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A b s t r a c t m T h i s  paper presents algorithms for finding equilibria of mixed strategy in multistage 
noncooperative games of incomplete information (like pmbabilistie blindfold chess, where at every 
opportunity a player can perform different moves with some probability). These algorithms accept 
input games in extensive form. Our main result is an algorithm for computing sequ,.nt.ial equilibrium, 
which is the most widely accepted notion of equilibrium (for mixed strategies of noncooperative prob- 
abilistic games) in mainstream economic game theory. Previously, there were no known algorithms 
for computing sequential equilibria strategies (except for the special case of single stage games). 

The computational aspects of passage from a recursiva presentation of a game to its extensive form 
are also discussed. For nontrivial inputs the concatenation of this procedure with the equilibrium 
computation is time intensive, but has low spatial requirements. Given a recursively represented 
game, with a position space bound S(n) and a log space computable next move relation, we can 
compute an example mixed strategy satisfying the sequential equilibria condition, all in space bound 
O(S(n)'~), Furthermore, in space O(S(n)3), we can compute the connected components of mixed 
strategies satisfying sequential equilibria. 1 ~) 2005 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

1.1.  T h e  E q u i l i b r i u m  P r o b l e m  in  C l a s s i c a l  G a m e  T h e o r y  

In  recent  years,  t he re  has  b e e n  a p ro l i fe ra t ion  of  app l ica t ions  of  n o n c o o p e r a t i v e  g a m e  t h e o r y  

t o  economics~ pol i t ica l  science,  evo lu t i ona ry  biology, and  o the r  disciplines.  A typ ica l  research  
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project consists of modeling an environment or strategic interaction as a formally laid out gamed 
after which conclusions are derived from the application of a solution concept that  (hopefully) 
embodies the relevant consequences of (simultaneously) rational or optimizing behavior by all 
agents. Even for quite simple games, the computation of a solution concept by hand can be an 
arduous endeavor. In this paper, we present algorithms for the computation of some of the most 
important solution concepts of noncooperative game theory, and we derive complexity measures 
for these algorithms. 

The algorithms are based on the observation that,  for the type of finite game studied here, the 
solution concepts of interest are described by finite systems of (real) polynomial equations and 
inequalities. In general, a solution set of a finite system of polynomial equations and inequalities 
is called a semialgebraic sei, and in recent years algorithms have been developed that  pass from 
a given system of equations and inequalities to more direct and useful descriptions of the set 
determined by the system. For computer scientists, therefore, the main novelty in this paper is 
the elaboration of a new domain of application for these tools. 

For pure and applied game theorists it is of interest to know that  such algorithms are possi- 
ble, of course, but it is also important to have a more detailed understanding of how they are 
constructed, and finally one should have some sense of their limitations. For the latter issue, the 
best available tools are the concepts of computational complexity studied in computer science. 
Our brief introduction to this subject is hopefully sufficient to enable the reader to understand 
the specific conclusions stated later. 

Computer science has historically studied games from two perspectives. First, particular games 
present decision problems whose formal complexity can be studied. For example, one can consider 
the computational complexity of determining an optimal move in the game of Go as a function of 
the size of the board. Second, games can be used as models of particular computational problems 
or environments, particularly those involving parallel computation or networks of independent 
processors. Our work contributes to these traditions, so we will briefly review closely related 
literature. 

As can be seen from the above description, this project is interdisciplinary, and the bulk of 
our work is expositional. Our aim is to provide each subaudience with enough information to 
appreciate the concepts and results of the unfamiliar discipline. The remainder of this introduc- 
tion begins with a brief description of the game theoretic concepts studied here, followed by a 
quite cursory survey of the fundamental concepts of the theory of computation, intended for quite 
naive readers. For a more extensive introduction we recommend [2,3]. Then, we briefly survey 
preexisting work on decision algorithms for games, first for pure strategies, then for probabilistic 
solution concepts. Finally we outline the work of subsequent sections. 

1.2. A n  O u t l i n e  of  O u r  R es u l t s  

Three methods of presenting a game are considered here, 

1. recursive form, 
2. extensive form, and 
3. normal form. 

Perhaps most familiar in recreational games is the recursive presentation. There is a space 
of possible positions, with a designated initial position. There are rules (i.e., computational 
procedures) for passing from a nonterminal position to the player whose turn it is to move, the 
informational constraints faced by that  player at the position, the set of allowed moves, and the 
new positions resulting from each allowed move. There are also rules determining payoffs at each 
terminal position. Both theoretically and practically, it is natural  to require tha t  these rules be 
computationaliy simple, as is the case, for instance, in chess. 

The extensive form of a game is the most popular in modeling applications. Here, the set of 
all legal paths through the space of positions is laid out in a tree. The informational constraints 
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imposed on the players' choices are represented by grouping various 'nodes' of the tree into in- 
formation sets; the interpretation being that whenever any node in an information set occurs a 
player must choose a move without knowing which particular node within the information set has 
occurred. Consideration of the example of chess show that the passage from a rccursive presenta- 
tion to the extensive form may be an expensive computation independent of any considerations 
of skillful play. 

Given a game in its extensive form, each player has a space of 'pure strategies,' each of which is 
a vector specifying a legal action at each information set at which the player selects a move. One 
can imagine each player submitting a pure strategy to a referee, after which the referee plays out 
the game according to these instructions. (In the standard interpretation of a game, it is assumed 
that all possibilities for communicating to achieve coordinated behavior are already explicitly 
represented in the structure of the game.) Thus, we arrive at the third mode of description of 
games, the ~normai form': each player i = 1 . . . . .  n has a finite set S~ of pure strategies and a 
payoff function u~ : S1 x -..  x S,~ -~ H. The normal form is theoretically attractive insofar as 
the notation is simple, but it should be noted that a relatively simple extensive game can have a 
'large' normal form, so that for any particular game the extensive form may be simpler. 

What constitutes rational behavior while playing a game against rational opponents? For 
games of 'perfect information' (that is, whenever a player moves he or she knows the exact state 
of the game) such as chess, this is in principle a simple question. One can work backwards 
through the tree, at each point determining the moves that are best on the assumption that all 
subsequent choices will be optimal. When the game is not one of perfect information the problem 
becomes more difficult, both conceptually and practically. To begin with, it is not sufficient to 
consider only pure strategies; a player who was known to always play a particular pure strategy 
in the game 'rock-paper-scissors ~ could always be beaten. Thus, we are led to consider probability 
distributions over pure strategies; these are called m~red strategies. 

The most famous and central solution concept in noncooperative game theory is the notion of 
Nash equilibrium. A vector of mixed strategies, one for each agent, is a Nash equilibrium if no 
agent has any other mixed strategy that yields a higher expected payoff when his expectations 
concerning the behavior of the other agents are given by the equilibrium strategies. 

