

the moves of all players of Team Tl by a single move by a “super-player”. 

For s, s E (0, l}, let NEXT,,,(X, Y) be the formula derived from NEXT(Zl,Zz, T) by sub- 
stituting for Z~,ZQ,T depending on whose turn it is. The substitution is shown in Tables 3 

and 4. 

Without loss of generality, we can assume that the teams are in strictly alternating order, 

and the first team to move is Team Tl. For each a E (0, l}, NEXT,,, defines a legal moves by 

Team T, on switch variable s E (0, 1). Now, we consider the formula 

F(X,YC,YPo,YP1,a,s) = (a As + NEXTIJ(X,Y)) 

A (a A 7s + NEXTl,o(X, Y)) 

A (-a A s -+ NEXTo,l(X, Y)) 

A (Ta A 7.s + NEXTo,o(X, Y)) . 

F can easily transformed into 5-CNF of size O(n), and is constructible in O(log(n)) space by 
a D-TM. 

Let pO(w) be the initial configuration of M on input w. Initially set s = 1 and a = 1. Also 

let variables Yc[l.. . lc],Ypl[l . . . l] be assigned to encode PO(W), and let all other variables be 

assigned arbitrarily. Let F and this initial truth assignment be the initial position of game GI. 

“Team Tl wins G1” iff “Team Tl wins computation game GM” iff “M accepts input w”. Thus, 



980 G. PETERSON et al. 

Table 3. Team TO’S move. 

Table 4. Tl’ s move. 

we have a log-space reduction from acceptance problem for M to the outcome problem for G1. 

By Corollary 2.4.1, G M is universal for universal games. We conclude that G1 is universal for 

reasonable games. I 

Now, we define another formula game G2, which is equivalent to TEAM-PRIVATEPEEK 

game. G2 uses Gl as a sub game. 

DEFINITION 4.2.2. FORMULA GAME G2. Let G2 be a game in which each position contains the 

formulae WIi$ (VI, U2 , . . . , Uk, Vc, VP) and WIN0 ( VI, U2, . . . , uk, Vc, VP) in disjunctive normal 
form and the truth assignments to the sequence of variables of VI, U,, . . . , Uk, Vc, VP. Let U 

be the concatenation of all Vi (U = VI . U2. . ’ Ukj. We can emulate the moves of the individual 

players of the existentid Team Tl by a single move of a “super-player” as in game G1. 

The formulae WI& and WINI and the truth assignments to U U Vc are views by the universal 
player and the “super-player” emulating the existential team. However, VP can only be viewed 

by the universal Player 0. Player 0 moves by changing at most one variable in Vc UVp. For i > 0, 

Player i moves by changing at most one variable in Ui. The existential Team TI moves can be 

emulated by a ‘Super-player” changing at most one variable in every Vi. 

Team T, wins if WIN, is true after a move by Team T,. 

The following theorem is crucial to the main result of this section. 

THEOREM 4.2.1. Game G2 is universal for reasonable games of incomplete information. 

PROOF. We introduce a sequence of variables UA, U , B VA, VB of length m’ = 4m + 21+ 4. Let 
the concatenation of UA and UB be U, and let the concatenation of VA and VB be V. Recall, 

that U is also U1’ Us . . . uk. The variables of the sequences X, Y defined in previous construction 

will, in legal plays of our game G2 be contained in U, V as in Table 5. The private portion VP 

of V has a value of Ypo, Ypl, whereas Vc contains the values of the other elements of V. 

For each s E (0, 1) and a E (0, l}, let NEXTh,,(U, V) be the formula derived from NEXT,,, 

(X, Y) by substituting variables as in Table 5,,,. 

We define legal play such that if both teams play legally then Team TI wins iff M accepts w. 

Let legal cycle be a play which satisfies the restriction L for i = 1, . . . , m’: 

universal player changes the truth assignment of either VA(i) or V’(i), 

existential team changes the truth assignment of either VA(i) or UB(i). 

We also require restriction L’ to hold within a cycle. 

For distinct s, B E (0, 1) and each i, tl,,- (mod m’) < i 5 to+, universal Team TO assigns 

variables so that NEXTo+ = true when i = tO,s, and for tl,, (mod m’) < i 5 t~,~, 

Team Tl assigns variables so that NEXTI,, = true when i = tl,,. 

Thus, M accepts input w iff Team Tl has a winning strategy within legal plays satisfying 

restrictions L and L’. The following construction forces legal plays for both teams. 
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We introduce operation 63’ and A on any sequence Y, 2 of Boolean variables of length m’. @’ 

is defined as follows: 

Y CB’ 2 = (Y(1) Cr3 Z(l), . . . , Y(n) CI3 Z(n)), 

where CEI is the conventional Boolean exclusive or operative. 

