


Let PRIVATE-PEEK be the resulting game 
of incomplete information. By requiring that the 
barriers on the side of player I obscure the 
locations of al l  the opponent's plates, we have 
the blindfold game BLIND-PEEK. 

I 
player : 

.., 

full ~playeP 2 
ba*,ele~ 

Fi u ~ l ~ :  A pocition of RLIr~D-PETX 

The outcome of a 9ame G is the problem of 
determining the existence of a winning strategy 
for player 1, given an i n i t i a l  position ~0" Let 

the reach of a game G be the function of n giving 
the maximum number of positions reachable from 
a given position of length n 

Ifno apriori-bound is placed on the reach of 
games, the outcome problem is undecidable (see 
the computation games of section 3). 

We define in section 2 a class of games which 
are reasonable in the sense that (I)  the next-move 
relations are polynomial time computable, and 
(2) the number of positions reachable from a given 
i n i t i a l  position R is bounded by an exponent in 
the size of x. 

Given a class of games~, a game G U is 

universal to ~ i f  ( I )  GUn, and (2) the outcome 
problem for each G ~ is log-space reducible 
(see [Stockmeyer and Meyer, 1973]; a log-space 
reduction is always polynomial time) to the 

outcome problem for G U. 

The game PEEK was shown universal to reason- 
able games of perfect information in [Chandra and 
Stockmeyer, 1976]. We show BLIND-PEEK is univer- 
sal for al l  blindfold reasonable games, and that 
PRIVATE-PEEK is universal for al l  reasonable games. 

While the outcome problem for PEEK is (log- 
space) complete in exponential time, the outcome 
problem for BLIND-PEEK is complete in exponential 
space, and the outcome problem for PRIVATE-PEEK 
is complete in double exponential time. 

Games (with easy-to-compute next-move relations) 
can be considered to be computing machines. Game 
G accepts input m, considered to be a position of 
G, depending on the outcome of the game from m. 
Games of perfect information are similar to the 
alternating Turin 9 machines (A-TMs) of [Chandra 
and Stockmeyer, 1976] in which existential states 
( identi f ied with player I) alternate with universal 
states (player 2) during a computation. 

In th is  paper we introduce the notions of 
"pr ivate a l te rnat ion"  and "b l ind a l te rna t ion" .  
In "pr ivate a l te rna t ion"  we add to an A-TM 
certa in port ions of states and certa in work tapes 
pr ivate to universal states (player 2); the 
machine cannot read the pr ivate tapes whi le in 
ex is ten t ia l  states. The resu l t  is a PA-TM. In 
"b l ind a l te rnat ion"  we r e s t r i c t  a PA-TM so that 
the universal states can wr i te  only on t he i r  p r i -  
vate tapes, and on no other tapes. The resu l t ing  
machine is a BA-TM. Acceptance of input s t r ings 
by these machines is defined by the outcome in 
corresponding computation games. 
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Fl~ure 2: An alternating Turing 
machine with a tape private to 
the universal states QV 

Let F(n) be a set of functions on variable n. 
For each ~ ~ {D,A,PA,BA}, le t  

~SPACE[F(n) ] (~TIME[F(n) ]) 

be the class of languages computable by ~-TMs 
within some space(time)!bound in F(n). Also le t  
EXP(F(n)) be the set of functions 

{ c f ( n ) I c>O and f~F (n )~  

and let  EXP(f(n)) denote EXP({f(n)}). 

[Chandra and Stockmeyer, 1976] relate the 
space and time complexity of A-TMs and D-TMs 
as follows: 

For each S(n) ~ log n, 

ASPACE[S(n)] = DTIME[EXP(S(n))] 

ATIME[EXP(S(n))] : DSPACE[EXP(S(n))] 

We characterize the time and space complexity 
PA-TMs and BA-TMs in terms of the time and space 

complexity of A-TMs and D-TMs as follows: 

For each S(n) ~ log n, 

BASPACE[S(n)]= ATIME[EXP(S(n))] 

= DSPACE[EXP(S(n))] 

PASPACE[S(n)]= ASPACE[EXP(S(n))] 

= DTIME[EXP(EXP(S(n)))] 

= PATIME[EXP(S(n))] 
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TIME ~PACE 
7 

P ~  r(n) A 
A BA 

Figure 3: Complexity Jumps for  a-TMs from 
~-SPACE to determinist ic time and space. 

a = A for  "a l ternat ion"  
= BA for  "bl ind a l ternat ion"  
: PA for  "pr ivate a l ternat ion" 

This paper is organized as fol lows: 
the next section defines games of incomplete 
information, section 3 introduces our "pr ivate 
a l ternat ing" and "bl ind a l ternat ing"  Turing 
machines, section 4 presents our complexity 
resul ts ,  section 5 described certain propo- 
s i t iona l  formula games which are universal for  
reasonable games, section 6 concerns universal 
b l indfo ld games on f i n i t e  state automata, 
section 7 concerns pursuit  games and in 
section 8 we conclude th is  paper with an 
open problem concerning p robab i l i s t i c  strategies.  

2. Combinatorial Games of Incomplete Information 

Let a (two-person) .qame be a tuple 

G = (P1,P2, ÷,~ ~,CP,PPi,PP 2) 

where CP, PPI' PP2 are sets, 

P1,P2 ~ CPxPPixPP 2, -~ _~ PixP2 , 

and ~ _: P2xP1 , 

The p3ayers are named I ,  and 2 and are considered 

to be opponents of each other. Fix a player 

ac {1 ,2 }  and l e t  b be his opponent. A posit ion 

11 of player a is a tuple (~c,~l,~2)~Pa where 

(1) x1 is the portion of 11 pr ivate 

to player I , 

(2) x2 is the portion of 11 pr ivate 

to player 2, 

(3) ~c is the portion of 11 shared in 

common by both players. 

Let visiblea(11) = (~c,~a); i n t u i t i v e l y ,  th is  is 

the portion of posit ion 11 that player a may view. 

Also, l e t  privatea(~ ) = Xa- 

The next-move re la t ion ÷ contains the set a 
of pairs (11,R')cPa×Pb such that player a has 

a legal move from posit ion 11 to posit ion H'. We 

require that ÷ be independent of that portion a 
of a posit ion pr ivate to player b. Formally, i f  

n ~ R' then privateb(~ ) = privateb(H' ). Also, 

i f  11 ~ ~' and ~ ~ ~' and v is ib lea(~)=v is ib lea(~) .  

then x ~ '  and ~ 11'. A posit ion ~ P a  

with no next move for  player a is winning for  

player b and losing for  player a. 

Fix an i n i t i a l  posit ion H ocPa. 

The pair  Gno (G,no) is a concrete game. 

Concrete game G is 
Ho 

( I )  perfect information i f  p r i va te l (~ ) ,  

private2(~) are empty for  each R~P~o ( i . e .  

no posit ion 11 c P110 contains a posit ion with a 

portien pr ivate to any player) .  

(2) b l indfo ld i f  n+~ ' impl ies  
2 

visiblel(11) = v i s i b l e l ( ~ ' )  for  a l l  11~PHH 0 

( i . e .  player 2 never modifies the common portion 

of a posi t ion) .  

(3) s o l i t a i r e  i f  R÷11' and 11÷~" implies 
2 2 

11' : H" for  each 5,H', H"~P~o-{110} ( i . e .  the 

next-move for  player 2 is uniquely defined 

for  a l l  posit ions of player 2 in P~-{~O}). 

A game G is perfect information (b l ind fo ld ,  

s o l i t a i r e )  i f  each of i t s  concrete games are. 

Chess, Checkers, and Go are a l l  concrete games 

of perfect information. Some examples of b l ind-  

fo}d games are given in Section 6. Also 
see [Jones, 1978]. 
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Kriegspiel ,  the German game of "bl ind chess'[ is 

not t r u l y  a concrete b l indfo ld game since there 

is a gradual t ransfer of posit ional knowledge 

as the game progresses. Batt leship and Master- 

mind are ( for th is  same reason) not concrete 

bl indfold games, but are concrete s o l i t a i r e  

games. 

A play of G~o is a (possible i n f i n i t e )  

sequence ~O,~l,H2,~ . . . .  of positions of 

player a al ternat ing with positions of player b 

such that ~ o ~ i ,  ~ i ~ 2 ,  ~2~R3 . . . .  

A play is wjnnin 9 for player a s {1 ,2} i f  i t  

is f i n i t e  and terminates with a win for player a. 

Let P~o be the set of positions reachable 

from Xo, and including ~0" The game tree of 

GHo is the minimal (but possible in f in i te )  

directed tree T with node set N, root no~N, 
Ro 

and node labell ing ~:N÷P~o such that 

for each play RO,RI,~ 2 . . . .  there is a path 

no,nl,n 2 . . . .  with x(n i )  = R i for 

i = 0,1,2 . . . .  The node set N is 

partitioned into sets N1,N 2 consisting of 

those nodes labelled in PI,P2 respectively. 

For each player a ~ {1,2}, we define an 

equivalence relation ~over N as follows: 

( i )  no ~no , 

(2) for  a l l  nodes n,m~N-{n 0} with parents 

n',m' , l e t  n~m i f  and only i f  n '~m' and 

v is ib lea(H(n))  = vis iblea(~(m)) , 

(3) no other nodes are related by ~ . 

I n t u i t i v e l y ,  ~ relates those nodes of N which 

player a cannot dist inguish in plays of GRo. 

Let a ,bc {1 ,2 }  be d is t inc t  players. 

Let N'a be the set of nodes of N a with at 

least one s ib l ing.  

A (determinist ic)  strategy for  player a 

is a mapping G:N' a ÷N b such that for  a l l  

n,m ~ N ~ , 

(1) o(n) is a s ib l ing of node n, 

(2) n~m implies ~(n)~o(m). 

