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ABSTRACT

We consider two-person games of incomplete
information in which certain portions of positions
are private to each player and cannot be viewed
by the opponent. We present various games of
incomplete information which are universal for
all reasonable games. The problem of deter-
mining the outcome of these universal games from
a given initial position is shown to be complete
in doubly-exponential time. We also define
“private alternating Turing machines" which are
alternating Turing machines with certain tapes
and portions of states private to universal
states. The time and space complexity of these
machines is characterized in terms of the time
complexity of deterministic Turing machines,
with single and double exponential jumps.

We also consider blindfold games, which are
restricted games in which the second player is
not allowed to modify the common position. We
show various blindfold games to have exponential
space complete outcome problems and to be uni-
versal for reasonable blindfold games.

We define "blind alternating Turing
machines" which are private alternating Turing
machines with the restriction that the uni-
versal states cannot modify the public tapes and
public portion of states. A single exponential
Jjump characterizes the relation between the
space complexity of deterministic Turing machines.

1. Introduction

A {(generalized two-person) game G consists
essentially of disjoint sets of positions for
two players named 1 and 2, plus relations
specifying legal next-moves for the players. A

osition 1 contains portions which are private
to each player (invisible to their opponent)
and the remaining portions of I are common

and may be publicly viewed by both players.
The set of legal next-moves for a given player
must be independent of the opponent's private
portions of positions.

The game G is of perfect information if no
position contains a private portion. 0On the
other hand, a game is blindfold if player 2
never modifies the common portion of a position.
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Figure 1a: A position of PEEK

For example, consider the game PEEK of
Figure la. (Peek was first described in

[Chandra and Stockmeyer, 1976].). A position of

PEEK consists of a box with two open ends an

containing various plates stacked horizontally
within. The plates are perforated by holes

of uniform size in various places. The top and
bottom of the box are also perforated with holes.
Each plate contains a knob on either of the

open ends of the box, and the plate may slide to
either of two locations "in" or "out". Once
"out", a plate can only be pushed "in", and

vice versa. The players stand at the two open
ends of the box. A move by a player ae{1,2}
consists of grasping a knob from his side and
pushing the corresponding plate either "in"

or "out". The player may also pass. If just
after the move there is a hole in each plate lined
up vertically (so the player can "peek" through
from the top), then player a wins.

The game PEEK is of perfect information:
each player knows the pattern of holes on the
plates and can view the location of all the plates.

To introduce private portions of positions,
we place partial barriers on both ends of the
box, as in Figure 1b. These barriers hide the
location of some, but perhaps not all, of the
opponent's plates. Nevertheless, both players
are still aware of the pattern of holes in the
plates and can attempt to "peek" through the box
from the top.
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Figure 1b: A position of PRIVATE-PEEK
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Let PRIVATE-PEEK be the resulting game
of incomplete information. By requiring that the
barriers on the side of player 1 obscure the
locations of all the opponent's plates, we have
the blindfold game BLIND-PEEK.
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Figure lc: A position of SLIND-PEFK

The outcome of a game G is the problem of
determining the existence of a winning strategy
for player 1, given an initial position g Let

the reach of a game G be the function of n giving
the maximum number of positions reachable from
a given position of length n

Ifno apriori-bound is placed on the reach of
games, the outcome problem is undecidable (see
the computation games of section 3).

We define in section 2 a class of games which
are reasonable in the sense that (1) the next-move
relations are polynomial time computable, and
(2) the number of positions reachable from a given
initial position 1 is bounded by an exponent in
the size of I.

Given a class of gamesC, a game GU is

universal to & if (1) 6% and (2) the outcome
problem for each G € € is log-space reducible
(see [Stockmeyer and Meyer, 1973]; a log-space
reduction is always polynomial time) to the

outcome problem for GU.

The game PEEK was shown universal to reason-
able games of perfect information in [Chandra and
Stockmeyer, 1976]. We show BLIND-PEEK is univer-
sal for all blindfold reasonable games, and that
PRIVATE-PEEK is universal for all reasonable games.

While the outcome problem for PEEK is (log-
space) complete in exponential time, the outcome
problem for BLIND-PEEK is complete in exponential
space, and the outcome problem for PRIVATE-PEEK
is complete in double exponential time.

Games (with easy-to-compute next-move relations)
can be considered to be computing machines. Game
G accepts input w, considered to be a position of
G, depending on the outcome of the game from w.
Games of perfect information are similar to the
alternating Turing machines (A-TMs) of {Chandra
and Stockmeyer, 1976] in which existential states
(identified with player 1) alternate with universal
states (player 2) during a computation.
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In this paper we introduce the notions of
“private alternation" and "blind alternation'.
In "private alternation” we add to an A-TM
certain portions of states and certain work tapes
private to universal states (player 2); the
machine cannot read the private tapes while in
existential states. The result is a PA-TM. In
"b1ind alternation" we restrict a PA-TM so that
the universal states can write only on their pri-
vate tapes, and on no other tapes. The resulting
machine is a BA-TM. Acceptance of input strings
by these machines is defined by the outcome in
corresponding computation games.

read only iinur tape

!
finite state

Figure 2: An alternating Turing
machine with a tape private to
the universal states Qy

Let F(n) be a set of functions on variable n.
For each ae {D,A,PA,BA}, let
aSPACELF(n)1(«TIMECF(n)1)

be the class of languages compytab]e by a-TMs
within some space(time)?bound_1n F(n). Also let
EXP(F(n)) be the set of functions

{Cf(n_) lc>0 and feF(n)}

and Tet EXP(f(n)) denote EXP({f(n)}).

[Chandra and Stockmeyer, 1976] relate the
space and time complexity of A-TMs and D-TMs
as follows:

For each S(n) > Tog n,

ASPACELS(n)1 = DTIMELEXP(S(n))]

ATIMELEXP(S(n))1 = DSPACELEXP(S(n))]

We characterize the time and space complexity
PA-TMs and BA-TMs in terms of the time and space
complexity of A-TMs and D-TMs as follows:

For each S(n) > log n,

BASPACE[S(n)1= ATIMELEXP(S(n))]
= DSPACELEXP(S(n})]
PASPACELS(n)1= ASPACELEXP(S(n))]
= DTIMECEXP(EXP(S(n)))1
= PATIMELEXP(S(n))1



SPACE

log (n)

Figure 3: Complexity Jumps for a-TMs from
a-SPACE to deterministic time and space.

A for "alternation"
BA for "blind alternation"
PA for "private alternation"

o

This paper is organized as follows:
the next section defines games of incomplete
information, section 3 introduces our "private
alternating" and "blind alternating" Turing
machines, section 4 presents our complexity
results, section 5 described certain propo-
sitional formula games which are universal for
reasonable games, section 6 concerns universal
blindfold games on finite state automata,
section 7 concerns pursuit games and in
section 8 we conclude this paper with an
open problem concerning probabilistic strategies.

2. Combinatorial Games of Incomplete Information

Let a (two-person) game be a tuple

6 = (P1.Pys 5 1:CP,PPLLPP))

where CP, PPl, PP2 are sets,

P1sP2
and ‘2* < szple

T =PPee

< CPxPPleP 1

2’

The players are named 1, and 2 and are considered

to be opponents of each other. Fix a player

ae{1,2} and Tet b be his opponent. A position

1 _of player a is a tuple (ﬂc,nl,nz)e P_ where
(1) m is the portion of 1 private

to player 1 ,
(2) ™ is the portion of I private

to player 2,
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(3) e is the portion of 1 shared in

common by both players.

Let visib]ea(n) = (nc,na); intuitively, this is
the portion of position m that player a may view.

Also, let privatea(n) = m,-
The next-move relation Z contains the set
of pairs (n,n')e Pabe such that player a has

a legal move from position I to position n'. We

require that ;—be independent of that portion
of a position private to player b.
Iz n' then privateb(n) = privateb(n'). Also,
ifr 3 I' and T z T and visib]ea(n)=visib1ea(n),

Formally, if

then 1 3 ' and ﬁ'g m'. A position meP,
with no next move for player a is winning for
player b and losing for player a.

Fix an initial position mg sPa.
The pair GHO = (6,7,) is a concrete game.