A is defined as follows: 

AZ = (-(Z(n) @ Z(l)), Z(1) @ Z(2), . . . , Z(n - 1) 69 Z(n)). 

We also introduce a threshold-two function to prevent any player from modifying two variables 

in the same turn. For a sequence B of Boolean variables, THRESHTWO is defined as follows: 

THRESHTWO = v (B(i) A B(j)). 
l<i<jlm 

Observe that THRESHTWO becomes true if two or more variables in the sequence B are 

true. 

To detect illegal play we need to ensure that players move in turn. We introduce U’ and V’ as 
follows: 

U’=A(UA@UB), 

V’=A(VA@VB). 

Now, we have developed all the notation required to define ILJ& and II&. 

II&, = THRESHTWO (V’) v v (V’(i), A U’(i + 2) A -V’(i)) , 

l<ilTA’ 

ILL1 = // THRESHTWO V v (V’(i) A V’(i -t 1) A lV’(i - 1)). 

iET1 l<iSm’ 
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ILL0 is true if the universal player changes more than one variable on its turn, or moves out 
of turn. ILLi is true if the any player in the existential team changes more than one variable on 

its turn, or any player in the existential team moves out of turn. Consequently, if either ILL0 

or ILLi is true then the corresponding team has violated the aforementioned restriction L. 
Also for Team T,, we define ILL; to be true if restriction L’ is violated: 

ILL:, = v (v’(t,,,) A V’(&,) A ~NEX&(U, V)) 

sE{O,lI 

Now we can define the winning formulae in terms of ILL, and ILL:. Team TO wins if any 

player in Team Tl violates condition L or condition L’. Hence, WINa and WINi are defined as 

follows: 

WIN0 = ILLi v ILL:, 

WIN1 = ILL0 v ILL;. 

Given an input w E Cn, let pa be the initial position of the formula game Gi defined previously. 

Let p; be the initial position of formula game G2 contain formulae WIN1 and WIN0 as defined 

above, with initial truth assignments of pb as in Table 51,i and U’ = V’ = (1, 0, 0, . . . , 0) initially. 

It can be shown that Team TI wins game GO from initial position pb if and only if M accepts w. 

Thus, by Corollary 2.4.4, G2 is also a formula game universal for all reasonable games. I 

DEFINITION 4.2.3. FORMULA GAME GOB. Let GPB be the blindfold game derived from GS by 

requiring that universal player does not modify any variables visible to Team Tl. 

THEOREM 4.2.2. GOB is universal for all reasonable blindfold games. 

PROOF. We just need to observe if M would be restricted to a BAk-TM, and mimic the proof 

of Theorem 4.2.1. I 

4.3. Completeness Proofs for TEAM-PEEK Games 

We first recall two known results. 

THEOREM 4.3.1. (See [IS].) PEEK is DTIME(EXP(n))-complete. 

THEOREM 4.3.2. (See [3,4].) PRIVATEPEEK is DTIME(EXP2 (n))-complete. 

Peterson and Reif [l] use a TEAM-PRIVATEPEEK game which is not hierarchical to prove 

the following undecidability result. 

THEOREM 4.3.3. (See [Il.) I n g eneral, a TEAM-PIUVATEPEEK can be undecidable with two 

or more players on Team TI . 

We get a hierarchical TEAM-PRIVATE-PEEK if Team Tl side is restructured so that Player 1 

looks over the shoulder of all other players, Player 2 looks over the shoulder of Player 3 through k 
(but not l), etc. Hierarchical TEAM-PRIVATE-PEEK is not undecidable, and we can derive its 

complexity using the formula game G2 of Section 4.2. 

THEOREM 4.3.4. Hierarchical TEAM-PRIVATEPEEK is a universal reasonable multiplayer 

game of incomplete information. 

PROOF. TEAM-PRIVATE-PEEK is practically identical to the game G2, which has been shown 

to be universal for hierarchical reasonable games of incomplete information (by Theorem 4.2.1). 

The variables of G2 can be put in l-l correspondence with the plates in TEAM-PRIVATE-PEEK 

game box. The variables private to the universal team correspond to the plates not visible by the 
existential team. The clauses of WIN1 and WIN0 can be put in l-l correspondence with locations 

of holes which perforate the plates so that the players can peek from one side to another of the 
box iff a clause of WIN, is satisfied. Since G2 is universal for reasonable games in its class 

(cf. Theorem 4.2.1), hierarchical TEAM-PRIVATE-PEEK is a universal reasonable multiplayer 

game of incomplete information. I 
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THEOREM 4.3.5. Hierarchical TEAM-BLIND-PEEK is a universal reasonable multiplayer blind- 

foJd game. 