Player a plays by strategy o i f  

~(no), ~(n l ) ,  R(n 2) . . . .  is a play and 

n i ~N~ then ni+1=o(ni). The strategy o 
is winning i f  player a wins on a l l  maximal 

plays by strategy o. Note that a strategy for  

player a essent ia l ly  defines a mapping from 

the v i s ib le  portions of plays (ending with a 

posit ion of player a) to some legal next-move 

for player a. Winning strategies for games 

of perfect information can always be made 

Markov strategies,  i .e .  can be made indepen- 

dent of previous play and only dependent of 

the current posit ion. Winning strategies for  

games of incomplete information, on the other 

hand, often depend highly on previous play to 
determine Cat least par t l y )  the pr ivate 

posit ion of the opponent. 

Winning strategies are now characterized by 

f i n i t e  subtrees of the game tree T~0. The 

subtree TRo,O induced by strategy o is 

derived from the game tree ~o by deleting each 

subtree rooted at m and the edge leading to m, 

for a l l  nodes mEN b- {n  o } not in the range ofo .  

Proposition Strategy ~ is winning for  

player a i f  and only i f  

( I )  T~o,~ is f i n i t e  but not empty, 

(2) a l l  leaves of T~o,~ are label led 

with winning positions for  player a. 

(Winning strategies may also be characterized 

by minimal f ixed points of functions on 

s t ra teg ies . )  

The outcome of concrete game G~0 is a 

win for  any player a ~ {1,2} with a winning 

strategy, else is a draw. 
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The outcome problem for game G is :  

given i n i t i a l  posit ion ~0, determine i f  player 1 

has a winning strategy. 

Let game G' be derived from game G by 

making common to both players that portion 

of positions o r i g i n a l l y  pr ivate to player 1. 

Note that the outcome problem for game G' 

is ident ical  to the outcome problem for the 

or ig inal  game G. (Nevertheless, the outcome 

of p robab i l i s t i c  strategies,  as defined in the 

f ina l  section, are highly dependent on the 

existence of pr ivate posit ions of both p layers. ) .  

The game G : (Pl,P2 ~ ,  ~,CP,PPi,PP2) 

is reasonable i f  
[1] each posit ion Hc PzU P2 is represented 

as a s t r ing in {0,1}* , 

[2]  i f  posit ion ~' is reachable from posit ion 

by a play of G~, then [~I = IH'I • 

[3] for  each player aE{1 ,2 } ,  the pairs of 

the next-move re la t ion ÷ are recognizable a 

in polynomial time. 

Note that any concrete reasonable game can 

be real ized as a physical object ( i . e . ,  with a 

f i n i t e  game board and f i n i t e  sets of tokens for  

marking posi t ions).  A game sat is fy ing only 

assumptions [1] and [3] is essent ia l l y  a 

universal computing machine, as formalized in 

the next section. 

3. Al ternat ing Automata with Private Tapes 

The a l ternat ing automata proposed by 

[Chandra & Stockmeyer, 1976] have a 

natural correspondence to games of perfect 

information. The states of a l ternat ing 

automata are named e i ther  universal or 

ex i s ten t i a l .  The sequencing between 

ex is ten t ia l  and universal states corresponds 

to the a l ternat ion of moves by players in the 

play of a game. In par t icu lar ,  the outcome 

problem for reasonable games of perfect 

information is log-space 

equivalent to the recognition problem for  

l inear-space bounded al ternat ing Turing 

machines. 

We introduce here the notion of 

a l ternat ing automata with pr ivate tapes 

and pr ivate portions of states, 
which have a natural correspondence to games of 

incomplete information. In fac t ,  we w i l l  define 

the languages accepted by these machines by the 

existence of winning strategies for  the corres- 

ponding computation games. The outcome problem 

for reasonable games of incomplete information 

is log-space equivalent to the acceptance 

problem for  l inear-space bounded a l ternat ing 

Turing machines with pr ivate tapes. 

Let an a l ternat ing Turing machine with 

pr ivate tapes (PA-TM) be a 12-tuple 

M = (Qc,Qp,Q,qo,QF,Q ,E , r ,# ,b , tc , tp ,~ )  
where 

Qc are the common portions of states 

Qp are the pr ivate portions of states 

Q ~ QcXQp 
Q is  the set of states of M 

q0cQ is the i n i t i a l  state 

QF ~ Q are the universal states 

(Q~ ~ Q-Q~ are the ex is ten t ia l  states) 

s , r  are the sets of input and tape symbols 

# , b c r - s  are end marker and blank symbols 

~ (Qxr t ) x (Qxr tx { le f t , r i gh~}  t )  

is the next-move re la t i on ,  

where t = t +t + i .  
c P  

There is a single,  read-only input tape 

(named O) i n i t i a l l y  containing #m#, where m~s* 

in the input s t r ing.  There are also tc+t p work 

tapes, i n i t i a l l y  containing two-way i n f i n i t e  

str ings of the blank symbol b. The t c common 

work tapes i . . . .  t c might be read or wr i t ten 

on from any state of Q, whereas the t pr ivate 
P 

work tapes tc+l  . . . . .  tc+t p can only be read 

and wr i t ten from the universal states of Q . 

Also, ~must be independent oY the pr ivate 

portions of ex is ten t ia l  states and must not 

contain state t rans i t ions from ex is ten t ia l  

states in which the pr ivate portion of the state. 

is modified. 
The PA-TM is a natural general izat ion 

of machines previously described in the 

l i t e ra tu re .  I f  M has no pr ivate tapes, i t  is  

an a l ternat ing Turing machine (A-TM) as 

described by [Chandra & Stockmeyer, 1976]. 
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I f  M is fur ther  rest r ic ted to only 

ex is tent ia l  states, then i t  is a nondeter- 

min is t ic  Turin 9 machine (N.-TM) as is now 

common in the l i t e ra tu re .  I f  M is s t i l l  fur ther 

rest r ic ted to be determinist ic ,  then we have a 

deterministic Turin~ machine (D-TM or just T M), the 

common, garden-variety universal machine as or ig inal ly  

envisioned by Turing. 

We now define s t i l l  another machine (this 

machine w i l l  be relevant to blindfold games.) 

Let a BA-TM be a PA-TM restricted so that the 

universal states never write on the common 

and input tapes, never move their heads, and 

never modify the common portion of a state. 

Let a confi ura ~ be a sequence 

C = (xoqy 0 . . . . .  Xtc+tpqYt +t ) 
c p 

such that xj , yj are the non-blank prefixes 

of tape j to the le f t  and right of the 

scan head, and q~Q is a state. Configuration C 

is existential (universaIj accepting) i f  state 
q i s .  

Let NEXTM(C ) be the set of configurations 

which are reached from configuration C by a 

single step of M, as defined by the relation a. 

We now define the computation game 

G M = (P1,P2, -~-, ~- ,CP,PPi,PP 2) 

where 

Pz is the set of ex is ten t ia l  configurations 
of M, 

P2 is the set of universal configurations 
of M, 

CP are the input tape and common work tape 

portions of configurations of M. 
PPI is empty, 

PPz are the pr ivate work tape portions of 

configurations of M. 

In the computation game G M, player I is ident i -  

f ied with the ex is tent ia l  states and player 2 

is ident i f ied  with the universal state. 

Given configuration C as above with 

q : (qc,qp), l e t  

v i s ib le l (C  ) = (Xoqcy 0 . . . .  XtcqcYtc)- 

Thus, v is ib le1(C) consists of those portions of 

configuration C containing the contents of the 

input tape, the co,non work tapes, 
and the common portion of the state. 

For each Cz ~ PI and C 2 c P2, l e t  

( I )  Ci ~C z i f  and only i f  C 2 ~ NEXTM(Cl), 

(2) C 2~c I i f  and only i f  C 1E NEXTM(C2). 

Note that i f  M is a BA-TM with universal 

configuration C, then 

visible1(C1) = visible1(C2) 

for a l l  CiC 2~NEXTM(C). 

Let m E z* be an input s t r i n  9, 

The i n i t i a l  configuration C o is considered 

an i n i t i a l  posit ion of the concrete computation 

game GM,CD = (GM,C0). We introduce some 
terminology to aid the reader's i n tu i t i on .  

Each play of GM,Co is a computation 

sequence and the game tree TCo is a computation 

tree. The input s t r ing m is accepted by M i f  

there is a winning strategy ~ for  player i in the 

concrete computation game GM,Co. The corres- 

ding subtree TC0,o induced by ~ is an acceptin 9 

subtree of TCo . 

I t  is easy to ve r i f y  that PA-TMs accept 

precisely the recursive enumerable sets. The 

next section considers the computational 

complexity of time and space bounded PA-TMs. 

4. Complexity of A l ternat in  9 Turing Machines 
with Private Tapes 

We wish to characterize the time and space 

complexity of PA-TMs and BA-TMs in terms of the 

time and space complexity of A-TMs and TMs. As 

we develop these characterizat ions, we w i l l  

describe the i r  applications to reasonable games. 
zn 

Let m ~ be a str ing input to a PA-TM M and 

l e t  C O be the corresponding i n i t i a l  configuration 
of M. 

M accepts m within time t > 0 i f  there 

exists an accepting subtree (of the computation 
tree) which is of depth < t .  

M accepts ~ within space s ~ 0 i f  there 

exists an accepting subtree with no configuration 

containing a work tape in which more than s cells 
have been visited. 

accepts language L ~ z* within time T(n~ 

(space S(n)) i fM accepts exactly the strings of L 
within time T(n) (space S(n)). 
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M has time(space) bound f (n)  i f  M accepts 

str ing m e sn i f  and only i f  M accepts 
within time (space) f (n ) .  

For ~= PA, BA, A, N, and D we use the 

notation ~TIME(T(n)) (.~SPACE(S(n))) to denote 

the class of languages accepted by ~-TMs within 

time T(n) ispace S(n)). 