Concrete game GH is
0

(1) perfect information if privatel(n),

privatez(n) are empty for each Tie PH (i.e.
0

no position e Pn contains a position with a
0

porticn private to any player).
(2) blindfold if szfimp1ies

visib]el(n) = visib]el(n') for all me Py

0

(i.e. player 2 never modifies the common portion

of a position).
(3) solitaire if HEJV and ngﬁf'imp1ies
n' = 1" for each n,m', 1" ¢P_ -{I.} (i.e.the
Mg 0
next-move for player 2 is uniquely defined

for all positions of player 2 in %b-{no}).

A game G is perfect information (blindfold

solitaire) if each of its concrete games are.
Chess, Checkers, and Go are all concrete games
of perfect information. Some examples of blind-
fold games are given in Section 6. Also

see [Jones, 1978].



Kriegspiel, the German game of "blind chess" is
not truly a concrete blindfold game since there
is a gradual transfer of positional knowledge
as the game progresses. Battleship and Master-
mind are (for this same reason) not concrete
blindfold games, but are concrete solitaire

games.
A play of GHO is a (possible infinite)

sequence Ilg,1,,1,,03,... of positions of

player a alternating with positions of player b

such that ]'[0-5111, Hl-BHZ, H2—5H3, [P

A play is winning for player ae {1,2}if it

is finite and terminates with a win for player a.

Let PHO be the set of positions reachable
from I, and including ;. The game tree of

GH is the minimal (but possible infinite)
0

directed tree Tn with node set N, root ngeN,
0
and node labelling H:N-»\Pn such that
0

for each play my,ny,%,, ... there is a path

with H(ni) =, for

NgsNysNpse .. ;

i=0,1,2,... The node set N is
partitioned into sets Ny,N, consisting of
those nodes labelled in P;,P» respectively.

For each player ae {1,2}, we define an
equivalence relation yover N as follows:

(1) Mgy No »

(2) for all nodes n,me N-{ny} with parents

n',m' , let ngnlif and only if n'gnﬂ and

visib]ea(n(n)) = visib]ea(n(m)) .

(3) no other nodes are related by v -

Intuitively, ¥ relates those nodes of N which

player a cannot distinguish in plays of Gno'
Let a,be {1,2} be distinct players.
Let N; be the set of nodes of Na with at

least one sibling.
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A (deterministic) strategy for player a

is a mapping a:N; »Nb such that for all

n,meN' ,
a
(1) o{n) is a sibling of node n,
(2) nym implies o(n)amc(m).
Player a plays by strategy ¢ if
H(no), m{ny)s 1(ny), ... is a play and
nis‘N; then ni+1=°(ni)' The strategy o
is winning if player a wins on all maximal
plays by strategy o. Note that a strategy for
player a essentially defines a mapping from
the visible portions of plays (ending with a
position of player a) to some legal next-move
for player a.

Winning strategies for games
of perfect information can always be made
Markov strategies, i.e. can be made indepen-
dent of previous play and only dependent of
the current position.

Winning strategies for
games of incomplete information, on the other
hand, often depend highly on previous play to
determine (at least partly) the private
position of the opponent.

Winning strategies are now characterized by

finite subtrees of the game tree TH . The
0

subtree Tn induced by strategy o is
059

derived from the game tree Thoby deleting each

subtree rooted at m and the edge leading to m,
for all nodes me Nb—{no} not in the range of o.
Proposition Strategy ¢ is winning for
player a if and only if

(nrT is finite but not empty,

Ho,O'

(2) all leaves of Tno,c are labelled

with winning positions for player a.
(Winning strategies may also be characterized
by minimal fixed points of functions on
strategies. )

The outcome of concrete game Gno is a

win for any player ae {1,2} with a winning

strategy, else is a draw.



The outcome problem for game G is:

given initial position g, determine if player 1
has a winning strategy.

Let game G' be derived from game G by
making common to both players that portion
of positions originally private to player 1.
Note that the outcome problem for game G'
is identical to the outcome problem for the
original game G. (Nevertheless, the outcome

of probabilistic strategies, as defined in the

final section, are highly dependent on the

existence of private positions of both players.).

The game G = (Pl’PZ T §,CP,PP PP2)
is reasonable if

[1] each position ne

1’

PLU P, is represented

as a string in {0,1}* ,

[21 if position ' is reachable from position

T by a play of G, then |nf = |n'|.

[31 for each player ae {1,2}, the pairs of

the next-move relation 3 are recognizable

in polynomial time.

Note that any concrete reasonable game can
be realized as a physical object (i.e., with a
finite game board and finite sets of tokens for
marking positions). A game satisfying only
assumptions [1] and [3] is essentially a
universal computing machine, as formalized in
the next section.

3. Alternating Automata with Private Tapes
The alternating automata proposed by

[Chandra & Stockmeyer, 1976] have a

natural correspondence to games of perfect

information.

The states of alternating
automata are named either universal or
existential. The sequencing between
existential and universal states corresponds
to the alternation of moves by players in the
play of a game. In particular, the outcome
problem for reasonable games of perfect
information is log-space

equivalent to the recognition problem for
Tinear-space bounded alternating Turing
machines.

292

We introduce here the notion of
alternating automata with private tapes
and private portions of states,
which have a natural correspondence to games of
incomplete information. In fact, we will define
the languages accepted by these machines by the
existence of winning strategies for the corres-
ponding computation games. The outcome problem
for reasonable games of incomplete information
is log-space equivalent to the acceptance
problem for linear-space bounded alternating
Turing machines with private tapes.

Let an alternating Turing machine with
private tapes (Eﬁ:lﬂ) be a 12-tuple

M= (Qc’Qp’Q’qO’QF’Q ,z,r,#,b,tc,tp,s)
where

QC are the common portions of states
Qp are the private portions of states
Q£ 0.,
Q is the set of states of M
goeQ is the initial state
QF < Q are the universal states
(Q3 = Q-Qy are the existential states)
z,T are the sets of input and tape symbols
#,ber-1 are end marker and blank symbols
5 < (@1 )x(QurExlleft, right £

is the next-move relation,

where t = t +t +1.

c P

There is a single, read-only input tape
(named 0) initially containing #w#, where we I*
in the input string. There are also tc+tp work
tapes, initially containing two-way infinite
strings of the blank symbol b. The t_ common
work ;ggg;_l,...tc might be read or written
on from any state of Q, whereas the t_ private
work tapes tc+1,...,tc+tp can only be read
and written from the universal states of Q .
Also, § must be independent of the private
portions of existential states and must not
contain state transitions from existential
states in which the private portion of the state.
is modified.

The PA-TM is a natural generalization
of machines previously described in the
literature. If M has no private tapes, it is
an alternating Turing machine (A-TM) as
described by [Chandra & Stockmeyer, 19761.




If M is further restricted to only

existential states, then it is a nondeter-
ministic Turing machine (N-TM) as is now

common in the literature. If M is still further
restricted to be deterministic, then we have a

deterministic Turing machine (D-TM or just ™), the

common, garden-variety universal machine as originally

envisioned by Turing.

We now define still another machine (this
machine will be relevant to blindfold games. )

Let a BA-TM be a PA-TM restricted so that the
universal states never write on the common
and input tapes, never move their heads, and
never modify the common portion of a state.

Let a configuration be a sequence
C = (X)QYpqs-- X qy )
(] tc+tp tc+tp

Such that X5 » y; are the non-blank prefixes

of tape j to the Teft and right of the
scan head, and qeQ is a state. Configuration C
is existential (universal, accepting) if state

q is.

Let NEXTM(C) be the set of configurations
which are reached from configuration C by a
single step of M, as defined by the relation .

We now define the computation game

Gy = (P1sPs, 357 ,CP,PP,,PP,)
where

Py s the set of existential configurations

of M,
P, is the set of universal configurations
of M,
CP are the input tape and common work tape
portions of configurations of M.
PP; is empty,
PP, are the private work tape portions of
configurations of M.
In the computation game GM’ player 1 is identi-
fied with the existential states and player 2
is identified with the universal state.

Given configuration C as above with
q=1{q.q,), let
c P
visib]el(c) = (xoqcyo,...xthcytc).

Thus, visible,(C) consists of those portions of
configuration C containing the contents of the
input tape, the common work tapes,
and the common portion of the state.
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For each CyeP, and C, ¢ Py, let
(1) C13C; if and only if C, e NEXT,(C,),
(2) Co3Cy if and only if Cy e NEXT,(C,).

Note that if M is a BA-TM with universal
configuration C, then

visib]el(Cl) = visib]el(cz)
for all Clc2 eNEXTM(C).

Let we x* be an input string.
The initial configuration Cy is considered

an initial position of the concrete computation
game GM Co = (GM,CO). We introduce some

2 0 . . .
terminology to aid the reader's intuition.