PROOF. TEAM-BLIND-PEEK is practically identical to the game Gzn. In fact, we can establish 

a l-l correspondence between GOB and TEAM-BLIND-PEEK by a mapping analogous to the 

one used for proof of Theorem 4.3.4. Since Gs is universal for reasonable games in its class (cf. 

Theorem 4.2.2), hierarchical TEAM-BLIND-PEEK is a universal reasonable multiplayer blindfold 

game. I 

Our log-space reduction from GM to G2 has an O(n logn) length bound. Thus, by Corol- 

lary 3.3.1 and Theorem 4.2.1, we can conclude the following. 

THEOREM 4.3.6. There is a D-TM which decides the outcome of G2 or TEAM-PRIVATE-PEEK 

in time T(n) then . , 

Furthermore, by Corollary 3.3.2 and Theorem 4.2.2, we can conclude the following. 

THEOREM 4.3.7. There is a D-TM which decides the outcome of G2B or TEAM-BLIND-PEEK 

in space S(n) then 

S(n) > EXPk 
U-l 

?-_ . 
log n 

The following corollaries follows from above theorems. 

COROLLARY 4.3.1. Hierarchical TEAM-PRJVATEPEEK is DTIME(EXPk+i (O(n)))-complete. 

COROLLARY 4.3.2. HierarchicaJ TEAM-BLIND-PEEK is DSPACE(EXPk( O(n)))-complete. 

As a general rule, we can generate games which for unbounded number of players are nonele- 

mentary to decide. Hence, we have natural problems with both elementary and nonelementary 

complexity (in addition to undecidability) . 

5. TIME BOUNDED MACHINES 

This section extends the previous results of Borodin [19,20] and Reif [3,4] to multiplayer games 

of incomplete information. We shall use dependency quantifier Boolean formula (DQBF) to 

illustrate the time bounded MPAk-TMs. We use the results to classify the time complexity of 

the new machines introduced in this paper. 

5.1. Previous Results 

DEFINITION 5.1.1. C,(,). T(n) CTtn) is defined to be the class of languages accepted with time A(n) 
bound T(n) and alternation bound A(n), and existential initial state. 

The following result is due to Borodin (19,201. 

THEOREM 5.1.1. For each T(n) > n 

DSPACE(T(n)) c Ez{E’, c NTIME(T(n)A(n)). 

The proofs of the following two theorems are due to Reif [3,4]. 

THEOREM 5.1.2. (See [3,4].) For each T(n) >_ n: 

BATJME(T(n)) = ET(n). 
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THEOREM 5.1.3. (See [3,4].) For eaclr T(n) 2 n 

PATIME(T(n)) = ATIME(T(n)). 

Chandra et al. [18,2] show that for T(n) 2 n 

NSPACE(T(n)) C_ ATIME (T(n)2) , 

ATIME(T(n)) C_ DSPACE(T(n)). 

Using these results in conjunction with Theorem 5.1.3, we can conclude the following. 

COROLLARY 5.1.1. For T(n) 1 n 

NSPACE(T(n)) C PA1-TIME (T(n)2) 

and 

PAr-TIME(T(n)) G DSPACE(T(n)). 

COROLLARY 5.1.2. For T(n) 2 n 

NSPACE(T(n)) G BA2-TIME (T@z)~) 

and 
BA2-TIME(T(n)) G DSPACE(T(n)). 

The reader is referred to [21,22] for the case of lower bounds for the PA1-TMs and the A-TMs 

with less than n2 time. 

5.2. Dependency Quantifier Boolean Formula 

Time bounded complexity for all our machines with three or more players is identical. We 

also introduce an analog to QBF [18,23] extended to multiplayer games. QBF was originally 

defined by Henkin, and later discussed by Barwise. Later, QBF was used by Chandra, Kozen 

and Stockmeyer [18,2] to demonstrate the complexity of the time bounded A-TMs. We shall use 

dependency quantifier Boolean formula (DQBF) to illustrate the time bounded MPAk-TMs. 

Consider the following QBF formula: 

VXr3YrVXz3Y2, F(X1,Xz,Y1,Yz), 

where X1, X2, Y1, Y2 denote the tuples of Boolean variables, and F(X1, X2, YI, Y2) denotes some 

function over the Boolean variables X1, X2, Y1, Yz. We assume F and the sets of variables has 

size O(n). Note that selecting Y1 depends on the value of X 1. Selecting Y2 depends on both X1 

and X2. We can denote this in a notation akin to Skolemization by Yr(X1) and Yz(Xr, X2). This 

allows us to modify the order of the variables 

~Xl~‘23~(X1)3Y2(Xl,X2), F(Xl,X2,K,Yz). 

We call a formula in the above form a dependency quantifier Boolean formula (DQBF). DQBF 

consist of universal variables and existential variables with dependencies, followed by a Boolean 

function. Whereas all QBF formulae have an associated succinct DQBF formula, the reverse is 

not true. For example, the following DQBF is not likely to have a succinct QBF: 

~Xl~~23~(X1)3EJ(X2), F(X1,X2,%rY2). 