The mixed strategies in a Nash equilibrium have a dual interpretation: they represent both 
what the agents expect of others and what the agents actually do, at least in a statistical sense. 
This raises serious conceptual questions concerning the relevance of Nash equilibrium, since it 
need not be the appropriate embodiment of rationality when the game is played more than once 
by the same agents, but at the same time some learning process seems to be required in order for 
the agents to form expectations, particularly (but not exclusively) when the game has more than 
one Nash equilibrium. We will not dwell on this point, except to say that  it is a valid question 
in the context of each application of the theory. 

A more germane conceptual difficulty with Nash equilibrium is the fact that it falls to capture 
the assumption that all agents will continue to behave rationally at any stage of play. Consider 
the game illustrated in Table 1. Player A must decide whether to acquiesce or resist, and 
Player ]3 must choose whether to fight or retreat. (Player B's choice is relevant only when A 
resists.) Assume that Player A's favorite outcome is (resist, retreat), and (resist, fight) is her 
least favorite outcome, while Player B prefers (resist, retreat) to (resist, fight). Then (acquiesce, 
fight) is a Nash equilibrium: given that Player B intends to fight, Player A does best to acquiesce; 
given that Player A always acquiesces, Player B~s strategy has no effect on the outcome. However, 
Player A's behavior is rational only in response to a "threat" that could not rationally be carried 
out, in that Player A expects Player B to play a strategy that is zoe~/c/y dominated: Player B 
never does better by fighting, and, in response to some strategies of Player A, fighting is worse. 
Consequently, this equilibrium is not plausible. 

Historically, the most influential at tempt to address this problem is the concept of Perfect 
Equilibrlum introduced by Selten [4]. A formal definition of this concept is given in Section 3.2. 
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Table 1. Illustration of Nash equilibrium. 

Player B 

Player A 

AC~lUiC~.e Resist 

Fight 0~0 - 1, - 1 

Retreat 0,0 1,1 

Here, it suffices to say that Selten's terminology is now regarded as excessively optimistic, and 
many solution concepts have subsequently been proposed, but  the central philosophical issues 
are not yet resolved to the point of consensus. 

Virtually all known solution concepts are semialgebraic, so that they can be computed by means 
of the algorithms discussed here. From the point of view of computational tractability it is useful 
to distinguish between quantified solution concepts, in the sense that the definition involves the 
logical operators "for all" and '~there exists", and unquantified concepts. (Perfect equilibrium 
is a quantified concept, Nash equilibrium is unquantified.) As proven by Renegar [5] (see also 
Renegar's related papers [6-8]) any quantified proposition is equivalent to an unquantified propo- 
sition, and the passage from the quantified to the unquantified version can be implemented on 
a computer, but current algorithms for doing so are slow, so that unquantified solution concepts 
are more likely to be practical from a computational viewpoint. 

Currently, most popular among researchers in economics is the concept of sequential equilibrium 
due to Kreps and Wilson [1]. We will devote special attention to this concept, in part because 
of its popularity but also because the semialgebraic nature of this concept is far from trivial. In 
fact we will show that it has an unquantified definition. This concept is applied to the extensive 
form, and it has the interesting feature that it involves not only strategies but also 'beliefs,' 
i.e., probability distributions over the nodes in each information set that are construed as the 
conditional distributions the agents would attribute to the nodes, when and if the information 
set occurred. In applications, these beliefs are both intuitively interesting and quite helpful in 
computing sequential equilibria by hand. It seems reasonable to hope that  these beliefs might 
also facilitate the development of 'speed-ups' of the formal algorithms described here. 

Given any solution concept, we can apply algorithms of Canny [9] and Renegar [10] for deciding 
the existential theory of real closed fields. These algorithms determine whether the solution set of 
the system is nonempty (which is actually not of great interest to us since all the solution concepts 
considered here have been proven to have nonempty solution sets for all possible parameters) and 
find sample solutions, all in space polynomial in the size of the information set for the game's 
normal form. Using the methods of Kozen and Yap [11], we can find a decomposition of the 
strategy space (or, in the case of sequential equilibrium, strategy-belief space) into simple pieces, 
each of which is either contained in the solution set or disjoint from it. Bounds on the space and 
time requirements of these algorithms imply bounds on the space and time requirements of the 
particular applications considered here. 

1.3. F u n d a m e n t a l s  o f  C o m p u t a t i o n a l  C o m p l e x i t y  

We devote this section to a concise overview of pertinent concerns in theoretical computer 
science. The following two issues are especially important for our work. 

• Computability and Noncomputability: Ascertain whether there exists a computational 
solution to a given problem. 

• Design and Analysis of Algorithms: Specify a set of instructions to solve a problem, 
provide measures of the 'costs' of the algorithm in time and computational resources 
(such as memory), and whenever possible prove that the algorithm is optimal in the sense 
that  no other algorithm could possible solve the problem at a lower 'cost' (usually up to 
a constant factor). 
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1.3.1. C o m p u t a b i l i t y  a n d  n o n c o m p u t a b i l i t y  

It  is obvious that  many problems have computational solutions. An example is the determi- 
nation of an optimal move in a tic-tac-toe game. However, some problems do not permit an 
algorithmic solution. The halting problem is the most notorious of all these problems: ascertain 
whether an arbitrary algorithm will eventually halt (as opposed to continue forever) while work- 
ing on a given input. The proof that  no algorithm for this problem exists is by contradiction, and 
is obtained by considering how such an algorithm would behave when it was fed itself as input. 
Details can be found in any standard text on theory of computation like [3]. 

Another interesting and more relevant example of a problem which does not admit 
an algorithmic solution is the following. Compute a point whose e-ball contains a fixed 
point of a given continuous function from the unit disk to itself. 

Superficially, this seems at odds with our goals because solution concepts in game theory are 
typically described as sets of fixed points. Fortunately, however, there is no real paradox because 
our algorithms exploit the fact that  the problem is presented algebraically, so that  a general 
algorithm for fixed points is not required. 

We must formally define computational models to facilitate rigorous discussion of computability 
issues. The most famous and best studied model of computation is the Turing machine, which 
consists of a processor and a storage tape. In terms of current computational technology one 
would think of the processor as consisting of a central processing unit (CPU) together with the 
random access memory (RAM). These days, the tape usually is a magnetic memory media along 
with input-output devices. In the abstract theory the relevant facts are that  the processor has 
a finite set of internal states, one of which is designated as the initial state, and the tape is 
a doubly infinite and one-dimensional recording medium on which 0's and l ' s  are written. 2 A 
computational cycle consists of reading the character on the space of the tape that  is currently 
in the ' tape reader, '  then combining this character with the current state of the processor to 
generate a new state and instructions for (possibly) changing the character in the space of the 
tape that  has just been read, (possibly) moving the tape one space in either direction, and 
(possibly) declaring that  the computation is complete. In mathematical  terms a Turing machine 
is described by specifying finite sets of states and characters, an initial state, and a transition 
function 5, 

6: {states } x { characters } ~-~ { states } 
x { characters } x { tape motion } x { halt, continue }. 