Each play of GM,CO is a computation
sequence and the game tree TCo is a computation

tree. The input string w is accepted by M if
there is a winning strategy o for player 1 in the
concrete computation game GM Co’ The corres-

L]

ding subtree T induced by o is an accepting

Co,G

subtree of TC
— 0

It is easy to verify that PA-TMs accept
precisely the recursive enumerable sets. The
next section considers the computational
complexity of time and space bounded PA-TMs.

4. Complexity of Alternating Turing Machines
with Private Tapes

We wish to characterize the time and space
complexity of PA-TMs and BA-TMs in terms of the
time and space complexity of A-TMs and TMs. As
we develop these characterizations, we will
describe their applications to reasonable games.
Let we 2" be a string input to a PA-TM M and
Tet CO be the corresponding initial configuration
of M.

M accepts w within time t > 0 if there
exists an accepting subtree (of the computation
tree) which is of depth < t.

M accepts w within space s > 0 if there
exists an accepting subtree with no configuration
containing a work tape in which more than s cells
have been visited.

M accepts language L < gp* within time T(n)
(space S(n)) ifMaccepts exactly the strings of L
within time T(n) (space S{n)).




M has time(space) bound f(n) if M accepts
string we s" if and only if M accepts o
within time (space) f(n).

For o= PA, BA, A, N, and D we use the
notation oTIME(T(n)) (aSPACE{S(n))) to denote
the class of languages accepted by a-TMs
time T(n) (space S(n)).

The fundamental results (i.e., tape reduction,
constant factor "speed up"”, complexity hierarchies)
for complexity classes of time and space bounded
TMs hold also for PA-TMs. (These will be des-
cribed in detail in a later draft of this paper.)

The following two Theorems, due to [Chandra
and Stockmeyer, 1976]

within

(1) characterize the space complexity of
A-TMs in terms of the time complexity of
T™s, and
(2) bound the time complexity of A-TMs
in terms of the space complexity of N-TMs
and TMs,

Theorem 1 For all S{n) > log n

ASPACE(S(n)) = §ZODTIME(¢S(n))

Theorem 2  For all T(n) > n and S(n) > n,

(a) ATIME(T(n)) < DSPACE(T(n))
(b) NSPACE(S(n)) < ATIME(S(n)?).

Let G be a game.

Let reachG be a function over the natural
integers such that for n > O,

reachG(n) is the maximum number of distinct
positions reachable from any position n of G
with n =[1| .

Observe that for any reasonable game G there
exists a constant c > O such that
reachG(n) < & for all n > 0.

Note that for each PA-TM M with space
bound S(n), the computation game Gy has

lr'eachG (n) = CS(n)
M
In section 3, the outcome of GM was

used to define the language of M. Similarly,

for some ¢ > O.

for each game G, with reachG(n) > n, there is

a 10g(n)k-1og(reachG(n))-space bounded PA-TM
whose language precisely characterizes the out-
come of G, (where k is a constant related to

the degree of the polynomial bounding the time
complexity of the next-move relations of game G.)
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These correspondences also hold

(1) between blindfold games and BA-TMs,
and

(2) between games of perfect information
and A-TMs.

As a consequence of Theovrem 1,

(a) the outcome problem for any reasonable
game G of perfect information with
reachG(n) > n can be solved within time

reachG(n)aan), for some polynomial g(n).

{g(n) is related to the time complexity of the
next-move relations of G.)
(b) for any S(n), log n<S(n) <n, there
exists a computation game GS(n) which is
universal in the class of reasonable games
of perfect information with reach §_cs(n);
this game GS(n) of perfect information has s(n)
outcome probiem Tog-space complete in DTIME(c }.
In particular, there exists a computation game
Gpy (i.e., that associated with Tinear-space
bounded A-TMs) universal for the class of
reasonable games of perfect information, and with
outcome problem log-space complete in

EXPTIME = U DTIME(c").

We shall derive analogous results for games of
imcomplete information and the more restrictive
blindfold games.

Let M be a standard PA-TM if

(1) for all configurations C,C' such that

C eNEXTM(C')

€ is universal if and only if C' is exis-

tential.

(2) the initial state is existential.

(3) there is a unique accepting state

Y and no next move from -
Lemma 1  For each S(n) > log n,

PASPACE(S(n)) = gOAspACE(cS(”))
Proof

Let M be a standard PA-TM with space bound
S(n) > log n. Given input string we ", et
Co be the initial configuration. Let d> o
be the number of distinct symbols occurring in
configurations of M.
S(n) is constructable. The following program
runs in space O(ds(n)), on an A-TM.

Assume temporarily that



ALGORITHM A
[11 t«0; Cy+{Col; C3+Co
[2] CV+{C' € NEXTM(C) |C eca}

(31 if Cv = P then reject
[4]1 if all elements of &y are accepting then
accept

[5] existentially choose some C, eNEXTM(Ca)

[6] universally choose some Cye NEXTM(CV)

[71 & «{C"e NEXTy(C')|C' e Cy>
visib]el(C') = visib]el(cv), and
visib]el(c") = visib]el(ca)}.

[81 if C} =@ or t>ddS(n) then reject

[9] t «t+2; go to [2].
It is easy to verify by induction on variable t
that the above program accepts if and only if M

does. Note that if S(n) is not constructable,

then we try S(n) =1og(|m|),Tog(|w|)+1,... until o

is accepted. O
Applying Theorem 1, s(n)
S(n)y _ U c
ASPACE(c ) d>0DTIME(d )
and thus we have:
Theorem 3 For each S(n} > log n,
S(n)

U c
oDTIME(d )

d>0

PASPACE(S(n)) <

As a conseguence of Theorem 3, the outcome problem

for any reasonable game G with reachG(n) >n
can be solved in deterministic time

dmmmd“*“")mrsmed>0aMpMymma1ﬂnL

We now consider blindfold games.
Lemma 2 For each S(n) > log n,

BASPACE(S(n)) < | NSPACE(c>'M)
c>0
Proof

Let M be a standard BA-TM. Given input
we " with corresponding initial configuration
Co» we apply only a sTight modification of
Algorithm A. Recall that in a BA-TM, the
universal states can modify neither the common

work tapes nor the common portions of confi-
guration. Thus for any universal configuration

Q,ifclﬁzeNﬂﬁAg),tMn

visib]el(Cl) = visib]el(Cz).

This implies that for our machine M we can
optimize Algorithm A by replacing statement
[6] with the statement:

[6'] deterministically choose some
Ci eNEXTM(CV).

The result, Algorithm A', runs in
nondeterministic space O(cs(n)). o
The containment relation
NspAcE( (M) < pspace( 23Ny
is implied by Theorem 2 and is due to
[Savitch, 1970]. We have established
Theorem 4  For each S(n) > log n,
BASPACE(S(n)) < U DSPACE(dS (M),
d>0

Consequently, for each reasonable blindfold
game G of reachG(n) > n, the outcome problem

for G may be solved in deterministic space

O(reachG(n)log(n)k) for some k>0.

In order to lower bound the space com-
plexity of BA-TMs and PA-TMs, it is useful
to define an extension of regular expressions
with which we can compactly define accepting
computations of deterministic TMs and A-TMs,
We then show that BA-TMs and PA-TMs can
determine the relevant language properties of
these expressions in small space.

Let f(n) be a function on the natural
integers. Let a power (f(n))-extended
regular expression be a regular expression R
augmented with an operation for taking powers
of the form (-)p where p is an integer < f(n)
and n is the size of the expression R. Let R
be simple is no power is taken over a sub-
expression containing a power. (Note that a
simple power (2") extended regular expression
R with n = [R| can be expanded to a (non-simple)
power (2)-extended regular expression R' of

size 5_n2. )

Lemma 3 For each simple power (f(n))-extended
regular expression R with alphabet z and length

n, there is a BA-TM M with space bound

0(1og n+log(f(n))) which accepts if and only if

L(R) # 2% .
Proof

Consider first the case where R contains no

powers. There is an obvious BA-TM M in which

a string XpsXps.. Xy € zﬁ_ is existentially

constructed, symbol by symbol, and the universal

states attempt to show x;,Xp,.--X € L(R).

The universal states keep a private pointer to
the currently considered subexpression of R.



This pointer is stored in log n cells of a
work tape private to the universal states.