The fundamental resul ts ( i . e . ,  tape reduction, 

constant factor "speed up", complexity hierarchies) 

for  complexity classes of time and space bounded 

TMs hold also for  PA-TMs. (These w i l l  be des- 

cribed in deta i l  in a la te r  draf t  of th is  paper.) 

The fol lowing two Theorems, due to [Chandra 
and Stockmeyer, 1976] 

(1) characterize the space complexity of 

A-TMs in terms of the time complexity of 
TMs, and 

(2) bound the time complexity of A-TMs 

in terms of the space complexity of N-TMs 
and TMs. 

Theorem I For all Sin) ~ log n 

ASPACE(S(n)) = c~>oDTIME(~ S(n) ) 

Theorem 2 For a l l  Tin) ~ n and S(n) ~ n, 

(a) ATIME(T(n)) ~_DSPACE(T(n)) 

(b) NSPACE(S(n)) ~ATIME(S(n)2). 

Let G be a game. 

Let reach G be a function over the natural 

integers such that for  n ~ 0 ,  

reachG(n) is the maximum number of d i s t i nc t  

posit ions reachable from any posit ion R of G 

with n =I~I . 

Observe that for  any reasonable game G there 

exists a constant c> 0 such that 

reachG(n) ~ c n for  a l l  n ~ 0 .  

Note that for  each PA-TM M with space 

bound S(n), the computation game G M has 

reachGM(n) = c S(n) for  some c > O. 

In section 3, the outcome of G M was 

used to define the language of M. S imi la r l y ,  

for  each game G, with reachG(n) ~ n, there is 

a lo~(n)k, log(reachG(n)).space bounded PA-TM 

whose language precisely characterizes the out- 

come of G, (where k is a constant related to 

the degree of the polynomial bounding the time 

complexity of the next-move relat ions of game G.) 

These correspondences also hold 

( I )  between b l indfo ld games and BA-TMs, 

and 

(2) between games of perfect information 

and A-TMs. 

As a consequence of Theorem I ,  

(a) the outcome problem for  any reasonable 

game G of perfect information with 

reachG(n) ~ n can be solved with in time 

reachG(n)-.g~n), for some polynomial g(n). 

(g(n) is related to the time complexity of the 

next-move relations of G.) 
(b) for any S(n), Iogn!  S(n) i n ,  there 

exists a computation game GS(n) which is 

universal in the class of reasonable games 

of perfect information with reach j c S(n)- 

this game GSin) of perfect information has 
outcome problem log-space complete in DTIME(cSin)). 

In particular, there exists a computation game 

Gpi ( i .e. ,  that associated with linear-space 
bounded A-TMs) universal for the class of 

reasonable games of perfect information, and with 

outcome problem log-space complete in 

EXPTIME = c~oDTIME(cn). 

We shall derive analogous resul ts for  games of 

imcomplete information and the more r e s t r i c t i v e  
b l indfo ld games. 

Let M be a standard PA-TM i f  

( I )  for  a l l  configurations C,C' such that 

C ENEXTM(C' ) 

C is universal i f  and only i f  C' is exis-  
t en t i a l .  

(2) the i n i t i a l  state is ex i s ten t i a l .  

(3) there is a unique accepting state 

qA and no next move from qA" 
Lemma 1 For each S(n) ! log n, 

PASPACE(S(n)) ~c~>oASPACE(cS(n)) 
Proof 

Let M be a standard PA-TM with space bound 

S(n) ! l o g  n. Given input s t r ing m~z n, l e t  

C o be the i n i t i a l  configurat ion. Let d> 0 

be the number of d i s t i nc t  symbols occurring in 

configurations of M. Assume temporari ly that 

Sin) is constructable. The fol lowing program 
runs in space o(dS~n))," " on an A-TM. 
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ALGORITHM A 

[ I ]  t ÷O ;~+ {Co} ;  C 3÷C 0 
[2] C~÷{C'~NEXTM(C)IC~3} 

[3] i f  C~ = ~ then reject 

[4] i_f all elements of £vare accepting then 

accept 
[5] existential].y choose some Cv~ NEXTM(C ~) 

[6] universally, choose some C~¢NEXTM(C ~) 

[7] C~ +{C"~ NEXTM(C')IC'EC w, 

v i s ib le l (C '  ) = vis ible1(C~),  and 

v i s i b l e l (C "  ) : visiblel(C~)}. 
[8] i f  C~ ~ or t>d ~(n)  __ = then. re ject  

[9] t +t+2; go to [2 ] .  

I t  is easy to ver i f y  by induction on variable t 

that the above program accepts i f  and oDly i f  M 

does. Note that i f  S(n) is not constructable, 

then we try S(n)=log(l~l),l'og(l~l)+l . . . .  until 

is accepted.~ 

Applying Theorem 1, 
, cS(n) 

ASRACE(c S(n)) = dUoDTIME(d ) 

and thus we have: 

Theorem 3 For each S(n) ~ log n. 

PASPACE(S(n))~c>~oDTIME(dCS(n) ) 

d>O 
As a consequence of Theorem 3, the outcome problem 

for any reasonable game G with reachG(n) ~ n 

can be solved in determinist ic time 

dreachG(n)'g(n) for  some d>O and polynomial g(n). 

We now consider b l indfo ld games. 

Lemma 2 For each S(n) > log n, 
BASPACE(S(n)) ~_ U NSPACE(cS(n)) 

c>O 
Proof 

Let M be a standard BA-TM. Given input 

~z n with corresponding ini t ial  configuration 

Co, we apply only a slight modification of 

Algorithm A. Recall that in a BA-TM, the 

universal states can modify neither the common 

work tapes nor the common portions of confi- 
guration. Thus for any universal configuration 

CV, i f  C1,C 2cNExTM(CY), then 

visible1(Cl) = visible1(C2). 

This implies that for our machine M we can 

optimize Algorithm A by replacing statement 

[6] with the statement: 
[ 6 ' ]  de te rmin is t i ca l l y  choose some 

C~ ~ NEXTM(Cw). 

The resu l t ,  Algorithm A', runs in 

nondeterministic space o(cStn))." " E] 

The containment re lat ion 
NSPACE(c S(n)) ~DSPACE(c 2S(n)) 

is implied by Theorem 2 and is due to 

[Savitch, 1970]. We have established : 

Theorem 4 For each S(n) > log n, 
BASPACE(S(n)) ~ U DSPACE(dS(n)). 

d>O 
Consequently, for each reasonable blindfold 

game G of reachG(n) ~ n, the outcome problem 

for G may be solved in deterministic space 

O(reachG(n)log(n) k) for  some k>O. 

In order to lower bound the space com- 

p lex i ty  of BA-TMs and PA-TMs, i t  is useful 

to define an extension of regular expressions 

with which we can compactly define accepting 

computations of determinist ic TMs and A-TMs. 

We then show that BA-TMs and PA-TMs can 

determine the relevant language properties of 

these expressions in small space. 

Let f (n)  be a function on the natural 

integers. Let a power (f(n))-extended 

regular expression be a regular expression R 

augmented with an operation for  taking powers 

of the form (-)Pwhere p is an integer ~ f (n)  

and n is the size of the expression R. Let R 

be simple is no power is taken over a sub- 

expression containing a power. (Note that a 

simple power (2 n) extended regular expression 

R with n = IRI can be expanded to a (non-simple) 

power (2)-extended regular expression R' of 

size < n 2. ) 

Lemma 3 For each simple power (f(n))-extended 

regular expression R with alphabet s and length 

n, there is a BA-TM M with space bound 

O(log n+log(f(n)))  which accepts i f  and only i f  

L(R) ~ ~ .  

Proof 

Consider f i r s t  the case where R contains no 

powers. There is an obvious BA-TM M in which 

a string Xl,X2,...x k~E~ is existentially 

constructed, symbol by symbol, and the universal 

states attempt to show Xl,X 2 . . . .  x k~ L(R)- 

The universal states keep a private pointer to 

the cumrently considered subexpression of R. 
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This pointer is stored in log n cells of a 

work tape private to the universal states. 

In the case R contains subexpressions of the 

form (-)P, and R is simple, the universal states 

of M must also store a counter of size ! f(n) 

on log(f(n)) cells of their private work tape. 

Thus M accepts i f  and only i f  L(R) # ~*. Cl 

Next we give an obvious extension of results of 

[Mayer and Stockmeyer, 1973] for power(2)- 

extended regular expressions. (The entire proof 

is given here only because some of the details 

wi l l  be crucial to results later in the section.) 

Lemma 4 Let M be a nondeterministic TM with 

space bound f (n)  with c>O and f (n)  ~ n. Given 

any input s t r ing mE Z*, there is a simple power 

(f(n)~extended regular expression R over alphabet 

s I such that M accepts m i f  and only i f  L(R) ~ ~ .  

Furthermore, R is of size O(n). 

Proof Let Q be the set of states of M and 

l e t  q0,qA ~ Q be the i n i t i a l  and f ina l  states. 

Let r be the tape symbol alphabet with blank 

sumbol b~r and # ~ru(Q×r). We consider pairs 

[q,a] ~(Q×r) as distinct symbols. Using the 

usual tape reduction techniques we can assume 

M has but one tape. 

Let a configuration C be represented as a string 

of length f(n) of the form ~[q,a]~ where ~,Bcr*, 

q~Q is the current state and a~r is the 

currently scanned tape symbol. Given an input 

string m= ml ~2 ""mnE ~:* let the in i t ia l  

configuration be C O = [qO,ml]m2...mnbf(n)-n. 

Let an accepting computation be a sequence 

#Co#Ci#C2...#Ck where 

[P1] C O is the in i t ia l  configuration. 