Given the similarities between Taring machines and actual computers, it is hardly surpris- 
ing that  Turing machines are capable of many computations. Church's thesis asserts that the 
behavior of any computational device can be mimicked by a Turing machine. This is a meta- 
mathematical proposition which can never be conclusively proved. However, it can be shown that  
some particular model of computation is equivalent to the Turing model, and since all models 
of computation proposed to date have this property, Church's thesis is accepted as a basis for 
theoretical work. 

Roughly, we think of the Turing machine as the algorithm, and the initial state of the tape 
as the input. This interpretation is somewhat at odds with current technology in which most 
computers are 'universal devices'. That  is, they accept ' tapes '  that  specify both an algorithm 
and an input to which the algorithm is to be applied. The theoretical analogue is the notion of a 
universal ~l~ring machine, i.e., a Turing machine capable of mimicking the behavior of any other 
Turing machine. Universal ~hring machines exist and have interesting theoretical applications. 

2Other alphabets axe possible, usually theoretically equivalent, and therefore, convenient for some problems. The 
model can also be tailored by modifying size and structure of the recording medium (tape). 
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1.3.2. Design and  analysis  of  algorithms 

Once we are satisfied that an algorithmic solution exists for a given problem, we can investigate 
particular algorithms to solve those problems. The fundamental concerns are as follows. 

1. Correctness: Prove correctness after developing a rigorous functional description of the 
problem. Some generalized methods include program verification [12-20] and program 
checkers [21]. In reality~ more specific and practical methods are employed [17,22,23]. 

2. Complexity: Ascertain the resources demanded by an algorithm. The most important 
resources are time consumed for the algorithm to terminate and memory space required 
for the algorithm to execute. 

3. Optimality and Practicality: Compare the given algorithms with the theoretically best 
possible algorithm (even if only the existence of the 'best algorithm' has been proved 
without an explicit description of the algorithm). 

Verifying the correctness of an algorithm is a topic in itself, and is tangential to the theme of 
this paper. 

In order to address the complexity issue for any particular algorithm, a computer scientist 
needs a measure to determine how expensive computations performed by the algorithm are or, 
more roughly, whether the algorithm is 'practical' and 'effective'. The most important resources 
are the t ime  required for an algorithm to execute and the space, in the sense of memory, required 
for storage of intermediate calculations. We will briefly discuss that the most useful measures of 
expense are rather crude for a number of reasons. 

First, the expense of applying the algorithm to any particular input is simply a number which is 
highly sensitive to the particular device chosen within the class of Turing equivalent devices. For 
example, if we consider the running time complexity of an algorithm, there would be considerable 
disparity between the experimental values we would get using a GRAY YMP and what we would 
get using a Commodore C-64. It is more interesting (theoretically) to have some sense of how fast 
the expense of computation grows as some measure of the size of the input increases. Generally, 
computer scientists tend to regard an algorithm as 'efficient' if its running time is (up to order- 
of-magnitude) a polynomial function of the size of the input, and 'inet~cient' if its expense 
grows exponentially (or worse) with the size of the input. Roughly speaking, these order of 
magnitude measures are independent of which Turing-equivalent devices is used as the basis of 
the calculation, and they are also independent of the different ways (e.g., roman character strings 
versus binary strings) that the size of the input can be measured. 

Second, measures of expense are typically based on an assumption that  only one computational 
resource is costly. By far the best studied notion of expense is running time. However, recently 
there has been work on space (i.e., memory) requirements of algorithms. To see what is meant 
by tiffs, imagine that our model of computation is enhanced by adding a second tape to the 
Turing machine, so that one now has a 'working tape' for storing the results of intermediate 
computations in addition to a 'read-only input tape'. The spatial requirements of algorithms 
are compared by studying the required length of the working tape as a function of the length of 
the input tape (up to order-of-magnitude). The economists will be quick to point out that,  in 
practice, there is a tradeoff between time and space: the results of intermediate computations can 
be stored (space intensive) or recomputed when needed (time intensive). Unfortunately, current 
theoretical tools are by and large too crude to illuminate this tradeoff, except in the dynamic 
programming paradigm a and special cases where a problem is well-understood (e.g., sorting a 
list of entries). Moreover, other important computational resources, in particular programming 
effort, are difficult to model, and are consequently not well treated by existing theory. 

3Dynamic  p rogramming  views a algori thmic solution as a sequence of decisions. T h e  technique  involves spl i t t ing 
the  main  problem into smaller  subproblems t h a t  are solved independently,  and t he  corresponding subsolut ion is 
recombined to yield a solution to the  main  problem. Since dynamic  p rog ramming  techniques  involve s tor ing the  
repeated subsolut ions,  we achieve a faster solution a t  cost of  increased m e m o r y  requirements .  
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Third, the most tractable measures of cost are wo~, giving the time or space requirements 
for the most expensive input of given size. It is important to recos~iT~ that this can give an 
excessively pessimistic view of the utility of an algorithm. For instance, it has long been known 
that the simple.z algorithm for linear programming problems has a poor worst-case performance, 
but in practical experience the simplex algorithm usually halts quite quickly. Recently, Smale have 
given a theoretical explanation, showing that for 'randomly generated' problems, the probability 
of generating a 'bad' problem diminishes quickly as the size of the problem increases. The basic 
algorithms of interest to us, those which compute the structure of semialgebraic sets, have worst- 
case running times that are quite bad, but typical running times may be much better, as suggested 
by the work of Arnon and Mignotte [24]. 

We can now explain the style of terminology used to describe upper bounds on computational 
costs. We say that a function g(n) is O(.f(n)) if there exists a constant c such that g(iz) ~ c-f(n), 
for all ~. Saying that a problem is 'log space computable' means that there is an algorithm for 
solving the problem such that if S(n) is the length of working tape required in the worst case 
to process an input of length n, then S(n) <_ O(logn). Similarly, an algorithm runs in 'polylog 
time' if there is a polynomial P of one variable such that the running time for an input of size n 
is O(P(log n)). A problem is 'polylog computable' if such an algorithm exists. Among the really 
bad problems are those whose space or time requirement are towers of exponentials, i.e., functions 

of the form c22P(") , c22~p~) , etc., where c is a constant and P is a polynomial. This is due to 
the fact that the space requirement of such problems grows very fast (exponentially) as the size 
of the problem increases. 