All DQBF can be transformed into a functional form. For example, the above formula can be 

written as follows: 

3G13GzVX1VXz, P(X1, X2, G1(Xr), Gz(X2). 

However, the size of Gr and Gz can be exponential in the size of their inputs. Hence, this 
cannot be classified as a succinct representation. 

QBF has been shown to be PSPACEcomplete by Stockmeyer and Meyer [23]. In this paper, we 
show DQBF to be NEXPTIMEcomplete. Consequently, DQBF is more succinct representation 

than QBF if we assume that there is a language in NEXPTIME which is not in PSPACE. We 

now present our main result for DQBF. 
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THEOREM 5.2.1. DQBF is NEXPTIMEcomplete. 

PROOF. The proof is based on Lemmas 5.2.1 and 5.2.2 presented below. Lemma 5.2.1 shows that 

DQBF validity & NEXPTIME, and Lemma 5.2.2 shows that DQBF validity is NEXPTIMEhard. 

Note that the reduction is logarithmic space, since we can construct in logarithmic space a linear 

size DQBF formula that is valid iff the input is accepted by the nondeterministic TM. The 

theorem follows. I 

LEMMA 5.2.1. DQBF validity E NEXPTIME. 

PROOF. Our proof is based on the aforementioned functional interpretation of DQBF formula. 

We follow a two-phase procedure. 

l In the first phase, the functional dependencies (i.e., truth tables) for all existential (3) 

variables are guessed. This can be done in no more than nondeterministic exponential 

time. 
l In the second phase, the function is evaluated for all possible assignments to the univer- 

sal (V) variables, looking up in the truth tables the values of existential (3) variables to 

use in the evaluation. Each evaluation takes at most exponential time, and there are at 

most an exponential number of these evaluations. Consequently, the time consumed by 

the second phase is within the nondeterministic exponential bound. 

Since each phase take at most nondeterministic exponential time, the problem is within non- 

deterministic exponential time. I 

LEMMA 5.2.2. DQBF validity is NEXPTIMEhard. 

PROOF. We shall prove DQBF is NEXPTIMEhard by showing that: given a single tape, nonde- 

terministic exponential time bounded N-TM and an input string, we can construct (in log-space) 

an O(n) length DQBF formula which is valid if and only if the input is accepted by the N-TM. 

The DQBF formula will have the general form 

This formula is in direct correspondence with a three player game where the universal player 

requests each of the existential players for a complete description of the activities of the N-TM 

at two times, Tl and T2, on an accepting sequence of moves on the input of their choosing. 

In particular, Ti and TZ are each sets of O(n) Boolean variables, that can therefore represent 

exponential time. The Yi are tuples of variables representing the information 

OldStatei, NewStatei, OldSymi, NewSymi, Headi, Ladi, Motioni, 

where 

OldStatei denotes previous state of the machine, 
NewStatei denotes current state of the machine, 

OldSymi denotes previous symbol of the machine, 

NewSymi denotes current symbol of the machine, 

Headi is the head position, and 

Lasti is the last time the head was at that position (Las& is assigned as 0 for the first 

visit by default), and 

Motioni indicates the direction the head takes at that time (-1 for left, 0 for stationery, 
+l for right). 

OldStatei, NewStatei, OldSymi, NewSymi, and Motioni need a constant number of variables to 

represent. Headi and Las& need O(n) variables to represent. Consequently, the entire information 
OldStatei, NewStatei, OldSymi, NewSymi, Headi, La&i, Motioni can be represented in O(n) 
space. 
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The universal checking of the V-player is represented by the set of conjunctive clauses forming 

the function F. We employ the following. 

1. Both players choose the same nondeterministic set of moves. Symbolically, if Ti = T2 
then Yi = Yz and the state, symbol, motion transition is allowed. That is to say that both 

players choose the same nondeterministic set of moves when TI = Tz. 

2. The players initiate correctly, i.e., if Tl = 1 then the OldState is the initial state and 

Head1 = 1 is the initial position, Lasti = 0, etc. 

3. Whenever two players give the same head location, the time given by the first player for 

the previous time it was at that position (La&l) cannot be earlier than the time for the 

second player at that position (Lutz). Furthermore, if the times are the same then the 

symbol written by the second player is the symbol read by the first player. 

In other words, if Headi = Head2 and TI > Tz then Last1 < Tz, and if TI = T2 then 

OldSymi = NewSymz. , 

4. The first visit to a cell gives the old symbol according to the initial contents of the tape, 

i.e., if Last1 = 0 then OldSymi is the Hea&ih input symbol if Head1 < n and blank 

otherwise. 
5. The motion of machine is legal and the state is preserved, i.e., if Tl + 1 = T2 then 

Head2 = Head1 + Motioni and OldState = NewStatei. 