In the case R contains subexpressions of the
form (-)P, and R is simple, the universal states
of M must also store a counter of size < f(n)
on log(f(n)) cells of their private work tape.
Thus M accepts if and only if L(R) # ¢*. O
Next we give an obvious extension of resuits of
[Mayer and Stockmeyer, 1973] for power(2)-
extended regular expressions. (The entire proof
is given here only because some of the details
will be crucial to results later in the section.)
Let M be a nondeterministic TM with
Given

Lemma 4
space bound f(n) with ¢>0 and f{n) > n.
any input string we I*, there is a simple power
(f(n))extended reguiar expression R over alphabet

Iy such that M accepts w if and only if L(R) # zﬁf

Furthermore, R is of size 0{n).

Proof Let Q be the set of states of M and
Tet qq,9y € Q be the initial and final states.

Let T be the tape symbol alphabet with blank
sumbol ber and # £Tu(Qxr). We consider pairs
[g.a] ¢(Qxr) as distinct symbols. Using the
usual tape reduction techniques we can assume

M has but one tape.

Let a configuration C be represented as a string
of length f(n) of the form a[g,alf where a,B e I*,
geQ is the current state and ae! is the
currently scanned tape symbol. Given an input
string w= Wy Wp .ew € I Tet the initial

n
: ; b f(n)~-n
configuration be C0 = [qo,mllmz...mnb .

Let an accepting computation be a sequence
#CO#CI#CZ...#Qk where

[P1] C0 is the initial configuration.
[P2] Cie NEXTM(Ci-l) for i=1,2,...,k.
[P3] Ck contains the accepting state ap-

T U (Qxr) U {#}
((zy-#) +#-((21-0ag,0  T*e (2 -wy)
ven '(Zl-wn)))...)~z*
Zq+1-b*-(21_b_#).gﬁ
+ #-(21+A)f(")'1-#-zﬁ

Let 21

Let R1
+up-((3y-ug)t

+

a.5T(n) .
+ 4 z -(zl-#) zﬁ

Note that Z*-L(Rl) is the set of strings with

prefix of the form #Cy# where C; is the initial
configuration.
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For each a_qs ao, a. el

1 1’
if ay=4 then let F(a_l,#,a1)=# and otherwise

let F(a_l,ao,al) = {a'e 211 if a_1:8p,2 are the
i-1,1,i+1 symbols of string #C#, then a‘' is the

ith symbol of the string #C'#, where C'¢ NEXTM(C)}.
tet R, = \_J (%0 -2 o -xf (0L (5

et 2 (21 CIRLINEPERE (zl Ra_l,ao,aﬂ).

R i 25

and note that zﬁ‘-L(R3) is a set of

strings that satisfy property P2.

Finally, let R3 = (21-(\J [qA,a]))‘
ael

and note that zﬁ'-L(RZ) is a set of strings
containing the accepting state.

Thus we have a simple power (f(n))-extended
regular expression R = R1+R2+R3 such that
xeL(R) if and only if x is not an
accepting computation. O3

As a consequence of Theorem 4 and
Lemmas 3 and 4, we have:
Theorem 5 For each S(n) > log n,

BASPACE( S(n)) = {JDSPACE(aS (M),

d>0
(Note in our simulation of a f(n) = dS(n) space

bounded deterministic TM by a S(n)-space bounded
BA-TM, in the case S(n) < n we do not actually
construct the power(f(n))-extended regular
expression R of Lemma 4, but instead keep

enough information on private work space (0(log n)
space is sufficient for this) to "virtually
construct"

R from the input string » i.e.
construct that part of R which is needed at
a given time in the simulation.)

We now extend the above proof technique to
PA-TMs.

Lemma 5 For each S(n) > log n,
cQOASPACE(CS(")) < PASPACE(S(n))

Proof Let M be an A-TM with space bound
f(n) = CS(n)’ for some ¢>0.
M satisfies the various restrictions required
of the TM in Lemma 4 (except of course M is
an A-TM). Fix an input string we " and

We can assume

let Cj be the initial configuration.
There is a constant qﬁp dependent only on M,
such that dOZJNEXTM(C)Iforany configuration C.



For each configuration C with
NEXTM(C) = {Cl,CZ,...,Ck}

Tet NEXT,J (C) (€5} for J=1,...ok.

fl

{Ck} for j=kt+l,...,d,
We now define functions similar to F of
Lemma 4.
For each j=1,...,d and
i = hen let
a_y,3g:3y €25 if agy # the

F(a_q.#,a,) = # and otherwise Tet

J = rat .

Fa_jsag.2y) = {a' exy| if a_j,a5,.a, are
the i-1,1,i+1 symbols of the string #C#,
where C is a universal configuration,

then a' is the ith symbol of the string
#C'#, where C' ¢ NEXT)(C)}.

Let Réj) be the power (S(n))-extended
regular expres;ion identical to R except that
the function Fd is used in place of F. (Note:
Let M be the deterministic TM derived from

M by requiring that MItake only the jth branch
from a universal state and halt in an

existential state. The language of

Z’i'L(Rl"Réj)J'RQ
contains exactly the accepting computations of
w.) Also, Tet R(O) = .
We sketch the construction of a PA-TM M1
which essentially the existential states will

construct subtrees of TC and the universal
0

states will attempt to show that these sub-
trees are not accepting subtrees for M.

It will be useful to consider TC to
be represented as a "branching string"Oin
which each path down TCO corresponds to a

lTinear string #CO#Cl#"' which is a
computation sequence of M. The branches
occur just after the symbol #.

An integer J and boolean FLAG are stored
in a work tape common to both universal
and existential states. Initially J and
FLAG are 0. On the private tape we store
enough information to easily “virtually
construct” Réi) from the input string w,
as in the above note. Also on the tape
private to the universal states we store a
counter for powers in R, as in the proof
of Lemma 3.

The machine M1 is programmed with a minor
iteration loop within a major iteration Toop.
In the minor loop the existential states
generate a sequence XqoXpse oo Xy szl, symbol
by symbol, with the universal states alter-
natively attempting to discover that
VYooY XqXpe oo Xy is contained in
L(RéJ)), where Y1¥g- .-y are symbols generated

by the existential states in the previous major
loop. (The operation of M1 within the minor
loop is similar to the BA-TM described in the

proof of Lemma 3.)

If any xj is a state q of M, then FLAG is set

to either 0 or 1 depending on whether q is

existential or universal. When (if ever)

an x; = # is chosen, then the machine M1

leaves the minor loop and sets J to 0 if FLAG = 0

and otherwise universally sets J to some element

of {1,2,...,4}. The machine M, next scans over

the cells containing J while in existential

states . The minor loop is then entered again.
If FLAG = 1, the above steps have the

effect of creating a branch in the subtree of

TC generated by the existential states.
0

Each branch must succeed, i.e. must be an
accepting subtree. Also within the minor loop
the universal states attempt to verify that if
Tinear string zl,zzu.zkis a path down the
"branching string" of symbols generated by

the existential states, then zl,zzn.ggL(R1+R3).

Operating in this manner, M1 accepts if and only
if M accepts the input string w. Note that since
the integer J is upper bounded by the fixed
constant d, the PA-TM M1 has within a constant
the same space bound as the BA-TM
described in the proof of Lemma 3. Since
f(n) = CS(n)’ M1 has space bound

0(log(f(n))) = 0(s(n)). O

As a consequence of Theorems 1, 4, and
Lemma 5, we have the primary result of this

paper:
Theorem 6 For each S(n) > log n,
CS(n)
PASPACE(S(n)) = \) DTIME(d ).
c>0
d>0



Theorems 5 and 6 have important applications

to reasonable games.
For each S{n), log n < S(n) < n, and d>0,
(1) there is a computation game g3{n
universal for the class of reasonable games

with reach jyds(n) and the outcome

problem of Gs(") is log-space complete in

S{n)
aspace(¢S(")) = CQO pTIME(cd )
(2) there is a blindfold computation
game geln) universal for the class of

reasonable blindfold games with reach 5_ds(n)

and Gs(n) has outcome problem log-space
complete in DSPACE(dS(n)).

In particular, there is a game GU, uni-
versal for all reasonable games, and a game

GUB, universal for all reasonable blindfold
games. GUB has outcome problem log-space
complete in

Exp-SPACE = \J Dspace(d")
d>0

and GU has outcome problem log-space complete
in n
EXP-EXP-TIME = |J DTIME(d® ).

c>0
d>0

We now consider the time complexity of PA-TMs
and BA-TMs.