We say that  22Pc~ is a 'tou~r of two repENted e~/wnent/s/s', 222P(~) is a 'tou~r of three re. 
peated exponentials', etc. We use the notation EXPm(P(n))  to denote a 'touter of m repeated 
e~'ponentials'. The following definitions formalize the concept of bounds. 

DEFINITION 1.3.1. TIME BOUND. An algorithm has time bound T(n) on roach/he .Ad,/f, when 
applied on m~.hine J~l to ~ input ~ring ~ of l eJ~h  n, the a/gorithm terminates in time T(n). 

DEFINITION 1.3.2. SPACE BOUND. An a/gorithm has space bound 8(n) on m~_hj_-_e A4, ~ when 
applied on m~bine  ~4 to any input s~ing ~ of length n, the algorithm does not consume more 
than S(n) nonb]ank memory ce//s. 

For recureively presented games, it is useful to have the following piece of terminology. 

DEFINITION 1.3.3. GAME'S POSITION SPACE BOUND. We define the posi~on space bound of a 
game to be the upper bound on the number of bits required to encode any position. 

DEFINITION 1.3.4. ALGORITHM'S POSITION SPACE BOUND. An algoritJAm has space bound 
PS(n) on machine ~ ,  if, when applied on machine ~4 to any input string ~ of length n, i t  does 
not use more than PS(n) memory ce//s to encode any position i~ traverses. 

1.4.  Prev ious  W o r k  in Decision Algo r i t hms  for P u r e  S t ra teg ies  

Games can be viewed as simple models of computational problems. Interpreting a game of 
perfect information whose only outcomes are 'win' and 'lose' in this way, the most fundamental 
question is the 'outcome problem', which is the problem of determining if a given player (team) 
has a winning strategy ov~ opposing players (teams). The outcome problem is closely related 
to the membership question of language and machines, which is the problem of determining if a 
given string occurs in a language. A string in a lauguage corresponds to a perfect information 
game, whereas the language corresponds to a game, and a c!~ of laugunges corresponds to a 
class of games. 

The definition of a Taring machine facilitated the development of computability theory by 
formalizing algorithmic procedures. Similarly, several other paradigms of computation (non- 
determinism, parallel, etc.) were associated with corresponding models of computations (non- 
deterministic Turing machine, parallel random access machine, etc.). The need for a formal 
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Table 2. Comparing computation and games. 

Mode of Computat ion Type  of Game 

Deterministic solitaire, perfect information, unique next move 

Nondeterministic solitaire, perfect information, open next move 

Alternation two-player, perfect information 

Private alternation two-player, incomplete information 

Multiparson al ternation multi-player, incomplete information 

computational model to address the computational aspects of games was fulfilled by Chandra, 
Kozen and Stockmeyer [25,26] with the alternating Turing machine (A-TM). Subsequently, this 
model has been extended and enhanced to mode] more intricate games. Reif [27] extended the 
A-TM model to incorporate private and blindfold two-player games by introducing private alter- 
nating Turing machines (PA-TM) and blind alternating Taring machines (BA-TM), respectively. 
Azhar, Peterson and Reif [28,29] introduce private alternating Turing machines (PAk-TM) and 
blind alternating Turing machines (BAk-TM) to model private and blindfold multiplayer games, 
respectively. 

All these new types of machines have provided a deeper insight into the relationships between 
time and space bounded computation. Different types of games correspond to different models 
of computation as shown in the Table 2. In particular, it is fascinating that  the simplest type of 
game (solitaire, perfect information, unique next move) corresponds to our most natural notion of 
computation (deterministic). On the other hand, the most interesting type of game (multi-player, 
incomplete information) corresponds to a novel and abstract notion of computation. 

As treated in computer science, a normal form game is typically given as an input. However, we 
can actually start with any position-space-bounded game in recursive form, where the next move 
relationship is computable in log space. By the undecidability results of [29], there is no recursive 
procedure to determine whether a game necessarily reaches a terminal position, and to compute its 
normal form, if the game has more than two players, unless the game is hierarchical. 4 However, 
if the game is hierarchical, we can utilize the technique for unraveling information of [27,28]. 
Given a recursively represented hierarchical game with log space computable next move relation, 
we can transform it into an equivalent game G*, with space bound which is a tower of k - 1 
repeated exponentials in original space bound S(n), where k is the number of cliques (each clique 
is defined to be the maximal set of players with exactly the same rights to view components of 
the game). Note that k is no greater than the number of players. 

1.5.  P r e v i o u s  C o m p u t e r  S c i e n t i f i c  W o r k  o n  P r o b a b i l i s t i c  G a m e s  

Strategies for playing games can be classified into two flavors: deterministic and probabilistic. 
Deterministic strategies involve specifying exactly one alternative at each position: such strategies 
are known as ~pure' strategies. Nonprobabilistic games follow a set course of play once the 
participating players have formulated their strategies. On the other hand, probabilistic strategies 
assign probabilities to various alternatives available at each position: such strategies are known 
as 'behavior' strategies. 

Papadimitriou [30,31] describes the notion of 'games against nature' (not to be confused with 
game theorists' use of this term to denote games with one player). In these games, one player 
plays randomly simulating the randomness we associate with nature, and the other "existential" 
player selects a pure strategy which maximizes the probability of success against this random 
player. In this framework, the existential player is considered to have won the game if he can 
win with a probability greater than 1/2. Games ayainst nature paradigms assist in formulation 

4Hierarchical multiplayer games are multiplayer games in which the information is hierarchically arranged, i.e., 
players can be arranged ~1, 2, 3 , . . .  } such tha t  all information visible to player i is also visible to  player ~ - 1. 
Note the  similarity to the  halting problem. 
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of decision problems under uncertsdnty. These games are si_m_j]ar to Arthur-Merlin games of 
Bahai [32], in which Arthur plays randomly, and Merlin plays existentially. Interactive prooJ 
systems of {33] are also among examples of games in which one player plays randomly whereas 
the other existentially picks a strategy. Sipser and Goldwasser [34] have proved the equi~dence of 
interactive proof systems and Arthur-Merlin games. Shamir [351 proves both problems are in the 
same complexity class (PSPACE-complete). Condon and Laduer [36] investigated the complexity 
of probabilistic game automata. Blum, Shub and Smale [37] developed a complexity theory for 
computations on real numbers, but this work did not have any game theoretic component. 

1.6. Organ iza t ion  of  Th i s  P a p e r  

Section 1 has provided an introduction to this paper along with a concise overview of the main 
issues and results. Section 2 defines our notation for games in recursive, extensive, and normal 
forms. It also introduces fundamental notions of information sets, moves, initial assessment, util- 
ity, and strategy. Section 3 is devoted to the development of the sequential equilibrium paradigm. 
In Section 4, we develop an algebraic characterization of sequential equilibrium, and associated 
computational issues. The main results and conclusions are sketched in Section 5. 