6. If Tl = T(n) (the exponential time limit) then NewStater is accepting. 

Hence, we are existentially choosing the complete operation of the N-TM without writing it 

all down, and it is being tested by universal quantification. 

The lemma follows since we have shown that 

V’Ti, T23 Yi(Ti)y2(%), F(Ti,T2,Yi,Y2), 

is NEXPTIMEhard. I 

5.3. Time Bounded Machines 

We are now ready to classify the time complexity of the new machines introduced in this 

paper. Unlike space bounded computations, time bounded multiple person alternation games 

do not form a hierarchy. The MPAk-TM and the PAk-TM when k > 2 as well as the BAk-TM 

when k 2 3, are all of same complexity for same time bound. We can prove this by using DQBF 

verification. Consequently, space is a much more powerful and critical resource than time for 

the aforementioned types of multiple person alternating Turing machines. There is not a clear 

division between two person games and three (or more) person games based on time complexity. 

LEMMA 5.3.1. For countable T(n) 2 n and k > 2 

NTIME(EXP(T(n))) c PAI, - TIME(T(n)). 

PROOF. In a game with two existential players and a universal player, we can simulate the 

evaluation of the lower bound formula in the DQBF = NEXPTIME proof as follows: 

1. The universal player sends a time to the &-player. 

2. The &-player replies with Yr tuple as a response. 

3. Similarly, the universal player sends a time to the &-player. 

4. The &-player replies Y2 tuple as a response. 
5. The universal player then checks the responses as in the lower bound proof. 

Consequently, in time T(n) we can verify the acceptance of an N-TM with time bound 

NTIME(EXP(T(n))). The lemma follows. I 

Observe that this game is also hierarchical since the &-player is asked first without it knowing 
what 32 player would be asked. Since the PAk-TM is a special case of the MPAp-TM, we can 

extend Lemma 5.3.1 to the MPAk-TM. 



Multiplayer Noncooperative Games 987 

COROLLARY 5.3.1. For countable T(n) 2 n and k 2 2 

NTIME(EXP(T(n))) C MPAk-TIME(T(n)). 

Similarly, we can construct an analogous result for the BAk-TM. 

COROLLARY 5.3.2. For countable T(n) 2 n and Ic 2 3 

NTIME(EXP(T(n))) E B&-TIME(T(n)). 

PROOF. The lower bound proof for B&-TIME is based on a trick which allows the universal 

and existential players to get around to the blindfold rule and communicate with each other. The 

trick enables the universal player to send information to the &-player as well as get its response. 

Subsequently, the universal player can send information to &-player, and get its response as well. 

The 32-player is initially shuttling between two designated states on first 2T(n) moves. The 

universal player can advance the $-player to one of those states, advance the 3i-player, which 

will see the 32-player’s state and a information bit has been sent. This process is repeated until 

all T(n) bits have been sent. The 3i-player now sends the Yi-tuple to the universal player via 

shared tape cells. 

The universal player again sends T(n) more pieces of information to the 3i-player who relays 

it back to the &-player. 

The 32-player does not know when 3r-player makes its move, so it does not know what time 

was sent to the 3i-player. Similarly, the 3r-player has already sent its response when 32-player’s 
time is received. Consequently, the hierarchical structure is preserved. 

The proof follows from DQBF simulation. I 

Now, we turn our attention to upper bounds proofs. Since the MPAk-TM is the most powerful 

of our machines we need only to show that the MI’&-TM is contained in NTIME(EXP(T(n))) 

to complete our results. 

LEMMA 5.3.2. For countable T(n) 2 rz, and k 2 2 

&fPAk-TIME 2 iVTIME(EXP(T(n))). 

PROOF. In general, this proof follows the argument used for upper bound proof for the DQBF. 

We first modify the machines so that the existential players’ strategies only depend on the 

current visible position. This is accomplished by requiring each player record on extra tapes 

the complete history of visible information up to that point. This shall consume O(T(n)) time 

per player. The resulting machine is Markov machine. Since each position implicitly contains 

the history of visible position, Markov machines have the property that the existential players’ 

strategies only depend on the current visible position (not the history of visible positions). 

We simulate the running of this machine by first guessing the correct strategy for each player. 

This is like a “truth table” method where we record what each existential player is supposed to 
do in each situation. This takes nondeterministic time 2°(T(n)). 

Each player’s strategy is written on separate tape in time order. The time is equal to length 
of history. The machine is now simulated deterministically. The universal player is represented 
by a set of states as in the previous section. A set of configuration for V-player takes no longer 

than 2°(T(n)) space to write down. The existential players’ moves are simulated by looking up 

the appropriate move for each situation from the tapes. 