[P2] Cic NEXTM(Ci_i) for i=1,2 . . . . .  k. 
[P3] C k contains the accepting state qA" 

Let ~I = r U(Qxr)O{#} 

Let R 1 = ((~i-#)  +#.( (Zl - [qO,~l ] )+~l<(Zl -~2) 

+ m2-((Zl-~3)+ . . . . (Z l -mn)) ) . . . ) .s*  

+ X~+1.b*. (El-b-#) .x~ 
+ # . ( X l + k ) f ( n ) - l . # . ~  

+ 

Note that s*-L(R1) is the set of strings with 

prefix of the form #Co# where C O is the in i t ia l  
configuration. 

For each a i ,  ao, a l~E1, 

i f  ao= # then let F(a l,#,al)=# and otherwise 

let F(a.l,aO,al) = {a'~s11 i f  a_l,ao,a I are the 

i - l , i , i + l  symbols of string #C#, then a ~ is the 

ith symbol of the string #C'#, where C'sNEXTM(C)}. 

Let R 2 =a a ~ a  ~ . a l . a O . a l . s q ( n ~ [ ( z ~ R a l , a o , a g ) .  
- I  0 1 I 

and note that s~-L(R3) is a set of 

strings that satisfy property P2. 

Finally, let  R 3 = (z1-(aT[qA,a]))~ 

and note that Z~-L(R 2) is a set of strings 

containing the accepting state. 

Thus we have a simple power (f(n))-extended 

~'egular expression R = Ri+R2+R 3 such that 

x~L(R) i f  and only i f  x is not an 

accepting computation. El 

As a consequence of Theorem 4 and 

Lemmas 3 and 4, we have: 

Theorem 5 For each S(n) ~ log n, 

BASPACE( S(n~ = UDSPACE(dS~n)). 
# % 

d>O 
(Not 9 in our simulation of a f (n)  = d s(n) space 

bounded determinist ic  TM by a S(n)-space bounded 

BA-TM, in the case S(n) < n we do not actua l ly  

construct the power(f(n))-extended regular 

expression R of Lemma 4, but instead keep 

enough information on pr ivate work space (O(log n) 

space is su f f i c ien t  for  th is )  to " v i r t u a l l y  

construct" R from the input s t r ing m i . e .  

construct that part of R which is needed at 

a given time in the simulation.) 

We now extend the above proof technique to 

PA-TMs. 

Lemma 5 For each S(n) ~ log n, 

cU>oASPACE(c S(n)) ~ PASPACE(S(n)) 

Proof Let M be an A-TM with space bound 

f(n) = c S(n), for some c>O. We can assume 

M satisfies the various restrictions required 

of the TM in Lemma 4 (except of course M is 

an A-TM). Fix an input string mesh and 

let C O be the in i t ia l  configuration. 

There is a constant ~?Odependent only on M, 

such that do~INEXTM(C) I for any configuration C. 
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For each conf igurat ion C with 

NEXTM(C ) = {Ci,C 2 . . . . .  C k} 

NEXT~ (C) = {Cj} for  j = l  . . . . .  k. l e t  

= {C k} for  j=k+l . . . . .  ~. 

We now define funct ions s imi la r  to F of 

Lemma 4. 
For each j = l  . . . . .  d and 

a_ l ,aO,a lEz  1, i f  a 0 = # then l e t  

FJ(a_l ,# ,a l )  = # and otherwise l e t  

FJ(a_l,aO,al) = {a' ~Z l l  i f  a_l,ao,a I are 

the i - l , i , i + l  symbols of the s t r ing  #C#, 

where C is a universal conf igurat ion,  

then a' is the i t h  symbol of the s t r ing 

#C'#, where C'~ NEXT,(C)}. 

Let R~ j )  be the power (S(n))-extended 

regular expression ident ica l  to R except that 

the funct ion F j is used in place of F. (Note: 

Let M j be the determin is t ic  TM derived from 

M by requir ing that MJtake only the j t h  branch 

from a universal state and ha l t  in an 

ex is ten t ia l  state. The language of  

z~-L(Ri+R~J )+R 3 ) 

contains exactly the accepting computations of 

MJ.)- - Also, le t  R (0) = R. 

We sketch the construction of a PA-TM M 1 

which essentially the existential states w i l l  

construct subtrees of T and the universal 
C o 

states w i l l  attempt to show that these sub- 

trees are not accepting subtrees for M. 

I t  w i l l  be useful to consider T C to 

be represented as a "branching string"Oin 

which each path down TCo corresponds to a 

l inear string #Co#Ci#... which is a 

computation sequence of M. The branches 

occur just after the symbol #. 

An integer J and boolean FLAG are stored 

in a work tape common to both universal 

and existential states. I n i t i a l l y  J and 

FLAG are 0. On the private tape we store 

enough information to easily "v i r tua l l y  

construct" R~ J) from the input string ~, zz 
as in the above note. Also on the tape 

private to the universal states we store a 

counter for powers in R, as in the proof 

of Lemma 3. 

The machine M I is programmed with a minor 

i t e ra t i on  loop w i th in  a major i t e ra t i on  loop. 

In the minor loop the ex i s ten t i a l  states 

generate a sequence Xl,X 2 . . . .  ,x k c z I ,  symbol 

by symbol, with the universal states a l t e r -  

na t ive ly  attempting to discover that 

y lY2 . . . yk  X lX2. . .x  k is contained in 

L(R~J)), where y lY2 . . . y  k are symbols generated 

by the ex i s ten t i a l  states in the previous major 

loop. (The operation of M I w i th in  the minor 

loop is s imi la r  to the BA-TM described in the 

proof of Lemma 3.) 

I f  any xj  is a state q of M, then FLAG is set 

to e i ther  0 or 1 depending on whether q is 

ex i s ten t ia l  or universal .  When ( i f  ever) 

an x i = # is chosen, then the machine M I 

leaves the minor loop and sets J to 0 i f  FLAG = 0 

and otherwise un iversa l ly  sets J to some element 

of {1,2 . . . . .  do}. The machine M I next scans over 

the ce l l s  containing J whi le in ex is ten t ia l  

s ta tes .  The minor loop is then entered again. 

I f  FLAG = I ,  the above steps have the 

ef fect  of creating a branch in the subtree of 

TCo generated by the ex is ten t ia l  states. 

Each branch must succeed, i . e .  must be an 

accepting subtree. Also w i th in  the minor loop 

the universal states attempt to ve r i f y  that i f  

l i near  s t r ing  Z l ,Z2 . . .~ i s  a path down the 

"branching s t r ing"  of symbols generated by 

the ex i s ten t i a l  states, then Zl,Z2...~L(Ri+R3 ). 

Operating in th is  manner, M 1 accepts i f  and only 

i f  M accepts the input s t r ing  m. Note that since 

the integer J is upper bounded by the f ixed 

constant d, the PA-TM M I has w i th in  a constant 

the same space bound as the BA-TM 

described in the proof of Lemma 3. Since 

f (n)  = c s(n),  M 1 has space bound 

O( log( f (n ) ) )  : O(S(n)). [ ]  

As a consequence of Theorems i ,  4, and 

Lemma 5, we have the primary resu l t  of th is  

paper: 

Theorem 6 For each S(n) ~ log n, 

PASPACE(S(n)) = U DTIME(dCS(n)) • 
c>O 
d>O 
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Theorems 5 and 6 have important applications 

to reasonable games. 

For each S(n), log n ~ S(n) ~ n, and d>O, 

(1) there is a computation game G s(n) 

universal for  the class of reasonable games 

with reach < d S(n) and the outcome 

problem of G s(n) is log-space complete in 

ASPACE(d S(n)) : c>~O DTIME(c dS(n)) 

(2) there is a b l indfo ld computation 

game ~S(n) universal for  the class of 

reasonable b l indfo ld games with reach S d S(n), 

and ~S(n) has outcome problem log-space 

complete in DSPACE(aS(n)). 

In par t i cu la r ,  there is a game G U, uni- 

versal for  a l l  reasonable games, and a game 

G UB, universal for  a l l  reasonable b l indfo ld 

games. G UB has outcome problem log-space 

complete in 

EXP-SPACE : ~JDSPACE(d n) 
d>O 

and G U has outcome problem log-space complete 

in 

EXP~EXP-TIME = U DTIME(dCn) • 
c>O 
d>O 

We now consider the time complexity of PA-TMs 
and BA-TMs. 

The fol lowing Theorem provides an upper bound 

to the computational power of time bounded 
PA-TMs. 

t igh t .  

Theorem 7 For each T(n) ~ n 

PATIME(T(n)) : U DTIME(cT(n)) 
c>O 

Proof Let M be a standard PA-TM with construc- 

table time bound T(n). Given an input s t r ing 

mcz n, l e t  C O be the i n i t i a l  configuration. Let 

TCo be the computation tree. 

Step 1 Let be the acycl ic digraph constructed DC o 

from TCo by 

( la)  deleting a l l  nodes of of TC o 

depth >T(n) 

( lb)  collapsing a l l  remaining nodes n:m such 

that n~m (the equivalence re la t ion ~ is 
1 I 

defined in Section 2). 

Note that DCo contains no more than d T(n) nodes, 

for  some constant d ~ 0 dependent only on M. 

The step (Ib)maybeaccomplished by a breadth- f i rs t  

search of TCo, from the root to the nodes of 

level T(n). 

For t = 1,2 . . . . .  T(n) collapse together a l l  

nodes n,m of level  t such that 

(a) the parents of n,m have been collapsed 

together at level t - l .  

(b) i f  C(n),C(m) are the configurations 

associated with nodes n,m then 

v i s ib le l (C(n ) )  = v is ib le l (C(m)) ,  i . e .  the 

public work tape portions of C(n), C(m) 

are equal. 

Step 2 Next, we prune various nodes and edges 

from DCo to form a digraph D'Co . Repeatedly 

pass through D, considering each node n which was 

not derived en t i re l y  from accepting conf igurat ions 

Delete node n and a l l  entering and departing 

edges i f  ( i )  n was derived from ex is ten t ia l  

configurations and has no departing edges. 