2. F U N D A M E N T A L S  OF N O N C O O P E R A T I V E  G A M E  THEORY 

In this section, we precisely define three models of noncooperative games. We bear an unusual 
expositional burden because we desire this paper to be accessible to researchers in computer sci- 
ence as well as economics, and we should explain at the outset that  the first model is most closely 
related to work in computer science, while the second two models are standard in economics. 

2.1. Recurs ive  F o r m  

A game in recursive form is a set of rules specifying the following. 

1. A set of positions. 
2. A set of players (also known as agents). 
3. A rule specifying the player whose turn it is to move at any position. 
4. A specification of the knowledge a player has available at his or her turn to move. Different 

descriptions of this knowledge are possible. For example, the position might be a string 
of chvzacters with each player observing some positions in the string and not others. 
However, any such description should be equivalent to the following: the positions at 
which a player moves are partitioned into information sets, the interpretation being that 
the player knows on]y that  some pusition in the information set has occurred. 

5. A set of legal next moves from any given imeormation set or 'state of knowledge' for a 
player. 

6. A rule specifying the subsequent position that results from any position when any legal 
move is chosen. 

7. A rule specifying an initial position at which the game starts. 
8. A rule specifying when the game terminates. 
9. A vector of payoffs (real numbers awarded to each player at the termination of the game) 

associated with each possible outcome. 

As we will see shortly, the description above is not dramatically different from the extensive 
form presentation of a game. The crucial di@emnce, not formally stated above, is a matter of 
computational compI~xity, in the sense that in the recursive presentation there axe algorithmic 
formulations of the rules for determining the following, 

(a) whether a position is terminal, 
(b) l~YOffS at terminal positions, 
(c) the player to move, the set of legal moves, the b@ormstion av~lable to the player to move, 

and the positions resulting from legal moves at a nontezminal posit|on. 
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In theoretical analyses, it is assumed that  an execution of one of these algorithms is either trivial, 
so its expense can be ignored, or is an elementary computation from the point of view of a theory 
that  measures complexity in terms of numbers of elementary computations. The entire game 
tree, however, is not presented as an input, nor is it necessarily the result of a small number of 
computations. In complexity analysis that  takes the extensive form as the given object, on the 
other hand, it is assumed that  the entire tree is explicitly laid out in the input, so that  the size 
of the input is roughly proportional to the number of nodes in the tree. 

The description above is more general than might be immediately apparent. Some important 
features allowed by our structure are as follows. 

1. Players need not take turns in round-robin fashion. The rules of the game will dictate 
whose turn is next. 

2. A player may not know how many turns were taken by other players between its turns. 
3. Communication is possible, though only through the explicitly laid out structure. Tha t  

is, some of the moves may serve as messages. 
4. Positions, as we use the term, may include more information than is "on the board." Thus, 

in chess, the position includes castling rights and enough information to implement the 
three fold repetition rule and the fifty move rule, i.e., the history of play since the last 
pawn move, capture, or loss of castling right. 

2.2. G a m e  in Extens ive  Form 

2.2.1. Basic  notat ion 

Instead of representing the possible plays of a game indirectly, by specifying recursive proce- 
dures for generating them, the extensive form presents them directly, in terms of an explicitly 
specified game tree. For example, Figure 1 lays out a simple two-player guessing game, known in 
the literature as "matching pennies" in which one player hides an object, perhaps a white pawn, 
in one hand, (L)eft or (R)ight, and the other player guesses which hand, (1)eft or (r)ight, the 
object is in. (Chess players will recognize that  this game is commonly used to assign colors at 
the beginning of a game.) 

A game tree consists of a set of play prefix nodes with the the root node(s) represents the 
starting position(s) of the game. In Figure 1, {O, L, R, Li, Lr, Rl, Rr} are the set of play prefix 
nodes. Each node represents a position, and its children are the positions after the next move. 
Every node is connected to its children with branches labeled with each of the alternative moves 
that  can be chosen by the player whose turn it is to move. For example, when player 2 moves 
to I in response to L, we use an arc labeled i to connect L with Ll. I t  is important to note 
here that  two equivalent situations in a game which occur at different stages of the game (by 
transposition of moves or otherwise) are considered distinct, and they correspond to different 
nodes in the game tree. In general, it is possible that  the identity of the player who is to move 
next is determined by the situation of the game. A game represented by its game tree is said to 
be represented in its extensive form. We dedicate the rest of this section to develop the notation 
for games in extensive form. 

Q 

LI~" Lr'~, F R 1  " ~ R r  

(-2, +,.) (+2 ,-~)(+ ~,-2) (- x,+~) 

Figure 1. A simple guessing gztrne. 



Computation of Equi]ibria 833 

NOTATION 2 . 2 . 1 .  MULTIPERSON GAME. 

A multiplayer game can be defined as follows, 

I A finite set of players. 
T There is a finite set T of possible states of the game. Generic elements are denoted by ~, 

~", etc. In F~n'e 1, T =  {O,L ,R ,  L1,Lr, RI, Ib'}. 
(T, }-) • }- ~ denotes that  there is a legal next move from 7r to lr' (i.e., we can transform 7r to 

~' in a single move). Each node of the game tree denotes a possible play situation, say ~r, 
of the game, and its children are all plays ~ such that  there is a legal next move relation 
from parent to child. (T, J-) forms an arborescence 5. 
lr ~ ~ if and only if there is a sequence of legal moves which can transform ~ to ~f (i.e., 
there is a sequence ~rl,~r2,... such that  ~r I- ~rl }- ~2 }- "'" ~- ~r'). A particular subscript 
can be specified (Jibe ~ , )  to restrict ~ to a sequence of e x a c t l y ,  legal moves. Since (T, 
~-) is an arborescence, ~ is a strict partial ordering. 

W , Y  Initial node(s) ~ are nodes without predecessors. The set of initial nodes is denoted by 
W, and the noninitial nodes are denoted by Y. Y is defined to be the set ditfe~ence 
T - W. In Figure 1, W = {O} and Y = {L, R, LI, Dr, Rl, Rr}. In case there are several 
distinct initial positions (as in most card games), we also need to specify the probability 
distribution over the set of initial nodes. This distribution is called the initia~ assessment. 
In general, we will assume that every initial node in the initial assessment has positive 
probability. 

Z, X A terrnlna~ node ~ is a node in the game tree which does not haw  any successors. Z 
denotes the set of terminal nodes, and X = T - Z is the set of nonterminal nodes. In 
Figure I, Z = {LI,Lr, RI,Rr}, and X = {0, L, R}. Each terminal node is associated 
with a vector of payo~s specifying the gain and loss experienced by each participant at 
the end of the game. The payoffs are normally in te rpre t~  as vonNenman--Morgenstem 
utilities as specified by vonNeumann and Morgenstem [38]. In Figure 1, we use ordered 
pairs to denote the payoffs to the players 1 and 2, respectively. 