Each simulated move will be made in time exponential in time (T(n)) for either the univer- 

sal player or the existential player. There are T(n) simulated moves, hence, the total time is 
nondeterministic exponential in T(n). I 
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THEOREM 5.3.1. For countable T(n) 2 n and k > 2 

hilPAk-TIME(T(n)) = NTIME(EXP(T(n))), 

PAk-TIME(T(n)) = NTIME(EXP(T(n))), 

BAk-TIME(T(n)) = NTIME(EXP(T(n))). 

PROOF. MPAk-TI&fE(T(n)) = NTIME(EXP(T(n))) f 11 o ows Corollary 5.3.2 and Lemma 5.3.1. 

Since the P&-TM and the B&TM are special cases of the MI’&-TM, we can deduce that 

PAk-TIME(T(n)) C MPAk-TIME(T(n)), and that BAk-TIME(T(n)) G MPAk-TIME(T(n)). 

Consequently, P&-TIME(T(n)) = NTIME(EXP(T(n))) f o 11 ows from Corollary 5.3.1 and Lemma 

5.3.1, BAle-TIME(T(n)) = NTIME(EXP(T(n))) f o 11 ows from Corollary 5.3.2 and Lemma 5.3.1. 

The proof is now complete. I 

5.4. Relationship Between Private and Blind Machines 

It follows from definition that any B&-TM is a P&-TM with additional constraints. However, 

the converse relationship is more involved. 

THEOREM 5.4.1. For any PAk_i-TM, there is an equivalent B&TM. 

PROOF. From Theorem 3.3.4, 

and 

PAk_i-SPACE(S(n)) = DTIiVfE(EXPk(S(n))) 

BAk-SPACE(S(n)) = DSPACE(EXPk(S(n))). 

We also know from fundamental complexity theory that 

DTIME(EXPk(S(n))) > DSPACE(EXPk(S(n))). 

Consequently, PAk-i-SPACE(S(n)) 2 BAk-SPACE(S(n). 

From Theorem 5.3.2, PAk_i-TIiE(T(n)) = BAk-TIME(T(n)). Combining the time and space 

bounds, the theorem follows. I 

6. OTHER ALTERNATING MACHINES 

6.1. Alternating Finite State Machines 

Intuitively, we would have defined the PAk-FA and the BAk-FA to be a constant space P&TM 

and BAk-TM, respectively. However, if we do so, these machines would not even be able to accept 

regular languages. On the other hand, if the input tape were private to the universal player it 

could be used as a size n upward only counter. Since all players know the input initially, the 

privacy of input tape to the universal team really amounts to the privacy of input head position 

for the universal player. Hence, the technique of Section 3 can be applied all over again, since we 

can count to large numbers. Observe that the universal player can count up to n only, so a game 

with k existential players can count up to TWCEXPk(n) with size n counter. Consequently, it 

is trivial to generalize the results of Section 3. 

THEOREM 6.1.1. 

and 

PAk-SPACE( constant) = DTIME(EXPk (n)) 

BAk-SPACE(constant) = DTI&fE(EXPk_ i (n)), 

This is where the fact that the B&-TMs simulate, and are simulated by, the N-TMs becomes 

important. For k = 1, the nondeterminism cannot be eliminated without affecting the order of 

growth. 

To get the PAk-TM that accept only regular languages, we need to make the input tape a 

public resource. 
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DEFINITION 6.1.1. PAk-FA. A PAk-FA is a constant space PAk-TM with input tape one-way 

and public to all. 

DEFINITION 6.1.2. BAk-FA. A BAk-FA is a constant space B&-TM with input tape one-way 

and public to all. 

Now we can characterize the languages accepted by these machines. 

LEMMA 6.1.1. P&-FA and BAk-FA accept only the regular languages. 

PROOF. The extended subset construction of Sections 3.1 and 3.3 when applied to PAk-FA 

results in configurations in the modified game tree of constant size. The only nonconstant size of 

information is the input head position which does not need to be put into configurations since it 

is public to all. Hence, the whole game tree is constant size, and can be explored for acceptance 

by an NFA with ExPk(n) states, where n is the number of states of PAk-FA. 

The proof for BAk-FA is analogous. I 

Chandra and Stockmeyer [18] prove that alternating finite automata (A-FA) is exponentially 

more succinct, in some cases, than NFAs. We show that our PAk-I?As are even more succinct. 

Consider the variant of language used by Chandra and Stockmeyer [18] 

L, = {{o,l}*zu{o, 1)*&U ( w E {o,l}n} * 

It is easy to show (via counting arguments) that L, is not accepted by any DFA with one-way 

input head which has fewer than 22” states, or any NFA with fewer 2n states. It can be accepted 

by an O(n) state A-FA (but not by any A-FA with fewer states). Given PAk-FA with O(n) states, 

we can again apply our counting methods again to count up to TWOExPk(n). It is a simple 

matter to use this to accept L, with a O(log n) state PAI-FA. Intuitively, one can expect that L, 

can be accepted by O(log”(n))-state PAk-FA, where logk(n) refers to lc repeated logarithms of n. 