The following Theorem provides an upper bound
to the computational power of time bounded
PA-TMs.

tight.

Theorem 7  For each T{(n) > n

PATIME(T(n)) = (J DTIME(c' (M)
c>0

Proof Let M be a standard PA-TM with construc-
table time bound T(n). Given an input string
weEn, Tet CO be the initial configuration. Let

TC be the computation tree.
0

Step 1 Let Dc be the acyclic digraph constructed
0

from Tc by
0
(1a) deleting all nodes of TC of
0
depth >T(n)
(1b) collapsing all remaining nodes n.m such
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that nam (the equivalence relation ~ is
1 1
defined in Section 2).
(n)

Note that DC contains no more than dT
0

for some constant d > O dependent only on M.

The step (1b) may be accomplished by a breadth-first

search of TC , from the root to the nodes of
0

level T(n).
For t = 1,2,...,T(n) collapse together all
nodes n,m of level t such that
(a) the parents of n,m have been collapsed
together at level t-1.
(b) if C(n),c(m) are the configurations
associated with nodes n,m then
visib]el(C(n)) = visib]el(c(m)), i.e. the
public work tape portions of C(n), C(m)
are equal.

nodes,

Step 2 Next, we prune various nodes and edges

from D to form a digraph Db . Repeatedly
Co 0

pass through D, considering each node n which was
not derived entirely from accepting configurations.
Delete node n and all entering and departing
edges if (1) n was derived from existential
configurations and has no departing edges.
(2) n was derived from universal configur-
ations and at Teast one edge, originally

departing from n in DC has been deleted.
0
The resulting digraph Db can be constructed
0

n

in deterministic time O(CT( )) for some c¢0.

We claim Db is nonempty if and only if M
0

accepts the input string o within the T(n).
Suppose M accepts w. Then there is an

accepting subtree T'. (of the game tree T. )
CO CO
with depth < T(n). If we apply steps (1)

and (2) to Th , the result is a non-empty
0

subgraph of D! Hence D. 1is non-empty.
Co %o

On the other hand, if Dt is nonempty, then
0

the tree derived from Db (by separating common

descendants of the root) contains an accepting
subtree of depth < T(n) as a subgraph.

If T(n) is not constructable, then we try
T(n) = n,n+l,... until acceptance. O



The following Lemma generalizes a divide
and conquer technique used by [Savitch, 1970]
to show

NSPACE(S(n)) < DSPACE(S(n)?)
and used by [Chandra & Stockmeyer, 19761 to show

NSPACE(S(n)) < ATIME(S(n)?).
Lemma 6  for each S(n) > n,

ASPACE(S(n)) = PATIME ($(n)?)
Proof Let M be a standard A-TM with space bound
S(n) and let wez" be in input string. The
algorithm below runs in time O(S(n)z) on a
PA-TM. The variables Cl’CZ’ and C3 are stored
on private tapes.

Algorithm B
[1] C1<-the initial configuration CO'

(2] universally choose to goto[3]or [10].

[3] universally choose some configuration C2
size < T(n).

[4] existentially choose to goto [5] or [7].

[5] exchange the contents of C2 and C3

[61 goto [2]

[71 if C, 1s a universal configuration then
write C2 on a common tape
[8] exchange the contents of C2 and C1

[9] goto (2}
[10] if C3e NEXTM(Cl) then accept else reject

Note that statement [7] forces branching on
universal configurations. We can show M rejects
w if and only if Algorithm B accepts. Since
ASPACE(S(n}) is closed over complementation, the
result follows. 3

Theorem 8 For each T{(n) > n,

PATIME(T(n)) = U DTIME(c (M),
c>0

Let a game G have time limit T(n) if for each
initial position & winning for player 1, there is
an induced subtree of depth < T(n), when n = [n].
The above Theorem implies that there is a
reasonable computation game GPTL with polynomial
time 1imit which has outcome problem log-space

complete in EXP-TIME = [JDTIME(c™)-
¢c>0
We did not succeed in precisely characterizing
the time complexity of BA-TMs in terms of the
time complexity of deterministic TMs. However,
we do have a characterization in terms of a
generalization of the complexity class 22

of the polynomial time hierarchy of [ Stockmeyer,19737
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Let M be a zk-bounded A-TM if (1) each

initial configuration is existential (2) on

any path down any accepting subtree, confi-
gurations switch from existential to universal
or vice versa at most k-times. Let zTﬁ?)be the

class of languages accepted by A-TMs which are
both T(n)-time bounded and zk-bounded.

We can show:
Theorem 8 for each S(n) > n,

BATIME(T(n)) < zTg")S BATIME(cT(n))

for some c>0.

As a consequence of this Theorem, there is
a computation game GBPTL which is universal for
reasonable blindfold games with polynomial time
limits, and GBPTL has outcome problem log-space
complete in K

22 = U zg .

k>0

5. Universal Games on Propositional Formulas

As consequences of Theorem 5 and 6 of the
previous section, we have two computation games

U g8y

G~ and such that
(1) GU is universal for all reasonable games.
(2) GBU is universal for all reasonable

blindfold games.

Inthis section we construct various propo-
sitional formula games which are universal for
reasonable games. These games and the reductions
between them are generalizations of work on games
of perfect information in [Chandra & Stockmeyer,
19767].

Boolean variables take on values 1(true) and
O(false). Let a literal be a boolean variable or
its negation. Let a propositional formula F be
in k-CNF (k-DNF) for if F consists of a conjunc-
tion {disjunction) of formulas F1’F2"“Fj with

each F, a disjunction (conjunction)of at most
k Tlitdrals.

We now 1ist 3 games on propositional formulas
which are universal for all reasonable games. The

games G3 and G3B are essentially the games
PRIVATE-PEEK and BLIND-PEEK described in the
introduction. Throughout this section we equate

player 2 with 0.

(1) Let g? be the game in which a position
contains a propositional formula

FOGYC,YPOYPL 3 s) n 5 ONF form, with

XC,YPO,YP1 each sequences of variables and

a,s individual variables, plus a truth
assignment to its variables. The formula
F and the truth assignment to the variables

of X,Yc,a.s are common to both players 1
and 2, but the truth assignment to the

variables of YPO,YPl are private to player 0.



Player 1 moves by setting a to true and choosing
a new truth assignment for the variables of X.
Player O moves by (a) setting a to false,

(b) setting s to the complement of its previous
truth assignment, (c) choosing a new truth

assignment for the variables of YC,YPS The
formula F is not modified by these moves, except
for the changes in the truth assignment to its
variables. The loser is the first player whose
move yields a truth assignment for which the
formula F is false.

(2) Let Gz be the game in which each position
conta1ns formu]as WIN (U VC V') and
WINA(U, Ve V } and truth assignments to the
sequences of variables of U,VC,V .

The formulas WIN, and NIN0 and truth assignments

to variables Uu VC are viewed commonly by both
players, but the truth assignment to the variables

of VP are private to player 0. Player 1 moves
by changing the truth assignment to at most one
variable of U, while player 0 moves by changing

at most one variable of UC,UP. Player ae {0,1}
wins if formula NIN

(3) Let 63 be the game in which a position
consists of a propositional formula

F'(u, VC V') in DNF form and a truth assign-

ment to the variables of the sequences

U, VC and V The formula F' and truth

assignments to the variables of U, VC are

viewed commonly by both players, but the

truth assignment to the variables VP is

private to player 0.

Players move as in game Gz. A player wins
if after his move the formula is true. To show

G' is universal for reasonable games, we consider
a linear-space bounded standard PA-TM M with

inputwe £". We encode each conf1gurat1on C as
a bit vector of length n' = 1-n (where k1

depends only on the size of the tape alphabet of
M}, so that bits 1,2,. ceesn, are those of

v1s1b1e1(C) {the portions of C publicto both
the existential and universal states), and the
bits nc+1,...,n? contain those portions of C
private to the universal states.
Using the techniques of [Stockmeyer, 19757,
we can construct a propositional formula
NEXT(Z1 29 T)
where Zl’ 2,T are sequences of variables of

length n',n',kz(where k2 is a fixed constant)
and such that:
if Z1 encodes a configuration C1

then there exists an ass1gnment to the variables
of T such that NEXT(Zl, 93 T) is true if and only

if 22 encodes some configuration Che NEXTM(Cl).
The size of NEXT is 1inear in the input length n.

is true after a move by player a
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We 1ntroduce new sequences of variables

X,YC YPO Lot length m,m,p,p where
m=n, + k and p =
Let Y = C-YPO-YPI .