~(~r) The function ~ : X ~ I defines whose turn is to move next at the nonterminal nodes. 
£(~r) The level  of ~r E T is the integer ~(~) which represents the number of plays preceding ~r 

(starting from some initial node). 
p There is a function Pt : Y ~-* X, such that px(~r) = ~ if ~r ~ ~- ~r (i.e, ~r ~ ~ ~r in one 

move). For n > 1, we recursively define p,(~') = pn_~(p~(~r)) (or equivalently p,(~) = 
if ~r' ~ ,  ~r). p(~r) is defined to be the set of all predecessors of ~r: p(~r) = {~r' [ ~J ~ ~r}. 
So, recu~vely  p(~r) = (~91(~r)} 0 {p(~l(~r)} (or iteratively tJ~,ffi,,...,z(.)pt(z~)). 

w(~r) The root of~r is the initial position from which = is derived: 

(T, ~) 

F(~) 

ZOF(~) 

A 

For it E T we let FOr ) be the set of immeddate successors of 7r E X, which are the plays 
reachable from ~r via one legal move. Note that  F(~r) = p~-l(x). 
consists of the set of terminating plays derivable from ~r. ZOF(~r) = {~  E Z i ff Ir 6 X 
then Ir ~ ~.l else ~l __ ~.}. 
There is a finite set A of legal moves. 
There is a surjective function ~ : Y ~ A that labels each noninitial node with the last 
move chosen prior to the occurrence of the node. At every node, each allowed move has a 
unique consequence. Symbolically, i fp , (~)  = PI (~)  and ~ # ~ ,  then a(~) # a ( ~ ) .  The 
result of applying move m E a(F(~')) at ~r is denoted by FC(~r, m). 

SThis means that  each play has at  most one predecessor, and any sequence of immediate ~ must 
terminate rather than  cych~, Arbore~emces are called ~oresh~ in computer science. 
eKnowu as Toot(&) in computer science terminology. 
7In computer scientific terminology a terminal node is bet ter  known m a lea I .  
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Table 3. Nota t ion  and  definitions for extensive form. 

Nota t ion  

T 

W 

Y 

X 

(~) 

~(-) 
~(~) 
p(r) 
~(~) 

F(~) 
gOFOr) 

A 

Name 

Finite set of players 

Set of plays 

Next move relation 

Derivable play relation 

Initial position 

Noninitial plays 

Terminal plays 

Nonterminal plays 

Player to move next 

Length of ~r 

Immediate predecessor of 

m zl~ predecessor of ~r 

Predecessors of ~r 

Initial predecessor of 

Immediate successors of 7r 

Terminal positions 

Set of legal moves 

Move performed last 

Descript ion 

Specified by rules of the game 

{It IIr is a legal play } 

Ir ~- ~r' if there is a legal move from ~r to 

Ir ~ ~' if there is a sequence of moves 
such that Ir I- ~rl ]-- ¢r2 I- ...  I- ~r 

£~ • T I p(~) = #S} 
T - W = {~r e T I p0r) # #} 

{,t ~ T[ F(~,) = ¢ } 

T - Z =  { ~ e T I  FOr) ¢ 6  } 

The next player to move 

Number of positions in w in addition 
of the initial position 

r' E T such that v '  ~ r 

p109~-l.(Tr)) for ~ > I 

{ t,1(~) } U{~(plOr))} 

ZOFOr) -- {~r' • Z 1 ~r ~ ~r'} 

{ m t ~" ]- ¢d with move m } 

m such that FO(plOr),m) ---- w 

Table 3 summarizes the nota t ion  developed so far. 

2 . 2 . 2 .  I n f o r m a t i o n  se t s  

INFORMATION SETS (Hi) .  Ln_forlnaCion possessed by players is represented by a partition H of X 

into information sets. For each Player i, there is a partition H~ of ~-l(i).  For ~r E ~-1(i), H~(tr) 
is the cell of Hi containing 7r. 

We impose the following assumptions on this structure.  

1. For all i, all h E Hi, and all r , r '  E h, a ( F 0 r ) )  = a ( F 0 d ) ) :  the alternatives available to 

the player axe the same at 7r and r ' .  

2. For all m C A there is a unique h • H, such tha t  m • c~(F(zr)), for some (hence, all) 

~r E h. Let MOVSET(m)  denote the information set a t  which move m can be chosen. 

Formally, MOVSET(m)  is m - l ( m ) ,  i.e., the information set h E H such tha t  m e re(h). 

The first assumption is essential to the intended interpretat ion,  namely  tha t  when a play in 

an information set occurs, the player to move knows only t ha t  some play in tha t  information set 

has occurred, not which one. In  contrast, the second assumption is a mathemat ica l  convenience 

rather t h a n  a substantive assumption,  and is commonly violated in nota t ional  conventions for 

part icular  games: for example, 'N-KB3'  is used to denote moves available in many  different 

positions in chess. 
For i E I ,  we can define Hi = ~- l ( i )  be the set of information sets a t  which player i chooses, 

and we let mi = UheH~m(h) be the set of moves tha t  could be chosen by i. For easy reference, 

the nota t ion  above is summarized in  Table 4. 

Using the machinery of nota t ion develop above, we now state the assumption of perfect recall. 

PROPOSITION 2.2.1. PERFECT RECALL. Each player knows what he or she knew previously 
(i.e., doe~ not lose any knowledge). Consider an information set h 6 H~ at which player i moves 

and ~vo plays ~r, 7r ~ • h. Suppose that t h e r e / s  another  information set ho E Hi and a play 
7re E ho with ~o ~ ~r. Then, at 7r player i should remember  that he occurred, and since player i 
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Table 4. Capturing the incomplete information content. 
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Notstion Name Dm,cziption 

Parti t ions of T into sets with 
H~ Inform&tion sets equivalent knowledge for plv@er 

A C Hi, such tha t  
H,(~) Info. met cont~-~-g play ~ V~--~ A : v i a (h )  = vi~(~)  

re(h) Movee available at h E H "{a(~b,!- [ ~b E F(~r), ~" E h} 

~(h) Player choosing at h e H tOO for ~r e h 

MOVS~T~(m) Info. set a t  which move MOVSE'rI(m) -- m - l ( m ) ,  
m might be chosen i.e., h E H s.t. ~ e re(h). 

cannot know whether ~ or ~J occurred, rids should also be the case at It'. That is, there should 
be s pl~y 7r~ E ho, such that 7r~ ~ It'. Moreover, the move chosen at ~o on the way to 7r' should 
be the same as the move chosen st ~ro on the way to ~r: if TfO = pm(lr) and lr~ = pn(z~), then 

= a(p.-i(=')). 