(2) n was derived from universal configur- 

ations and at least one edge, o r i g i n a l l y  

departing from n in DCo has been deleted. 

The resul t ing digraph D' can be constructed 
C o 

in determinist ic  time O(c T(n)) for  some c>O. 

We claim D' is nonempty i f  and only i f  M 
C o 

accepts the input s t r ing m within the T(n). 

Suppose M accepts m. Then there is an 

accepting subtree T'Co (of the game tree TCo ) 

with depth ~T(n ) .  I f  we apply steps (1) 

and (2) to T' , the resul t  is a non-empty 
C o 

subgraph of D' . Hence is non-empty. 
C O DC 0 

On the other hand, i f  D' is nonempty, then 
C o 

the tree derived from D~ (by separating common 

descendants of the root) contains an accepting 

subtree of depth s T ( n )  as a subgraph. 

I f  T(n) is not constructable, then we t r y  

T(n) = n,n+l . . . .  unt i l  acceptance. [ ]  
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The following Lemma generalizes a divide 
and conquer technique used by [S~vitch, 1970] 
to show 

NSPACE(S(n)) ~_ DSPACE(S(n) 2) 

and used by [Chandra & Stockmeyer, 1976] to show 
NSPACE(S(n)) ~ ATIME(S(n)2). 

Lemma 6 for each S(n) ~ n, 

ASPACE(S(n)) s PATiME (S(n) 2) 
Proof Let M be a standard A-TM with space bound 

sn S(n) and let  mE be in input string. The 

algorithm below runs in time O(S(n) 2) on a 

PA-TM. The variables Ci,C2, and C 3 are stored 
on private tapes. 

Algorithm B 

[ I ]  C 1÷the i n i t i a l  configuration C O . 

[2] universall~ choose to 9oto [3] or [10]. 

[ ~  universally choose some configuration C 2 

size S T(n). 

[4] existent ia l ly  choose to 9oto [5] or [7]. 

[5] exchange the contents of C 2 and C 3 
[6] goto [2] 

[7] i.f C 2 is a universal configuration then 

write C 2 on a common tape 

[8] exchange the contents of C 2 and C 1 
[9] 9oto [2] 

[10] i__f C 3~NEXTM(C1) then accept else reject 

Note that statement [7] forces branching on 

universal configurations. We can show M rejects 

i f  and only i f  Algorithm B accepts. Since 

ASPACE(S(n)) is closed over complementation, the 
result follows. [ ]  

Theorem 8 For each T(n) > n, 

PATIME(T(n)) = U DTIME(cT(R)). 
c>O 

Let a game G have time l im i t  T(n) i f  for each 

i n i t i a l  position ~ winning for player 1, there is 

an induced subtree of depth ~ T(n), when n = Inf. 

The above Theorem implies that there is a 

reasonable computation game G PTL with polynomial 

time l im i t  which has outcome problem log-space 

complete in EXP-TIME = ~DTIME(cn), 
c>O 

We did not succeed in precisely characterizing 

the time complexity of BA-TMs in terms of the 

time complexity of deterministic TMs. However, 

we do have a characterization in terms of a 

generalization of the complexity class s~ 

of the polynomial time hierarchy of [Stockmeyer,1973] 

Let M be a Zk-bOunded A-TM i f  (1) each 

i n i t i a l  configuration is existential (2) on 

any path down any accepting subtree, confi- 

gurations switch from existential to universal 

or vice versa at most k-times. Let sTUn)be-- the 

class of languages accepted by A-TMs which are 

both T(n)-time bounded and Zk-bOunded. 

We can show: 

Theorem 8 for each S(n) > n, 

BATIME(T(n)) c zT(n)~ BATIME(cT(n)) 

for some c>O. 

As a consequence of this Theorem, there is 

a computation game G BPTL which is universal for 

reasonable blindfold games with polynomial time 

l imits,  and G BPTL has outcome problem log-space 

complete in 
~ = U Z nk. 

k>O 2 
5. Universal Games on Propositional Formulas 

As consequences of Theorem 5 and 6 of the 
previous section, we have two ...c°mputation g ~ames 

G U and G BU such that 

( I)  G U is universal for al l  reasonable games. 

(2) G BU is universal for al l  reasonable 

blindfold games. 

I n , i s  section we construct various propo- 
sitional formula games which are universal for 
reasonable games. These games and the reductions 
between them are generalizations of work on games 
of perfect information in [Chandra & Stockmeyer, 
1976]. 

Boolean variables take on values 1(true) and 
O(false). Let a l i t e ra l  be a boolean variable or 
i ts negation. Let a propositional formula F be 
in k-CNF (k-DNF) for i f  F consists of a conjunc- 
tion -~i-sjun~l-on) of formulas F1,F 2 . . . .  Fj with 

each Fi a disjunction (conjunctionJof at most 
k l i t~ ra ls .  

We now l i s t  3 games on propositional formulas 
which are universal for al l  reasonable games. The 

games G 3 and G 3B are essentially the games 
PRIVATE-PEEK and BLIND-PEEK described in the 
introduction. Throughout this section w._eequate 
player 2 with O. 

(1) Let G 2 be the game in which a position 
contains-a propositional formula 
F(x,yC,yPO,yPI,a,s) in 5 CNF form, with 

xC,yPO,Y P1 each sequences of variables and 
a,s individual variables, plus a truth 
assignment to i ts  variables. The formula 
F and the truth assignment to the variables 

of x,yC,a.s are common to both players 1 
and 2, but the truth assignment to the 
variables of yPO,yP1 are private to player O. 
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Player 1 moves by sett ing a to true and choosing 
a new truth assignment for  the v ~ a b l e s  of X. 
Player 0 moves by (a) sett ing a to fa lse,  
(b) sett ing s to the complement of i ( s  previous 
t ruth assignment, (c) choosing a new truth 
assignment for  the variables of yC,yPS. The 
formula F is not modified by these moves, except 
for  the changes in the t ruth assignment to i t s  
var iables. The loser is the f i r s t  player whose 
move y ie lds a t ruth assignment for  which the 
formula F is fa lse.  

(2) Let G 5 be the game in which each posit ion 

contains formulas WINi(u,vC,vP ) and 

WINn(u,vC,v P) and t ruth assignments to the 

sequences of variables of u,vC,v P. 

The formulas WIN 1 and WIN 0 and t ruth assignments 

to variables Uu V c are viewed commonly by both 
players, but the t ruth assignment to the variables 

of V P are pr ivate to player O. Player I moves 
by changing the truth assignment to at most one 
variable of U, while player 0 moves by changing 

at most one var iable of uC,u P. Player a e { O , l }  
wins i f  formula WIN a is true a f te r  a move by player a 

(3) Let G 3 be the game in which a posit ion 
consists-of a proposit ional formula 

F'(u,vC,v P) in DNF form and a t ruth assign- 

ment to the variables of the sequences 

U,V C and V P. The formula F' and t ruth 

assignments to the var iab les 'o f  U, V c are 

viewed commonly by both players, but the 

truth assignment to the variables V P is 
pr ivate to player O. 

Players move as in game G 2, A player wins 

i f  a f te r  his move the formula is true. To show 

G' is universal for  reasonable games, we consider 
a linear-space bounded standard PA-TM M with 

inputm~ s n. We encode each configuration C as 
a b i t  vector of length n' : k l .n (where k 1 

depends only on the size of the tape alphabet of 
M), so that b i ts  1,2 . . . . .  n c are those of 

v i s ib le l (C)  (the portions of C public to both 

the ex is ten t ia l  and universal s tates) ,  and the 

bi ts nc+l . . . . .  n! contain those portions of C 

pr ivate to the universal states. 

Using the techniques of [Stockmeyer, 1975], 

we can construct a proposit ional formula 

NEXT(Zi,Z2,T) 

where Z1,Z2,T are sequences of variables of 

length n',n',k2(where k 2 is a f ixed constant) 
and such that:  

i f  Z 1 encodes a configuration C I 

then there exists an assignment to the variables 
of T such that NEXT(Zi,Z2,T ) is true i f  and only 

i f  Z 2 encodes some configuration C 2 e NEXTM(CI). 

The size of NEXT is l inear  in the input length n. 

We introduce new sequences of variables 
x,yC,yPO,Y P1 of length m,m,p,p where 
m : n c + k 2 and p : n'-n . c 
Let Y = yC.yPO.yPl 

For d i s t i nc t  s , s c { O , l } ,  l e t  NEXTi,2(X,Y) 
be the formula derived from NEXT(Zi,Z~,T ) _ 

by subst i tut ing X(1) . . . . .  X(nc),YP~(l 3 . . . . .  yPS(p) 

forZ 1, subst i tut ing yC(1) . . . . .  yC(nc),YPS(1 ) . . . . .  

yPS(p) 
Z 2 , and subst i tu t ing yC(nc+l ) . . . . .  for  

yC(nc+k 2) for T. 
Also, l e t  NEXTo,s(X,y ) be derived from 

NEXT(Z.,Z~,T) by subst i tut ing yC(1) . . . . .  yC(n ), 

YPT(1)~..~,YPS(p) for Z I, substituting X(1),.~., 

X(nc), yPs(1 ) . . . . .  yPS(p) for Z 2 , and substituting 

X(nc+l) . . . . .  X(nc+k 2) for T. I f  we consider player 1 
to be identified with the existential states of 

M and player 0 to be identified with the univer- 
sal states of M, then for  each a~ {0 ,1 } ,  

NEXTa, s defines legal moves by player a on 

switch var iable s E { O , l } .  

Now we consider the formula F(x,yC,yPO,yPi,a,s) 

= (aA S ÷ NEXTi,i(X,Y)) ̂  (a^~ s ÷ NEXTi,0(X,Y)) 

A(~aa S +NEXTo,i(X,Y)) ~(~a^~ S ÷ NEXTo,o(X,Y)) 

F can eas i ly  be put in 5 CNF form. 