For distinct s,5¢ (0,1}, let NEXT1 2(X Y)
be the formula derived from NEXT(Z
by substituting X(1),..., X(n c ; Y (p)
for Z;, substituting YC(l),...,Y (nc), Ps(1),...,

YPs(p) for ZZ » and substituting YC(nc+1),...,

v

nc+k2) for T.
Also, let NEXTO (X,Y) be der1ved from

NEXT(Z Z T) by subst1tut1ng Y (1),.. Y (n ),

(1) (p) for Z;, substituting X(l), ces
X(nc), a (1),... (p) for Z, , and substituting
X(nc+1), ,X(n +k2) for T. If we consider player 1

to be ident1f1ed with the existential states of
M and player 0 to be identified with the univer-
sal states of M, then for each ae {0,1},
NEXT s defines legal moves by player a on
sw1tch variable s¢ {0,1}.
C PO ,P1

Now we consider the formula F(X,Y LY

= (a/\s—>NEXT1 1(X’Y))"( /\--s->NEXT1 0(X,Y))

»8,5)

Alran s+NEXT, o (X,Y)) A {maa= s+ NEXT. ~(X,Y))
0,1 0,0

F can easily be put in 5 CNF form.

Given the inital configuration Cg of M on
input w, let the variables Yc(l),...,Yc(n') be
assigned to encode C0 and let all other variables
be assigned arbitrarily. Let formula F and this
truth assignment be an initial position 1, of

1
game Gl. Then player 1 wins concrete game G%

1
if and only if player 1 (the existential states)

wins the concrete computation game GM c if and
>0

Thus we have a
log-space reduction from the acceptance problem
for Tinear-space bounded M to the outcome problem
for Gl, and we conclude that G1
reasonable games.

only if M accepts input w.

is universal for

Next, we show the formula game Gz if also univer-
sal for reasonable games.

We now introduce sequences of variables
UR,UB VA VB of Tength m' = Amepes.

and let V=VA-VB.

A A B

Let U=U".U
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The sequences of variables X,Y defined in the
previous construction will, in legal plays of our
Game Gz, be contained in U,V as in Figures 41 0

4.0 41,1 "%,

V is where YPO, YPl

other elements of V.
For each se {0,1} and player ae {0,11},

let NEXT'al’s (U,V) be the formula derived from

The private portion VP of

are located, and VC contains

formula NEXTa,S(X,Y) by substituting formulas
as in Figure 4a,s’

Again, player 1 (player 0) is identified
with the existential (universal) states of M, and
NEXT'a’s is used to define next-moves by machine M:

As in a similar construction of [Chandra and
Stockmeyer, 1976] we describe a legal play such
that if players 1'and 0 play legally, then
player 1 wins if and only if M accepts input w.
Let a legal cycle be the following play for
i=1,2,... m" :

[1] player 1 changes the truth assignment of

either UR(1) or UB(i)

[2] player 0 changes the truth assignment of

either VA(i) or VB(1).
Consider some s ¢ {0,1} and distinct players
a,be {0,1}. Within the legal cycle, for each
i, (ta,s mod m')<i Stys
variables so that NEXTa,s is true when i =t
Thus M accepts input w if and only if player
has a winning strategy within legal plays.
following, somewhat tedious construction,
forces legal play by both players.

We now introduce some notation for
operations on sequences of Z,Z' of boolean
variables of length m'.
and let

728 7' = (Z(1)8Z'(1),...,Z(n)}® Z'(n)),

player a assigns

a,s"°
1

The

Let ® be exclusive-or
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and let
AZ=(=(Z(n)8Z(1)),Z(1)8Z(2),...,Z(n-1)8Z(n)).

Also Tet TH-TWO(Z) = N/ (Z(i)A Z(3))
1<i<j<m’

be the threshold-two function.
To simplify our formulas we define
U =a(Pe'uB), and v'=a(vPe'vB).
which are sequences which locate boundaries
between contiguous Os or 1s.
To detect i1legal play we define:

ILL=TH-THO(U )v1i¥mU'(1)A V' (i)amV (3-1)

5

ILL0=TH-Tw0(V‘ )vlﬁimv (i) a U (i+2)aV' (i)
as in [Chandra and Stockmeyer, 1976].

Finally, for each distinct players
a,be {0,1}, let

WIN =ILL '(tb’s)AﬁNEXT'a’S (U,V).

\V4 .
b se{O,l}U (ta,s)"v
Note that formula WIN
DNF form.
Given input we Zn, Let nl be the initial
position of formula game G1 defined previously.

and WIN

0 1 can be put in

Let the initial position “é of formula game
G2 contain formulas WINO, WIN1 as defined above
plus the initial truth assignment of ﬂi as in
Figure 11,0. We consider player 1 wins concrete

game G%" if and only if M accepts w. Thus G2
2

is also a formula game universal for all reason-
able games.

Next, we give a log-space reduction from the
outcome problem for formula game 62 to the
outcome problem for formula game G3.

Let uo,ul,uz,vo,v1 be variables not in U or
V and set

U= U-(uo,ul,uz) and

PP
v o=y (VO’Vl)'

Let F* (U,VC,VP)=(wINOA (g vy ) IV (HIN AV ) ¥(u mupany )

as in [Chandra and Stockmeyer, 1976].

This formula, with'initial variable assignments
of Tos form the initial position Tos of

formula game G3. The concrete game Gi is
3
winning for player 1 if and only if

GzTr2 is winning for player 2. Thus, 63 is

another formula game universal for all
reasonable games.



tet 68,638 be blindfold

games derived from formula games GZ,G3 by
requiring that the common variable sequence VC
of player 0 be empty. We claim that GZB,G3B
are universal for all reasonable blindfold
games. To show this, we need only note that
if M is  restricted to a BA-TM, then the
universal states never modify the common tape.
Hence the common variables VC in our previous
construction contain no information relevant to
a configuration of M (though they are useful

to insure legal play) and hence the variables
ve may be added to the variables VP private to
player O.

Note that formula games G3 and G
essentially the games PRIVATE-PEEK and
BLIND-PEEK described in the introductory section.
Thus we have:

(1) PRIVATE-PEEK is a universal reasonable
game.

(2) BLIND-PEEK is a universal reasonable
blindfold game.

38 are

6. Blindfold Games on Finite State Machines

This section describes two blindfold games
GFSA and GSUBFSA which are universal for all

reasonable blindfold games of their respective
reaches (polynomial and exponential).

Because of simplicity of these games, we
feel that they may be useful for establishing
the complexity of other blindfold games by
log-space reductions. In fact, we apply this
technique to pursuit games in the next section.

We consider (nondeterministic) finite
state automata (FSA)

M=(Q,1,F,z,8) where

Q is a finite set of states

I = Q are the initial states

F = Q are the accepting states

§ = (Qxz)xQ is the transition relation.
Let L(M) < z* be the language accepted by M.

Let GFSA be the game in which a position

consists of a triple (M,d,q) where
M= (Q, I,F,z,8) {the portion of I common to
both players) is a nondeterministic FSA, d (the
portion of I private to player 1) is either 0
or 1, and q (the portion of I private to player
2) is a state of Q.
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Player 1 moves by setting of either to 0
or 1. Player 2 has no next move (player 1 wins)
if ¢ £F or 8(q,d) = P else player 2 moves by
replacing q with some state in &(q,d)}.

Neither
is a blindfold game.

Note that player 1 has a winning strategy
from initial position 1 if and only if

L(M) # {0,1}*.

The probiem L(M) # {0,1}* was shown by [Stock-
meyer and Mayer, 19731 to be log-space complete
in P-SPACE = kgODSPACE(nk).

player modifies M, and hence GFSA

Since reachG(n) = n, we can determine the

outcome of G in P-SPACE by applying Algorithm A

of Theorem 4.

Thus, the outcome problem for G is log-space
compiete in P-SPACE. This result is due to

[Jones, 19781, who showed the outcome of a
graph reachability game G of reachG(n) = 0(n2)
was P-SPACE complete.

We now extend this result to a game of exponen-

tial reach with outcome problem log-space

complete in EXP-SPACE = U pspace(c").