Among other things, perfect recall implies that  if lr and z # are in the same information set, then 
they are are not related by precedence. To see this suppose that  ~r' ~ ~r, and observe that  perfect 
recall implies the existence of a node z #' in the same information set with z J' ~ z J; proceeding 
inductively, we can generate an infinite sequence of nodes in the information set, all distinct since 
they are ordered by ~ ,  contrary to the assumed finiteness of the tree. 

In general, for any finite set X,  we let A(X) be the set of probability measures on X, and we 
let A°(X) be the set of probability measures that  assign a positive probability to all elements 
of X. 

DEFINITION 2.2.2. INITIAL ASSESSMENT. The initial assessment is a probabi l i ty  dist~bution 
on the initial p~/~/on (p E A(W)), For many purposes, though not a/I, an in/t~J node t~at 
has zero probability of occurring can simply be eliminated from the game tree (aJong with its 
successors). Co~equen t~  unlese stated otherwise we will assume that p E A°(W). (We assume 
that every player's initial assessment is the same.) 

DEFINITION 2.2.3. UTILITY. For each player i E I ,  the payoff function ui : Z ~, ~ assigns a 
real valued vonNeumann-Morgenstern utility to each outcome. The payo~ is a I x Z matrix 
where for each node ~r E Z,  there is an asso~ated vector u ffi (u~(~) [ i E I}, where u~ is the 
ut~/ity/p~yoff to player i. For example, F ~  I indicates the utilities as ordered pairs for each 
~mal outcome. 

We summarize these definitions in Table 5 for convenient reference. 
Now, we have developed notation necessary to represent games in extensive form. 

DEFINITION 2.2.4. EXTENSIVE FORM GAME. An e~tens/ue form game is a tup]e, 

c = ((T, (A,a) ,  (X,d,  (H), p, 

conformin~ to ~ e  description ~bovc. 

Table 5. Notation and dettnitioM for the initial amm~ment and payoif~. 

Notation 

a°(x) 

Name 

Probability measurse on any finite set X 

Interior probability meaaures on X 

Initial asaee~ment 

UtiliW/Ps~off 

Dse p,  

{~ : x --. [o, 1] I L~x ~(=) = *} 

is the reward for player i 
(a~ociated with every conclusion) 
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The extensive form of a game contains the combinatoric information which describes the game. 
The remaining information consists of real numbers. 

2 .2 .3 .  S t r a t e g y  

A strategy for a player is a description of his or her behavior during the game. A variety of 
notions of strategy are useful since, among other things, it matters whether the behavior being 
described is intended, actual (perhaps in a statistical sense), or expected by others. We consider 
three concepts. 

DEFINITION 2.2.5. BEHAVIOR, PURE, AND MIXED STRATEGIES. A behavior strategy forPlayeri 
is a function ai : Hi --* A(A) ,  such that for each h • Hi, ai(h) assigns positive probability only 
to those moves in re(h). A pure strategy is a betmvior strategy that assigns o ~ y  degenerate 
probabilities, i.e., it specifies exactly one feasible move at each h • Hi. The set of  pure strategies 
for ~gent i is denoted by Si. A mi~ed strategy for agent i is a probabifity measure on Si. 

Intuitively a behavior strategy suggests that the agent makes decisions one by one as situations 
arise. In principle, though, the agent can make all decisions at the beginning by selecting a 
pure strategy, after which he or she (or perhaps a delegated subordinate) simply executes the 
decisions made initially. The information set-by-information set randomizations of a behavior 
strategy can be replicated by a mixed strategy that assigns to each pure strategy the product of 
the probabilities (given by the behavior strategy) of all the moves that  the pure strategy specifies. 
This raises the question of whether the space of behavior strategies is large enough to capture all 
the possibilities presented to the agent by the space of mixed strategies. A theorem of Kuhn [39] 
shows that, for games of perfect recall, the answer is ~ a t i v e :  for any mixed strategy there 
is a behavior strategy that is 'realization equivalent' in the sense that, for any mixed strategies 
for the other agents, the mixed strategy and the behavior strategy induce the same probability 
distribution on terminal nodes. 

Kuhn's result [39] has a special significance for our work here, since the dimension of the space 
of behavior strategies (the sum, over all information sets where the agent moves, of the number 
of allowed moves minus one) is typically much lower than the dimension of the space of mixed 
strategies (negative one plus the product, over all information sets where the agent moves, of the 
number of allowed moves). Since the algorithms for systems of polynomials considered here have 
running times that grow exponentially with the number of variables, it should be more fruitful 
to apply them to solution concepts expressed in terms of behavior strategies. 

Although the set of mixed strategies is ill-suited for computation, it gives a view of the game 
that  is notationally simple, so that the following notion of a game is a popular starting point of 
theoretical analysis. An n-person normalform game is a 2n-tuple ($1,.. . . ,S,~; u l , . . .  ,un) where 
each S¢ is a finite set of pure strategies. We call the elements of S ~- $1 x . . .  × So pure strategy 
vectors. The utility function ui : S ~-* ~ associated with Player i maps pure strategy vectors 
to vonNeumann-Morgenstern utilities. As indicated above, there is a canonical procedure for 
passing from an extensive form game to an associated normal form game, and the possibility, in 
the extensive form, of choosing behavior in advance, suggests that the given extensive form and 
the derived normal form should be equivalent from the point of view of strategic considerations. 
This point has been argued with special force by Kohlberg and Mertens [40], but is not fully 
accepted since its consequences (that different extensive forms with the same derived normal 
form should be viewed as equivalent, and that solution concepts should be invariant under this 
notion of equivalence between games) are not completely understood, and seem paradoxical in 

some instances. 
We can also think of strategy as the approach used by the players to select which move to make 

from all the alternatives available, using information accessible to them, at their turn to move. 
Formulation of strategy is the most fundamental concept that emerges from investigating games 
in extensive forms. 
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A pure strategy for a Player i specifies a single next move for tha t  player from all the possible 
legal moves. On the other hand, a mized strategy is one in which several next moves can be chosen 
with some probability distribution. In this paper, we are concerned with mixed strategies. We 
also require that  a strategy of Player i may depend only on components of the position visible to 
Player i. 

Recall, Hi -= {~ E H ] ~(Ir) = i}. In Section 3, we will need to restrict mixed strategies to 
satisfy certain equilibria criteria. Formally, we define mixed strategy as follows. 

DEFINITION 2.2.6. MIXED STRATEGY. For a Player i the strategy is a part/a/function #i :H i  ~-* 
A(T),  such t/~¢, 

1. /or any Ir E H~, ~i(~) is a probab///ty dis~ibution on ~he legal next moves after lr; this 
distribution M e c ~  the probability that ~' E F(  lr) is chosen by Player i. 