Given the i n i t a l  configuration C O of M on 

input m, l e t  the variables yC(1) . . . . .  yC(n') be 

assigned to encode C O and l e t  a l l  other variables 

be assigned a r b i t r a r i l y .  Let formula F and th is  

t ruth assignment be an i n i t i a l  posit ion ~. of 

game G 1. Then player 1 wins concrete gam~ G I 
H I 

i f  and only i f  player I (the ex is ten t ia l  states) 

wins the concrete computation game GM,Co i f  and 

only i f  M accepts input m. Thus we have a 

log-space reduction from the acceptance problem 

for l inear-space bounded M to the outcome problem 

for  G I ,  and we conclude that G I is universal for  
reasonable games. 

Next, we show the formula game G 2 i f  also univer- 

sal fo r  reasonable games. 

We now introduce sequences of variables 
uA,uB,vA,v B of length m' = 4m+2p+4. Let u=uA.u B 

and l e t  v:vA.v B. 
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-- V B 

,a 

f t o , 0:2m+p+l 

~tl,l=amlp ~3 

X --- UA B 

40,1 ~ P1 V B 

%0!i :m' 

The sequences of variables X,Y defined in the 

previous construction w i l l ,  in legal plays of our 

Game G 2, be contained in U,V as in Figures 41,0 
40,0 , 41,1 ,40,1 . The pr ivate portion V P of 

V is where yPO, yP1 are located, and V C contains 

other elements of V. 

For each s ~ { O , l }  and player a ~ { O , l } ,  

le t  NEXT'a, s (U,V) be the formula derived from 

formula NEXTa,s(X,Y) by subst i tut ing formulas 

as in Figure 4 a,s" 
Again, player i (player O) is iden t i f ied  

with the ex is ten t ia l  (universal)  states of M, and 

NEXT' is used to define next-moves by machine M: a,s 
As in a s imi lar  construction of [Chandra and 

Stockmeyer, 1976] we describe a legal play such 

that i f  players I and 0 play l ega l l y ,  then 

player i wins i f  and only i f  M accepts input m. 

Let a legal cycle be the fol lowing play for  

i=1,2 . . . .  m' : 

[ I ]  player I changes the truth assignment of 
e i ther  uA(i) or uB(i) 

[2] player 0 changes the truth assignment of 

e i ther  vA(i) or vB(i). 
Consider some s~{0 ,1 }  and d i s t i nc t  players 

a ,b~{0 ,1 } .  Within the legal cycle, for  each 

i ,  ( ta, s mod m')<i <_ tb, s player a assigns 

variables so that NEXTa, s is true when i = ta, s. 

Thus M accepts input w i f  and only i f  player I 

has a winning strategy wi th in legal plays. The 

fol lowing, somewhat tedious construction, 

forces legal play by both players. 

We now introduce some notation for 

operations on sequences of Z,Z' of boolean 

variables of length m'. Let (B be exclusive-or 

and le t  

Z @' Z' : (Z(1)@Z'(1) . . . . .  Z(n)@ Z ' (n ) ) ,  

and l e t  
AZ:(~(Z(n)@Z(1)),Z(1)@Z(2) . . . . .  Z(n-1)@Z(n)). 

Also l e t  TN-TWO(Z) = ~v / (Z ( i )mZ( j ) )  
l<i<j<m' 

be the threshold-two function. 

To s impl i fy  our formulas we define 
U'=A(uA@'uB), and V'=A(vAe'vB). 
which are sequences which locate boundaries 

between contiguous Os or is .  

To detect i l l ega l  play we define: 

ILLi=TH-TWO(U')Vl<y< ~U ' ( i ) ^  V ' ( i ) A ~ V ' ( i - 1 )  

ILLo:TH-TWO(V')vi~i~<~V'(i) ^ U ' ( i + 2 ~ V ' ( i )  

as in [Chandra and Stockmeyer, 1976]. 

F ina l ly ,  for each d is t inc t  players 

a,b ~ {0,1},  l e t  

WIN :ILL v V U'(ta,s)^V'~b,~^~NEXT'a, s (U,V) a b s~{O~} 

Note that formula WIN 0 and WIN I can be put in 

DNF form. 

Given input m~sn, Let ~ i  be the i n i t i a l  

posit ion of formula game G I defined previously. 

Let the i n i t i a l  posit ion ~2 of formula game 

G 2 contain formulas WIN O, WIN 1 as defined above 

plus the i n i t i a l  t ruth assignment o f t  1 as in 

Figure211, O. We consider player i wins concrete 

game G~2 i f  and only i f  M accepts ~. Thus G 2 

is also a formula game universal for  a l l  reason- 

able games. 

Next, we give a log-space reduction from the 

outcome problem for  formula game G 2 to the 

outcome problem for  formula game G 3. 

Let Uo,Ul,U2,Vo,V I be variables not in U or 

V and set 

0 = U.(Uo,Ul,U2) and 

~P V P. 
= (Vo,Vl). 

Let F'{u,vC,vP)=(WINo ^ (u 0 Vl))V(WINl^VO)~(Ul~U2~Vl ) 

as in [Chandra and Stockmeyer, 1976]. 

This formula, w i t h i n i t i a l  var iable assignments 

of x2' form the i n i t i a l  posit ion ~2' of 

formula game G 3. The concrete game G 3 is 
x3 

winning for  player i i f  and only i f  

G 2 is winning for  player 2. Thus, G 3 is 
~2 

another formula game universal for  a l l  
reasonable games. 
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Let G2B,G3B be b l ind fo ld  

games derived from formula games G2,G 3 by 

requi r ing that the common var iable sequence V C 

o.f player 0 be empty. We claim that G2B,G 3B 

are universal for  a l l  reasonable b l ind fo ld  

games. To show th i s ,  we need only note that  

i f  M is res t r i c ted  to a BA-TM, then the 

universal states never modify the common tape. 

Hence the common variables V c in our previous 

construct ion contain no information relevant to 

a conf igurat ion of  M (though they are useful 

to insure legal play) and hence the variables 

V C may be added to the variables V P pr ivate to 

player O. 

Note that formula games G 3 and G 3B are 

essent ia l l y  the games PRIVATE-PEEK and 

BLIND-PEEK described in the in t roductory  sect ion. 

Thus we have: 

( I )  PRIVATE-PEEK is a universal reasonable 
game. 

(2) BLIND-PEEK is a universal reasonable 

b l ind fo ld  game. 

6. B l ind fo ld  Games on F in i te  State Machines 

This section describes two b l ind fo ld  games 

GFS A and GSUBFSA which are universal fo r  a l l  

reasonable b l ind fo ld  games of t h e i r  respective 

reaches (polynomial and exponent ia l ) .  

Because of s imp l i c i t y  of these games, we 

feel that  they may be useful for  establ ish ing 

the complexity of other b l i nd fo ld  games by 

log-space reductions. In fac t ,  we apply th is  

technique to pursu i t  games in the next section. 

We consider (nondeterminist ic) f i n i t e  

state automata F S ~  

M : (Q, I ,F,s,a) where 

Q is a f i n i t e  set of states 

I ~Q are the i n i t i a l  states 

F _= Q are the accepting states 

a E (Qxs)xQ is the t rans i t i on  re la t i on .  

Let L(M) ~ E* be the language accepted by M. 

Let GFS A be the game in which a posi t ion 
consists of a t r i p l e  (M,d,q) where 

M = (Q, I,F,E,~) (the portion of ~ common to 

both players) is a nondeterministic FSA, d (the 

portion of ~ private to player 1) is either O 

or I ,  and q (the portion of H private to player 

2) is a state of Q. 

Player I moves by set t ing of e i ther  to 0 

or I .  Player 2 has no next move (player i wins) 

i f  q ~F or a(q,d) = B else player 2 moves by 

replacing q wi th some state in a(q,d).  

Neither player modifies M, and hence GFS A 
is a b l ind fo ld  game. 

Note that  player I has a winning strategy 

from i n i t i a l  posi t ion H i f  and only i f  

L(M) ~ { 0 , I } * .  

The problem L(M) # {0,1}*  was shown by [Stock- 

meyer and Mayer, 1973] to be log-space complete 

in P-SPACE = "'~VnDSPACE(nk). 

Since reachG(n ) = n , we can determine the 

outcome of G H in P-SPACE by applying Algorithm A' 

of Theorem 4. 

Thus, the outcome problem for  G is log-space 

complete in P-SPACE. This resu l t  is  due to 

[Jones, 1978], who showed the outcome of a 

graph reachability~ameGofreachG(n) = O(n 2) 

was P-SPACE complete. 

We now extend this result to a game of exponen- 

t ia l  reach with outcome problem log-space 

complete in EXP-SPACE = c>UoDSPACE(cn). 

Let a subroutining f i n i t e  state automata 

(SFA) M = (Mo,M 1 . . . . .  M k) where for i = 0,1 . . . . .  k 

M k is a nondeterministic FSA over alphabet 

{0 ,1 }U{a j l j > i }  where 0,1,al,a 2 . . . . .  a k are dis- 
t inc t  symbols. We assume the empty string is 

not in the language of M 1 . . . . .  M k- 

Let the language accepted by M by 

L(M) = { ~ ' ~ { O , 1 } * I ~ '  be derived 

from mcL(M0) by repeatedly subs t i tu t ing  a 

s t r ing  of L(Mi) for  each symbol a i appearing 

in m}. Note that  SUBFSAs accept exact ly  the 

languages over { 0 , i }  generated by context- f ree 

grammars in which no nonterminals appear 
recurs ive ly .  

Let GSUBFSA be the b l i nd fo ld  game in which 
a posi t ion n consists of a t r i p l e  (M,d,(q0,ql , 

. . . .  qk ~ where M = (M0,M 1 . . . . .  M k) is a SUBFSA 

common to both players wi th 

Mi = (Qi '  l i  ' F i ' s i ' ~ i )  • dc { 0 , I }  is pr ivate 

to player I ,  and the states 

(qo,ql . . . . .  qk ) ~ QoxQi×...Q k are pr ivate to 
player 2. 