Let a subroutining finite state automata
(SFA) M = (MgoM 1500 sM, ) where for i =0,1,...,k

e
Mk is a nondeterministic FSA over alphabet

{0,1}L){aj]j>i} where 0,1,a1,a2,...,ak are dis-
tinct symbols. We assume the empty string is
not in the language of Ml"“’Mk'

Let the language accepted by M by

L(M) = {u' e {0,1}*|u' be derived
from weL(Mg) by repeatedly substituting a
string of L(Mi) for each symbol a; appearing
in w}. Note that SUBFSAs accept exactly the
languages over {0,1} generated by context-free
grammars in which no nonterminals appear
recursively.

Let GSUBFSA be the blindfold game in which
a position T consists of a triple (M,d,(qg,9;,

..,qk» where M = (MO,MI,...,Mk) is a SUBFSA

common to both players with
Mi = (Q, I3 LF52..85) o de{0,1} is private
to player 1, and the states

(a9>915-..59,) ¢ QOXQIX...Qk are private to
player 2.



Player 1 moves by setting d to either Oor 1.

Player 2 has no next move (player 1 wins)

if qgéF.

The legal moves of player 2 are defined by

the following nondeterministic program

[1] assign d to a temporary d'

[23 nondeterministically choose to go to
either [3] or [4]

[3] replace 9 with some element of ao(qo,d')
and exit

[4] nondeterministically choose some 1,J,q3 eQ
such that l<i<j<k! 6(qi,aj) 0,
and gy e 5(q;.d")

[5] ij_q3 4 Fj then go to [7]

[6] nondeterministically choose to go to [7] or [8]

J

[7] replace qj with q3 and exit

[8] replace qj with some element of Ij
[91 d‘+aj

[10] go to [2].

Note that we can test in polynomial time whether
3 pair of positions of GSUBFSA are a legal move
of player 2.

Again, player 1 has a winning strategy from
initial position m if and only if L(M) # {0,1}*.
Also, the outcome of GSUBFSA may be determined
by Algorithm A of Theorem 3 in

EXP-SPACE = \J DSPACE(<").
c>0

Let R be a power(2)-extended regular expression over
{0,1}, with a squaring operator (-)2. This
squaring operator allows R to concisely define
long strings; [Stockmeyer and Mayer, 1973]
showed that the problem L(R) # {0,1}* is
log-space complete in EXP-SPACE. In log-space
we can construct a SUBFSA M with the same
language as R. Thus, the outcome problem for
GSUBFSA is Tog-space complete in EXP-SPACE.
(Note that this result can be viewed as an
alternative proof of Theorem 5, restricted to
linear-space bounded BA-TMs.)

7. Games of Pursuit

The classical Titerature of game theory
[Blaquiere, 1973; Isaacs, 1965; von Neumann, 1953]
contains numerous examples of discrete games of
pursuit and evasion; perhaps the popularity of
such games is derived from their obvious military
applications.
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We define in this section a
gernrai class of such pursuit games. Our results
on the complexity of the outcome of our pursuit
games seem quite discouraging to war gamers (but
perhaps encouraging to pacifists). Let fl,f2 be

linear or sublinear functions over the natural
integers. Let BLIND-PURSUIT (fl(n),fz(n)) =
(PI’PZ’T"f’CPI’PPI’PPZ) where for each position
(nc,nl,ﬂz) € P1U P2,
(i) a triple (C4,LOCAL) containing
(a) a finite degraph D = (N,E)
(b) a node seN
(c) a set LOCAL =N
(ii) vy is a multiset of fl(]Nl + |E])
nodes of N
(111) mp is a multiset of f,(|N| + [E[)
nodes of N.

For each ae {1,2}, let
JUMPa = {veN|(u,v) eE, ue %} .

We require that LOCAL = JUMPIA JUMP2 .

Intuitively, player 1 has various "mice"
placed on nodes of V, player 2 has various
“cats" placed on nodes of V, both players
have common knowledge of the digraph D, a node
s eV known as the "mouse hole", and the nodes
LOCAL (which may be detected, say, by the
animal's sense of smell.) The goal of player 1
is to place some mouse on the "mouse hole"
seN, and the goal of player 2 is to place a
cat on a mouse.

Players ae {1,2} move by "jumping" each of
their pieCes across an edge of E, (by replacing
each n emg With a node m such that (n,m)cE. )

Player 1 is not allowed to place a mouse on a cat.
Player 1 has no next move (player 2 wins) if
mAm # P (a cat is placed on the same

node as a mouse) or
JUMPl-LOCAL is empty (for some mouse,

each possible jump lands on a cat). Player 2
has no next move (player 1 wins) if
s em (some mouse lands on the mouse

hole s).



Let PURSUIT(fl(n),fz(n)) be the game of
perfect information which is identical to
BLIND-PURSUIT(fl(n),fz(n)), except each

player is allowed to view his opponent's position.

The outcome problem for a game similar to
PURSUIT(1,1) (1 mouse vs. 1 cat) was shown
log-space complete in
_ k
P-TIME = QgODTIME(n )

by [Chandra and Stockmeyer, 1976]. We can show

the outcome problem for PURSUIT(1,n) is

(1 mouse vs. n cats) log-space complete in
EXP-TIME = U oTImE(c")

using a log-space induction for the game of PEEK
of [Chandra and Stockmeyer, 19763.

We wish now to establish lower bounds on
the complexity of BLIND-PURSUIT(1,n) (1 blind
mouse vs. n cats). There may exist a log-space
reduction for the game BLIND-PEEK (shown in
Section 5 to be log-space complete in

EXP-TIME) to BLIND-PURSUIT(1,n) but we
have not discovered such a reduction.

Instead, we apply the techniques developed
in the previous section for blindfold games.
Note that BLIND-PURSUIT(1,n) is not a blindfold
game since we have allowed players to partially
view their opponent's position through the
common set LOCAL. Dropping the set LOCAL from
the common portions of positions results in a

blindfold pursuit game with an easy-to-compute
outcome.

We first show the outcome problem for BLIND-
PURSUIT(1,1) is P-SPACE hard, and then generalize
this reduction to show BLIND-PURSUIT(1,n) is
EXP-SPACE hard. Let M be a nondeterministic FSA.
We shall represent M as a digraph (N,E} with edge
Tabelling EL:E~{0,1},. initial states I <N, and
final states F =V, so that we L(M) if and only
if there exists a (possibly empty) path
(uo,ul,...uz) of (NR,ER) such that uge I,

u ef, and w = EL(ug,uy) EL(uq,up) ...
EL(u,_;»u,).

It wiil be useful to assume NR may be
partitioned into two disjoint sets Ny,N; such that
for each de {0,1} and v:-;NdR > all edges of E

(N,E) forms a
subgraph of our constructed digraphDM of Figure s,

entering v are labelled with d.

on which we play our pursuit game.
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"start node™

forca

A 1 blind mouse vs. 1 cat pursuit

Figure 5:
game in graph Dy derived from FSA M. There
is an edge from the "start node" for the cat
to each node of I. For simplicity, the edges
of M are not illustrated. There is an edge
from each node of Ny to "switch"y. Similarly,

there is an edge for each node of N; to

"switch",.

each node of F to "ambush".

Finally, there is an edge from

Each play can be divided into 3 sequences:
the initial play, the middle play, and the
final play.

(1) In the initial play, the mouse moves

from its start node to either of nodes my

or my. The cat responds with a move from
its start node to a node of I.
(2) The middle play lasts until either the
cat leaves the nodes of V or the mouse
departs from nodes {mg,m;}.

Note that during the middle play, for each

de {0,1}, if the mouse moves to My then

the cat must respond with a move to a node in Vd,
else on the next move the mouse detects that the
cat is not in vd and can dart to the node
”switch"d (which can be immediately reached by
the cat only if it is in a node of Vd) and hence
the mouse may safely arrive at the "mouse hole" s.
(3) If the mouse is to always reach the
"mouse hole" s in the end play with no such
blunders by player 2, then it must enter the
"ambush" node with the cat not in F. This is
S0 just in the case A ¢L(M) and the middle play
is empty, or the moves of the mouse in the middie

game are m . and dl,dz...dzé L(M).

Thus we have shown that the outcome problem for
game BLIND-PURSUIT(1,1) is log-space hard in
P-SPACE.

M, 5,...m
d1 d2 d



Now we generalize the above construction to
the game BLIND-PURSUIT(1,n). let M = (MO.Ml,...M )

r
be a SUBFSA as defined in section 6. Let ay be

the "subroutine call" symbol associated with Mk’

for k =1, ... r. For each k = 0,1,... r , Mk is
represented (as in the previous construction) by a

digraph (Nk,Ek) with edge labelling

EL, :E > 10,1} u{aj]j>k}, initial states I, <V

k
We further assume

k

and final states Fk

(1) no edge of Ek enters a node of Ik or

<V .
-k

departs from a node of Fk.
(2) for each node v evk, all edges of Ek

entering v have the same label, and all
edges of Ek departing from v have the same
label.