However, not all L,s can be represented by O(loglogn) state PAZ-FAs. Some can be accepted 

by O(loglog n) state PAZ-FA, for example when n is a power of two. Hence, we have to phrase 

our main succinctness theorem accordingly. 

THEOREM 6.1.2. LTWOEXP,(nI is accepted by O(n) state P&-l% (and also a BAk-FA), but no 

DFA with fewer than TWOExPk+z(n) states, nor any NFA with fewer than TWOEXPk+l(n) 

states, nor any A-FA with fewer than TWOEXPk(n) states. The constant factor for PAk-FA 

includes a ck term. 

As a direct application of PAk-FA and B&-F& we consider the “(not) emptiness of language” 

question. Given a TWOEx&(O(n)) p s ace bounded N-TM and an input, it is quite easy to 

construct an O(n) state BAk-FA which accepts only the accepting sequence of configurations of 

the N-TM on the input, if it exists. 

The technique uses the ability to count to large numbers to check length of configurations, 

corresponding positions in adjacent configurations, etc. Similarly, for PAk-FA the upper bounds 

follow from the extended “subset construction” for the DFA, which results in an NFA with 

TWOEXPk(O(n)) states. Hence, only strings up to that length have to be checked, with the 

space to write down the string being the dominant factor in the analysis. 

THEOREM 6.1.3. The (not) emptiness of language question is NSPACE(TWOEXPk(O(n)))- 

complete for PAk-FA as well as for BAk-FA, where n is the number of states. In terms of 

representation of the machine, a log n factor is introduced using a standard form which reduces 

the top exponent of the lower bound by a factor of logn. 

Stockmeyer [24] proves the “not empty complement’: question for extended regular expressions 

with nested complements at most k deep is NSPACE( TWOEx&(O(n)))-complete (with poly- 

linear reduction). Hence, nesting of players in a hierarchical PAk-FA is indirectly related to 
nesting of complements in extended regular expressions. 
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6.2. Private Pushdown Store Automata 

A large number of results based upon alternating versions of pushdown store automata (A- 
PDA) are due to Lsdner, Lipton and Stockmeyer [25,26,27]. Characteristics of several versions 
resulted in well-defined time and space complexity classes. We do not expect that studying 
multiplayer PDAs will provide any such insights as even very simple forms accept r.e. languages. 

DEFINITION 6.2.1. MPAk-PDA. An MPAk-PDA is an Ml’&-TM with only two tapes: a ogle 
way, read only tape public to all players, and pushdown store tape. The pushdown store tape 
simulates a pushdown store by printing blanks whenever it moves left. 

THEOREM 6.2.1. All r.e. languages are accepted by MPAi-PDA. 

PROOF. The pushdown store is allowed to be private to the universal player. For a given single 
tape D-TM, the existential player of the game for that D-TM has the task of sending to the 
universal player, a character at a time, the sequence of configurations leading to acceptance on 
the input (if it exists). Every other configuration will be in reverse order: (Cc, CF, Cz, . . . , Cg”). 
The universal player checks the first against the input to ascertain if it is the initial configuration. 
It chooses to check two adjacent configurations to verify that one legally follows from the other. 
The first one it chooses is secretly copied over to the pushdown store as it comes in. It is then 
popped in phase with the next configuration as it comes in. The player verifies that corresponding 
tape cells match up right, head motion, and symbol written are correct, etc. The fact that 
every other configuration is in reverse order enables the MPAi-PDA to use the pushdown store 
like a stack to check adjacent configurations. Finally, the universal player checks the last tape 
configuration to ensure that it is associated with an accepting state. I 

6.3. Markov Alternating Machines 

We have referred to Markov alternating Turing machines (MAk-TMs) in several places in 
this paper. These machines restrict the existential players’ access to the history of positions 
in formulating their strategy. We are interested in obtaining a (nondeterministic) hierarchy of 
machines to go along with our deterministic time and nondeterministic space hierarchies. While 
we obtain a nondeterministic time class with a space bounded MAi-TMs, they do not generalize 
for more players. Our 

THEOREM 6.3.1. For 

main theorem for a time bounded MAk-TMs is as follows. 

countable T(n) > n and any k > 1 

MAk-TIME(T(n)) = NTIME(EXP(T(n))). 

PROOF. The time bounded MAk-TMs represent the PAk-TMs which have written their histories 
down. Since the MAk-TM is a special case of the MPAk-TM, the upper bound then follows from 
Theorem 5.3.1., which states that MPAk-TIME(T(n)) = iVTIME(EXP(T(n))). 