302 



Player 1 moves by s e t t i n g d t o e i t h e r O o r l .  

Player 2 has no next move (player 1 wins) 

i f  qo ~ F. 
The legal moves of player 2 are defined by 

the fo l lowing nondeterminist ic program 

[ I ]  assign d to a temporary d' 

[2] nondetermin is t ica l ly  choose to go to 

e i ther  [3]  or [4]  

[3] replace qo with some element of 80(qo,d') 

and ex i t  

[4] nondetermin is t ica l ly  choose some i,j,q~ eQj 
such that l<i<j<k~ ~(q i ,a j )  ~ ~, 

' q j ,d '  and q j ~ 6( ) 
I [5] i j_ q j #  Fj then go to [7]  

[6] nondetermin is t ica l ly  choose to go to [7]  or [8]  
I [7]  replace qj with q j and ex i t  

[8] replace qj with some element of l j  

[9]  d ' ÷  aj 

[ i 0 ]  go to [2] .  

Note that we can test  in polynomial time whether 

a pair  of posi t ions of GSUBFSA are a legal move 
of player 2. 

Again, player I has a winning strategy from 

i n i t i a l  posi t ion n i f  and only i f  L(M) # {0,1}* .  

Also, the outcome of GSUBFSA may be determined 
by Algorithm A of Theorem 3 in 

EXP-SPACE = U DSPACE(cn). 
c>O 

Let R be a power(2)-extended regular expression over 

{ 0 , I } ,  with a squaring operator (_)2. This 

squaring operator allows R to concisely define 

long s t r ings;  [Stockmeyer and Mayer, 1973] 

showed that the problem L(R) ~ { 0 , I } *  is 

log-space complete in EXP-SPACE. In log-space 

we can construct a SUBFSA M with the same 

language as R. Thus, the outcome problem for  

GSUBFSA is log-space complete in EXP-SPACE. 

(Note that th is  resu l t  can be viewed as an 

a l te rna t ive  proof of Theorem 5, res t r i c ted  to 

l inear-space bounded BA-TMs.) 

7. Games of Pursui t  

The classical  l i t e r a t u r e  of game theory 

[Blaquiere, 1973; Isaacs, 1965; von Neumann, 1953] 

contains numerous examples of discrete games of 

pursui t  and evasion; perhaps the popular i ty  of 

such games is derived from t he i r  obvious m i l i t a r y  
appl icat ions.  

We define in th i s  section a 

geI~era~ class of  such pursu i t  games. Our resul ts  

on the complexity of  the outcome of our pursui t  

games seem quite discouraging to war gamers (but 

perhaps encouraging to pac i f i s t s ) .  Let f l , f 2  be 

l inear  or subl inear funct ions over the natural 

integers. Let BLIND-PURSUIT ( f l ( n ) , f 2 ( n ) )  = 

(P i ,P2 ,~ ,~ ,CPi ,PP i ,PP 2) where for  each posi t ion 

(~c,~i,~2) c Pi U P2' 

( i  a t r i p l e  (Cs,LOCAL) containing 

(a) a f i n i t e  degraph D = (N,E) 

(b) a node sEN 

(c) a set LOCAL : N  

( i i  x1 is a mul t iset  of  fz( INI  + [El) 

nodes of N 

( i i i  ~2 is a mul t iset  of f2(IN1 + IEI) 

nodes of N. 

For each a~ {1,2} ,  l e t  

JUMP a = { v c N l ( u , v ) ~ E ,  uc ~ }  . 

We require that LOCAL = JUMPiAJUMP 2 . 

I n t u i t i v e l y ,  player 1 has various "mice" 

placed on nodes of V, player 2 has various 

"cats" placed on nodes of V, both players 

have common knowledge of  the digraph D, a node 

s~V known as the "mouse hole",  and the nodes 

LOCAL (which may be detected, say, by the 

animal's sense of smel l . )  The goal of player 1 

is to place some mouse on the "mouse hole" 

sEN, and the goal of player 2 is to place a 

cat on a mouse. 

Players a c {1,2} move by "jumping" each of 

t he i r  pieces across an edge of E,(by replacing 

each nc~a with a node m such that  (n,m) EE. ) 

Player I is not allowed to place a mouse on a cat. 

Player I has no next move (player 2 w i n s )  i f  

~IA~2 ~ ~ (a cat is placed on the same 

node as a mouse) or 

JUMP1-LOCAL is empty ( for  some mouse, 

each possible jump lands on a cat ) .  Player 2 

has no next move (player i wins) i f  

s E ~i (some mouse lands on the mouse 

hole s). 
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Let PURSUIT(fl(n),f2(n)) be the game of 

perfect information which is identical to 

BLIND-PURSUIT(fl(n),f2(n)), except each 

player is allowed to view his opponent's position. 

The outcome problem for a game similar to 

PURSUIT(i,1) (1 mouse vs. 1 cat) was shown 

log-space complete in 

P-TIME = kVoDTIME(n k) 

by [Chandra and Stockmeyer, 1976]. We can show 

the outcome problem for PURSUIT(i,n) is 

(1 mouse vs. n cats) log-space complete in 

EXP-TIME : cU>oDTIME(c n) 

using a log-space induction for  the game of PEEK 

of [Chandra and Stockmeyer, 1976]. 

We wish now to establ ish lower bounds on 

the complexity of BLIND-PURSUIT(I,n) (1 bl ind 

mouse vso n cats).  There Fay ex is t  a log-space 

reduction for the game BLIND-PEEK (shown in 

Section 5 to be log-space complete in 

EXP-TIME) to BLIND-PURSUIT(I,n) but we 

have not discovered such a reduction. 

Instead, we apply the techniques developed 

in the previous section for  b l indfo ld  games. 

Note that BLIND-PURSUIT(I,n) is not a bl indfold 

game since we have allowed players to par t ia l ly  

view their opponent's position through the 

common set LOCAL. Dropping the set LOCAL from 

the common portions of positions results in a 

blindfold pursuit game with an easy-to-compute 
outcome. 

We f i r s t  show the outcome problem for BLIND- 

PURSUIT(I,I) is P-SPACE hard, and then generalize 

this reduction to show BLIND-PURSUIT(1,n) is 

EXP-SPACE hard. Let M be a nondeterministic FSA. 

We shall represent M as a digraph (N,E) with edge 

labe l l ing E L : E ÷ { O , l } , . i n i t i a l  states I ~ N ,  and 

f ina l  states F ~ V ,  so that w~L(M) i f  and only 

i f  there exists a (possibly empty) path 

(u0,u I . . . .  u~) of (NR,E R) such that u oc I ,  
u~ ~ F, and w = EL(uo,ul) EL(Ul,U2) . . .  

EL(u~_i,uA). 

I t  w i l l  be useful to assume N R may be 

partitioned into two dis jo int  sets No,N I such that 

for each d~{0,1} and v~N~,  al l  edges of E 

entering v are labelled with d. iN,E) forms a 

subgraph of our constructed digraphD Mof Figure 5, 

on which we play our pursuit game. 

I 

Figure 5: A 1 b l i nd  mouse vs.  1 c a t  p u r s u i t  

game in graph D M derived from FSA M. There 

is an edge from the "start node" for the cat 

to each node of I. For simpl ic i ty,  the edges 

of M are not i l lustrated.  There is an edge 

from each node of N o to "switch"o. Similarly, 

there is an edge for each node of N 1 to 

"swltch" I. Final ly,  there is an edge from 

each node of F to "ambush". 

Each play can be divided into 3 sequences: 

the i n i t i a l  play, the middle play, and the 

f inal  play. 

( i )  In the i n i t i a l  play, the mouse moves 

from i ts  start node to either of nodes m o 

or m I. The cat responds with a move from 

i ts  start node to a node of I. 

(27 The middle play lasts unt i l  either the 

cat leaves the nodes of V or the mouse 

departs from nodes {mo,ml). 

Note that during the middle play, for each 

de{O,1}, i f  the mouse moves to md, then 

the cat must respond with a move to a node in V d, 

else on the next move the mouse detects that the 
cat is not in V d and can dart to the node 

"switch" d (which can be immediately reached by 

the cat only i f  i t  is in a node of V d) and hence 

the mouse may safely arrive at the "mouse hole" s. 

(3) I f  the mouse is to always reach the 

"mouse hole" s in the end play with no such 

blunders by player 2, then i t  must enter the 

"ambush" node with the cat not in F. This is 

so just in the case ~L(M)  and the middle play 

is empty, or the moves of the mouse in the middle 

game are mdl,md2 . . . .  md~ and dl ,d2.. .d ~ ~ L(M). 

Thus we have shown that the outcome problem for 

game BLIND-PURSUIT(I,1) is log-space hard in 
P-SPACE. 
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Now we general ize the above construction to 

the game BLIND-PURSUIT(1,n). Let M = (Mo,M 1 . . . .  Mr) 

be a SUBFSA as defined in section 6. Let a k be 

the "subroutine ca l l "  symbol associated with M k, 

for  k = I . . . .  r. For each k = o , i  . . . .  r , M k is 

represented (as in the previous Gonstruction) by a 

digraph (Nk,Ek) with edge labe l l i ng  

ELk:E k ÷ { O , l }  u {a j l j >k } ,  i n i t i a l  states I k ~-V k 

and f ina l  states F k ~ V  . We fur ther  assume 
- k 

(1) no edge of E k enters a node of I k or 

departs from a node of F k. 

(2) for  each node v cV k, a l l  edges of E k 

entering v have the same labe l ,  and a l l  

edges of E k departing from v have the same 

label .  