(3) each node v eNk whose entering edges

are labelled with some aj ¢ 0,1} has a

"twin" v with entering edges from the
same destination, the same label, and
with departing edges also identical to those
of v. These assumptions increase the size

of Mk by at most a constant factor.

The digraph HM on which we will play a game of
BLIND-PURSUIT(1,n) will contain as subgraphs
only slightly modified versions of M,,M(,...Mr.

LetHM initially consist of the digraph DM

as defined previously (See Figure 5),

plus the disjoint digraphs Mo,...,Mr. For each
k =0,1,... r we associate a cat k with Mk'

In the case k>0, the cat k will be used to
implement “subroutining® on symbol a. To this
end, we add as in Figure 6aa "start node" for
cat k and appropriate edges for reinitializing
the cat k after "subroutine" calls. In addition,
certain edges and two "switch“k nodes are

added to Mk as in Figure 6bto force the cat k
to make the appropriate state transitions in
response to moves by the mouse on nodes {mg,my}.
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Figure 6a For each k>0, we add a "start node"

-;;;_Z;; k, and an edge from this start node to
each node of Ik' To allow reinitialization of
cat k after a "subroutine call" on a,, we add

X an edge from each node of Fk to the "start

I node" for cat k and also to each node of Ik‘
We also add a loop edge at the "start node"
for cat k to allow the cat k to wait there
until the next subroutine call.

“switch™
switc o1

"mouse
hole"

"switch"e 2

e
Figure 6b: The following additions to M, force

cat k to take state transitions in Mk over
those edges labelled with {0,1} corresponding
to moves of the mouse on the nodes {mg,mi},

respectively. For each de {0,1}, let Ni

be the nodes of Mk which are targets of edges
labelled with de {0,1}. (We have assumed all
edges entering a node of Ni are labelled with
d). Add an edge from each node of Ni to
"switch"k d for all de {0,1}. These last edges
allow the’mouse at node my to detect whether the
cat k is in Nﬂ(; if not then the mouse can
safely jump to the ”sw1'tch"k’d node and then on

to his “"mouse hole". Each node v of Nk in

neither NO
"twin" V.

nor Nh has by assumption a distinct
Add an edge from v to "switch"
and an edge from v to “switch", ;.
These edges insure that the mouse is "blind"
to the cases when cat k calls a subroutine and
is in neither N% nor Nk .

k,0



Now we modify the digraphs MO""’Mr to
properly implement subroutining:

For each edge e = (u,v) labelled by letter
s and contained in M., we substitute a small
subgraph, and add certain new edges and two
”switch"e nodes as illustrated in Figure7.
These modifications have the effect of stalling
cat j at the immediate vicinity of node u while
cat k takes a path in Mk from an initial node
of Ik‘ Cat j is only allowed to Tand on node v
when cat k has reached a final node of Fk (note
that in this interval, cat k may "call a subrou-
tine" in a similar manner).

During the call, cat k traverses a path in
Mk’ beginning at a node of Ik‘ During this
time, the cat j must wait at nodes u,u'.
When cat k has reached a node of Fk’ the cat
j moves finally to node v, completing the call
to ay-

We can show, as in the previous construc-
tion, that

(1) A£L(M) if and only if there is a winning

strategy for the mouse in which it reaches
its "mouse hole" with an empty middle play,
and

(2) dl"‘dzé L(M) if and only if there is
a winning strategy for the mouse with

every middle play a prefix of m, ,...m, .
d)’ Ty

Hence, the mouse has a winning strategy just

in the case L(M) # {0,1}*. Thus we have

that the outcome problem for BLIND-PURSUIT(1,n)
is EXP-SPACE hard.

/Yy ‘\ s M \
/ \ / \
] 1 \

! = ! 1

\ 1 R B T

a, / 1 !
v . ;
NV // \ ’
\~ - ~ /,

Figure 7a : Modifications of Mj to implement
a subroutine call on edge e = (u,v) labelled
with - The edge e is replaced with a small
subgraph with new node u'.
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switch”
J.tchk'o

/"“’“‘"‘lse hold

"swit h'
k1

Figure 7b : Additional edges and new "switch"
nodes are used to implement the subroutine call
of a, associated with edge e = (u,v) of Mj. H?
add an edge to “switch'g’lfrom the “start node
of cat k, the nodes of Fk’ and the nodes u,u’',
mg.m;. There is an edge to "switch"e,2 from
all nodes of Mk but those of Fk’ from all
nodes of Mj but u and u', and from nodes mg,M;.

Just before the call of ., we assume the
cat j is at node u, the cat k is at its "start
node” or in Fk’ and the mouse is at mg or my.

8. Solitaire Games

In section 2 we defined a game
6= (PP, . 3.CP, PP, PPy)
to be a solitaire game if given any
T, e Plu P2 the next move relation

-

2 of player 2 in uniquely defined

for all positions ne Pz-{no} of

player 2 reachable from g We can show that the
outcome problem for reasonable solitaire games

is contained within ng (excuse the conflicting
notation) of the polynomial hierarchy [Stockmeyer,
19731, since the outcome problem of any concrete

reasonable solitaire game GH can be log-space
0

reduced to the satisfiability problem for a
formula of the form

Yoyt (xy)
0
where fg is a propositional formula in CNF
0

of size polynomial in |m,].

Furthermore, the satisfiability problem
for formulas of the above form can be considered
a solitaire game which is universal for all
reasonable solitaire games, and is log-space

complete in Hz .



9. Conclusion

In [Reif, 19791, we consider the computational
complexity of finite state and push-down automata

with "private" and "blind” alternation.

We conclude with an open question concerning
the computational complexity of the payoff of
optimal probabilistic strategies for reasonable
games.

Let G = (P1,P, T, 3> 1°PP)
game and fix an initial position e P

CP, PP.,PP,) be a

1U P2'

Let the game tree be Tn , with node set N,
0

edge set E, and root nge N. As usual, with
each ne N, there is a corresponding position
m{n), with H(no) = Iy- Let r{n) be the set

of edges of E departing from node neN. For
each player ac¢ {1,2}, let Na={naN|H(n)ePa}

be the set of nodes corresponding to positions of

player 1. Also, let E_ = U r(n) and let
a n sNa

N ={neNa[r(n) # 01,

A probabilistic strategy for player a is a
mapping Py from Ea to the real interval

[0,1] , such that for all (n,m),(n'.m')e Ey»

if ngmand n'gm'ﬂwn pamgm=pam'm'h

(i.e. the strategy Py must not vary over edges

that player a cannot distinguish) and
) - .
meftr) oa(n,m) =1 for all neN, .
Let , be

deterministic if for each ne N; , there exists
some (n,m) e E, such that pa(n,m) = 1. Thus
deterministic strategies, viewed as mappings
from nodes neN'a to some me I'(n), are precisely

the sort of strategy defined in section 2.
Let S,(S,) be the class of probabilistic
strategies for player 1(2).
Given a pair of probabilistic strategies
° eSl and Py esz, we define for each neN,

PAYOFF (n) =1 ifn(n) is a winning
A2P2 position of player 1}

0 ifn(n) is a winning
position of player 2;

and otherwise, if n is not a winning position
for either player and ne Na then let
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PAYOFFpl,oZ(n) = S)a(n,m)-PAYOFFpl,pém)

(n,mjer(n
The probability of player 1 winning, from position
HO’ under an optimal min-max strategy [von Neumann

and Morgenstern, 1953] is thus

PWIN(HO)=gnZ§ (;n;g (PAYOFFpl"énO)))
1771 1772

Finally, let

PWING={(H,PNIN (m)|n is a position of game G}.

1

Note that player 1 has a winning deterministic

strategy from initial position Ty if and only

if (1g1) € PUIN.

Thus the outcome problem (for deterministic
strategies) for any game G is trivially reducable
of PWING. Let M be a universal TM. Since the
outcome problem for computation game GM is
undecidable, PWING is also undecidable.

M
What is the complexity of the set PWING for

reasonable game G? Theorem 6 of this paper

implies that PWIN. is EXP-EXP-TIME hard for

G
reasonable games G.
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