For the lower bound, we just need to show that the MAi-TM can play DQBF lower bound 
game in O(T(n)) time. The universal player initiates by sending the existential player the first 
time, which it writes down. The existential player responds with appropriate Yr-tuple, and erases 
its tape. Subsequently, the universal player sends the second time. Observe that the existential 
player has forgotten the first time, and must respond to as if it were another player (like the 
second player of the DQBF game). Consequently, it sends the Yz-tuple. The universal player is 
responsible for checking both the Yr and Yz tuples. The theorem follows. I 

Now, we derive the corresponding space result. Unlike other alternating machines, we find that 
“SPACE = TIME”‘. 

THEOREM 6.3.2. For countable S(n) 2 logn and any k >_ 1 

MAk-SPACE(T(n)) = NTIME(EXP(S(n))). 



Multiplayer Noncooperative Games 991 

PROOF. The lower bound simply follows from the previous theorem since a S(n) space bounded 

machine has at least S(n) time available to it. (The case for S(n) < n is a simple extension to 

the previous proof.) 
For the upper bound, we will first show that any MA&-TM with space bound S(n) can be 

simulated by an MAi-TM with the same space. We arrange for one player to make moves for all 

players. This technique as in the proof of Theorem 6.3.1. When it is time for Z&-player to make 

a move, the universal player sends the existential player of the MAi-TM the information visible 

to that player along with that player’s number. The existential player must respond as if it were 

that player by sending the new visible position back to the universal player. Subsequently, it 

clears its tapes and state to prepare for the next request. This results in the existential player 

to forget what move it made for that player. It involves no increases in space. To simulate 

a MAi-TM with bounded space, we first note that any path of the game tree which is deeper 

than exponential in S(n), contains an infinite loop. For the MAk-TMs, unlike the PAk-TMs, 

any repetition of configurations (an exponential in space number) causes an infinite loop. If the 

existential player has a winning strategy, then it must also have one that corresponds with the 

accepting subtree whose depth is at most exponential in S(n). This, we have to explore the game 

tree to only a depth of EXP(S(n)). 

The tree is explored as in proof of Corollary 5.3.3. First, the complete set of moves to be 

made in any situation by the existential player is written down, taking (nondeterministic) time 

EXP(S(n)). Th en, the game tree is explored using the extended “subset construction” to rep- 

resent the universal player’s private configurations. There will be EXP(S(n)) steps, each taking 

time EXP(S(n)). The total time therefore, is NTIME(EXP(S(n))). The proof is now com- 

plete. I 

7. CONCLUSION 

This paper has provided matching lower bounds for algorithms to decide the outcome of mul- 

tiplayer game of incomplete information in our paper [1,5]. We define enhanced alternating 

Turing machines to capture the notions of these multiplayer games. We also extend the idea of 

multiplayer alternation to other machines, like FA, PDA, and Markov machines. 

In general, multiplayer games of incomplete information can be undecidable, unless it the 

information is hierarchically arranged (as defined earlier in this paper). Hierarchical multiplayer 

games of incomplete information are decidable, and each additional clique (subset of players with 

same information) increases the complexity of the outcome problem by a further exponential. 

Consequently, if multiplayer games of incomplete information with k cliques have a space bound 

of S(n), then their outcome is k repeated exponentials harder than games of complete information 

with space bound S(n). The space bound of blindfold multiplayer games is related to deterministic 

space bound. The main results are summarized in Theorem 3.3.4 as follows. 

For S(n) 2 log(n) 

P&-SPACE(S(n)) = DTIi%fE(EXPk+i(S(n))), 

EL&SPACE(S(n)) = DSPACE(EXPk(S(n))). 

Time bounded games are shown not to exhibit such complexity of towering exponentials. 

The main results are summarized in Theorem 5.3.1, Corollaries 5.1.1, and 5.1.2. For countable 

T(n) > n and k 2 2: 

NSPACE(T(n)) C PA1-TIME (T(n)‘) C DSPACE (T@I)~) , 

NSPACE(T(n)) c BA2-TIME(T(n)2) C DSPACE (T(n)2) , 

hfPAk-TIME(T(n)) = NTIME(EXP(T(n))), 

PAk-T&fE(T(n)) = NTIME(EXP(T(n))), 

BAk-TME(T(n)) = NTIME(EXP(T(n))). 
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Two variants TEAM-PRIVATE-PEEK and TEAM-BLIND-PEEK are defined and shown to 

be universal for their respective classes of games. DQBF is shown to be NEXPTIMEcomplete. 

It would be interesting to research more general game theoretic models with arbitrary payioffs. 

Our models can be enhanced to reflect a more economics-oriented approach to games. 
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