(3) each node v EN k whose entering edges 

are labelled with some aj ~ ~ , I }  has a 

"twin" v with entering edges from the 

same destination, the same label, and 

with departing edges also identical to those 

of v. These assumptions increase the size 

of M k by at most a constant factor. 

The digraph H M on which we wi l l  play a game of 

BLIND-PURSUIT(I,n) wi l l  contain as subgraphs 

only s l i g h t l y  modified versions of Mo,M , . . . .  M r . 

Let H M i n i t i a l l y  consist of the digraph D M 

as defined previously (See Figure 5), 

plus the d i s j o i n t  digraphs M 0 . . . . .  M r . For each 

k = 0 , I  . . . .  r we associate a cat k with M k. 

In the case k>O, the cat k w i l l  be used to 

implement "subroutining" on symbol a k. To this 

end, we add as in Figure 6aa "s tar t  node" for  

cat k and appropriate edges for  r e i n i t i a l i z i n g  

the cat ka f te r "subrou t ine"  ca l ls .  In addi t ion,  

certain edges and two "switch" k nodes are 

added to M k as in Figure 6bto force the cat k 

to make the appropriate state t rans i t ions in 

response to moves by the mouse on nodes {mo,ml}. 

/i 
( 

~ k 

I k ~ I F k 

t I 

\ ~  I I 

Figure 6~ 

1 

For each k > O, we add a "s tar t  node" 

for  cat k, and an edge from th is  s tar t  node to 

each node of I k. To al low r e i n i t i a l i z a t i o n  of 

cat k a f ter  a "subroutine ca l l "  on a k, we add 

an edge from each node of F k to the "s tar t  

node" for  cat k and also to each node of I k. 

We also add a loop edge at the "s tar t  node" 

for  cat k to al low the cat k to wait  there 

unt i l  the next subroutine ca l l .  

t I H k ~% I M~ ~ sw~tChe,l 

t / - \ ~ %~ / u "mouse 

Figure 6b: The fo l lowing addit ions to M k force 

cat k to take state t rans i t ions in M k over 

those edges label led with {0 , I }  corresponding 

to moves of the mouse on the nodes {mo,ml}, 

respect ively.  For each d ~ { O , l } ,  l e t  N~ 

be the nodes of M k which are targets of edges 

label led with d c {0 , I } .  (We have assumed al__l_ 

edges entering a node of N~ are label led with 

4). Add an edge from each node of N~ to 

"switch"k, d for  a l l  d~ {0 ,1 } .  These las t  edges 

allow the mouse at node m d to detect whether the 

cat k is in N~;  i f  not then the mouse can 

safely jump to the "switch"k, d node and then on 

to his "mouse hole". Each node v of N k in 

nei ther N~ nor N~ has by assumption a d i s t i nc t  

"twin" v. Add an edge from v to "switch"k, 0 

and an edge from v to "switch"k, I .  

These edges insure that the mouse is "b l ind"  

to the cases when cat k ca l ls  a subroutine and 

is in nei ther N~ nor N~. 
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Now we modify the digraphs M 0 . . . .  ,M r to 

properly implement subrout ining: 

For each edge e = (u,v) label led by l e t t e r  

a k, and contained in Mj, we subst i tu te  a small 

subgraph, and add certa in new edges and two 

"switch" e nodes as i l l u s t r a t e d  in Figure 7.  

These modif icat ions have the e f fec t  of s t a l l i n g  

cat j at the immediate v i c i n i t y  of  node u whi le 

:at k takes a path in M k from an i n i t i a l  node 

of I k. Cat j is  only allowed to land on node v 

when cat k has reached a f i na l  node of F k (note 

that  in th i s  i n t e r va l ,  cat k may "cal l  a subrou- 

t ine"  in a s im i la r  manner). 

During the c a l l ,  cat k traverses a path in 

Mk, beginning at a node of I k. During th i s  

time, the cat j must wai t  at nodes u ,u ' .  

When cat k has reached a node of F k, the cat 

j moves f i n a l l y  to node v, completing the ca l l  

to a k . 
We can show, as in the previous construc- 

t ion ,  that  

(1) x~L(M) i f  and only i f  there is a winning 

strategy for  the mouse in which i t  reaches 

i t s  "mouse hole" wi th an empty middle play, 

and 
(2) d1. . .d  ~ L ( M )  i f  and only i f  there is  

a winning strategy for  the mouse with 

every middle play a p re f i x  of , . .  md 1 "md" 

Hence, the mouse has a winning strategy jus t  

in the case L(M) ~ { 0 , I } * .  Thus we have 

that the outcome problem for  BLIND-PURSUIT(I,n) 

is  EXP-SPACE hard. 

/ Mj ~ I \ \ 
# / % 

I ~ l ;L , 

I a / I 
\ / \ / 

\ v 

Figure7a:  Modi f icat ions of Mj to implement 

a subroutine ca l l  on edge e = (u,v)  label led 

with a k. The edge e is  replaced with a small 

subgraph with new node u ' .  

/ I  I .~? ~ ,  ~ ,~. ---~-'---~._........ 
" ~  wJ.l:ch 

I { / - - - ' -  ' " ' %  • 
~ %1 t ~ o u s e  h o l e  

x ~ _ _ _ _  1 "switch,, 

Figure7b:  Addi t ional  edges and new "switch" 

nodes are used to implement the subroutine ca l l  

of a k associated wi th edge e = (u,v) of Mj. We 

add an edge to "switch'R, 1 from the "s ta r t  node" 

of cat k, the nodes of F k, and the nodes u ,u ' ,  

m0,m I .  There is an edge to "switch"e, 2 from 

a l l  nodes of M k but those of F k, from a l l  

nodes of M. but u and u ' ,  and from nodes m0,m1. 
J 

Just before the ca l l  of a k, we assume the 

cat j is  at node u, the cat k is at i t s  " s ta r t  

node" or in F k, and the mouse is at m o or ml. 

8. So l i t a i r e  Games 

In section 2 we defined a game 

G = (Pi,P2, ~, ~,CP, PPI' PP2 ) 

to be a solitaire game i f  given any 

RccP1 UP2 the next move relation 

of player 2 in uniquely defined 

for  a l l  posi t ions R~P2-{RO} of 

player 2 reachable from H O. We can show that the 

outcome problem for  reasonable s o l i t a i r e  games 

is contained w i th in  ~ (excuse the c o n f l i c t i n g  

notat ion) of the polynomial hierarchy [Stockmeyer, 

1973], since the outcome problem of  any concrete 

reasonable s o l i t a i r e  game G can be log-space 
~0 

reduced to the s a t i s f i a b i l i t y  problem for  a 

formula of the form 

Vx~Yf~o(X,Y) 

where f~o is a proposi t ional  formula in CNF 

of size polynomial in I~01. 

Furthermore, the s a t i s f i a b i l i t y  problem 

for  formulas of the above form can be considered 

a s o l i t a i r e  game which is universal for  a l l  

reasonable s o l i t a i r e  games, and is log-space 

complete in R~. 
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9. Conclusion 

In [Reif, 1979], we consider the computational 

complexity of f ini te state and push-down automata 
with "private" and "blind" alternation. 

We conclude with an open question concerning 

the computational complexity of the payoff o_f_ 

optimal probabilistic strategies for reasonable 

games. 

Let G = (P1,P2 ~, ~,CP, PPi,PP2) be a 

game and f ix an ini t ial  position H O~P1U P2" 

Let the game tree be T , with node set N, 
RO 

edge set E, and root n O~N. As usual, with 

each noN, there is a corresponding position 

R(n), with ~(n O) = ~0" Let r(n) be the set 

of edges of E departing from node n~N. For 

each player a~{1,2}, let Na=~ncNIH(n)~Pa} 

be the set of nodes corresponding to positions of 

player 1. Also, let E a n N n) and let 

N'a:{n~Na{r(n ) ~ B}. 

A probabilistic strategy for player a is a 

mapping Pa from E a to the real interval 

[0,1] , such that for all (n,m),(n',m')cE a, 

i f  n~m and n'~m' then Pa(n,m)= pa(n',m'), 

(i.e. the strategy ~ must not vary over edges 

that player a cannot distinguish) and 

m~@~1(Pa(n'm) = 1 for all n~N' a o 

Let Pa be 

deterministic i f  for each n N' there exists 

some (n,m) cEa such that Pa(n,m) = I. Thus 

deterministic strategies, viewed as mappings 

from nodes n~N' to some m~r(n), are precisely 
a 

the sort of strategy defined in section 2. 

Let $1(S_2) be the class of probabilistic 
strategies for player 1(2). 

Given a pair of probabilistic strategies 

Pl eS1 and P2 ¢$2' we define for each n c N, 

PAYOFF~,p2(n) = I i fR(n) is a winning 
position of player I; 

= 0 i fR(n) is a winning 
position of player 2; 

and otherwise, i f  n is not a winning position 
for either player and n ~ N a then let 
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PAYOFFp 1,~(n) = ~ pa(n,m).PAYOFFp plm) 
(n,m)~r(n) I ,  

The probability of player 1 winning, from position 

R O, under an optimal min-max strategy [von Neumann 

and Morgenstern, 1953] is thus 

PWIN(~o)= max ( min (PAYOFF pl,~no))) 
PlCS1 Pi~$2 

Finally, let 

PWING={(~,PWINi(~)IR is a position of game G}. 

Note that player I has a winning deterministic 

strategy from ini t ia l  position ~0 i f  and only 

i f  (~0,I) ~ PWIN G. 

Thus the outcome problem (for deterministic 

strategies) for any game G is t r iv ia l ly  reducable 

of PWIN G. Let M be a universal TM. Since the 

outcome problem for computation game G M is 

undecidable, PWINGM is also undecidable. 

What is the complexity of the set PWIN G for 

reasonable game G? Theorem 6 of this paper 

implies that PWIN G is EXP-EXP-TIME hard for 

reasonable games G. 
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