2. il%r, lr' 6 H~ and vis~(Tr) = vis~(W), then vi~(~ri0r)) = vis~(~(~)) .  

Thus, ~r~ is a guide for Player i to select the next move. Rule 1 above restriets Playex i to 
legal moves, whereas Rule 2 insures that the strategic decisions must be made using only the 
knowledge visible to Player i. We say that a play ~r is indued by strategy a if whenever ~ is a 
(not necessarily proper) prefix of ~r, and ~' is in the domain of ~, then all prefixes of lr which 
occur with a nonzero probability are contained in the set #(Tf). Pure strategies can be thought 
of as a special case of mixed strategies in which exactly one node occurs with Probability 1. 

Let S~ be the set of strategies for Player i, and S ffi $1 x . . .  x S ,  be the set of strategies for 
the game. For any ~ ~ A(S) and z ~ Z the probability measure using strategy ~ is 

t(=) 
Prob ~ (z) = p(w (z)) I l l  (~(,,¢=))) (~ ~,g-.t (z))). 

1=1 

We denote the expected utility of Player i under strategy cr by E#[u~(z)]. 

2.3. G a m e s  in N o r m s !  F o r m  

Although representation of a game in extensive form contains all relevant details, often a 
significant fraction of information can be superfluous and overspecialized from the game theoretic 
perspective. A more concise representation of games is simply by strategies alone. This is known 
as normal Iorm representation. 

Consider Figure I which presents a game in extensive form. The game essentially has affords 
two strategies for each player. Player I can choose to move L or R, and Player 2 chooses between l 
and r. We can depict these strategies along with the associated payoffs in no _rm__Al_ form as shown 

in ~ble 6. 

Formally, an n-person normaIIorm game is a 2n-tuple ($I ...... S,; ul,... ,u,) where each S~ 
is a finite set of pure strr~egies. A probability distribution over S, × $2 x ... x Sn can be used 

to specify mized strategies. We call the elements of S = /91 x . . .  x S ,  pure strategy vectors, 
and the probability distribution in A(S) is associated with m/zed strategies. We also have a 
utili~ function ui : S ~-, R (R denotes the set of real numbers) associated with each Player i, 
which maps strategies to payoffs expressed as real numbers. This function specifies the payoff as 
vonNe-marm-Morgenstem utility (in some conservative quantity like money) awarded to each 

Table 6. Simple guessing game in normal form. 

Phyer 2 
Player 1 

L R 

I (-2,+2) (+i,-2) 
r (+2,-i) (-i,+,) 
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one of the players from the game. When a game is represented in normal form as described above, 
the underlying rules of the game become irrelevant, and the game tree becomes superfluous. 
However, if one insists we can intuitively think of an n-person normal game as an extensive form 
game with the following rule: Player i chooses strategy cr~ from the set of strategies S~ before the 
choices of other involved players are known to him/her (Player i). 

We can also construct an equivalent normal form for a game initially presented in extensive 
form as described below. For each Player i, compute the set of all available pure strategies 
open to Player i in the extensive form of the game. Here, pure strategy means a specification 
of allowed actions at each state where Player i is to "move". A pure strategy accounts for all 
possible sequences of "moves" which can occur. We, let u~(a l , . . . ,  a~) be the "expected payoff" 
for Player i, with respect to the probability distribution of the terminal plays resulting from the 
initial assessment, when the players select the strategies ~1 , . . . ,  aN, respectively. 

By results of Azhar, Peterson and Reif [29], there is no recursive procedure to compute a 
game's normal form except if the game has less than three players, or if the game is hierarchical 
in the sense described in Section 1.4. Game theorists have disputed as to whether important 
information is lost in the process of the transformation from an extensive form game to a normal 
form game. This depends on details of the equilibrium concept, and in fact will prove not to be 
an issue for sequential equilibrium. 

2.4. G a m e  T h e o r y  P e r s p e c t i v e s  

In game theory, it is standard practice to consider only games of perfect recall, in the sense 
that  all the plays in an information set must be consistent with everything observed by the player 
whose turn it is. The formal expression of this notion is cumbersome and tedious, but it has been 
elucidated in Section 2.2.2. 

Chance (or nature) may be a player in its own right. If the probabilities associated with its 
choices are known, we can construct a frequency distribution for all possible outcomes, and from 
this distribution we can compute the 'expected outcome' as well. However, in our discussion, 
we are not allowing chance (or nature) an opportunity to participate in the game. The reason 
is that  we do not want to get distracted by superfluous complications, especially since, for all 
practical intents and purposes, we can transport  all chance moves back to the initial stage of 
initial assessment. As a result of such treatment of chance moves, we are able to gain simplicity 
of notation and description. Nevertheless, we will discuss chance moves where it seems to us that 
the implicit generalization of the material may not be obvious. 

In games of perfect information, each and every player is in a position to access all relevant 
information to know the exact state of the game before it decides which one of the possible 
alternative moves to select. Chess is an example of a perfect information game. In chess, a player 
has complete knowledge of the board position on its turn before it selects one of the options 
available. It  may very well be true that  a player does not select the optimal move for the position 
at hand, but the fact remains that  the player's computational shortcoming is not a result of lack 
of information. 

On the other hand, in games of incomplete information the players are forced to make choices 
without complete information about the state of the game. An example of a game of incomplete 
information is the card game bridge. At any stage during hand play, a player knows everything 
about his cards, but does not have complete information about the hands of other players. In 
general, a player may be given a set of branch points to which the game may have progressed. 
Such sets are called the information sets. In bridge, information sets correspond to partial 
information gathered during the course of the play (e.g., one of the opponents is out of the t rump 
spades but has high diamonds, and the other opponent is out of hearts). A nontrivial amount 
of information is still up to speculation. The rules of the game determine all legal moves which 
the player can make in a given situation. In order for this to make sense, the set of allowed 
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actions must be the same at all points in an information set. Furthermore, for each node in an 
information set and each allowed action, there must be a unique successor node resulting from 
the action. In the running example of bridge, the content of opponents' or partner's hand does 
not affect a player's legal leads, or response to another player's leads. Some such plays might not 
be profitable in view of the contents of information sets, but are they nonetheless are legal. 

3. EQUILIBRIUM 
Many notions of '~equilibrium" have been defined during the development of game theory. The 

first formal definition of an equilibrium concept for general games, which generalized the notion 
of a minimax point for two player zero-sum games, was formulated by Nash. Since then, mod- 
ifications, ma~u~ in the direction of increasing restrictiveness, have been proposed to overcome 
certain problematic features. This paper concentxates on one of these, namely the concept of se- 
quential equilibrium proposed by Kreps and Wilson [1], but we should emphasize that, although 
this concept has computational advantages, the algorithms for semialgebraic geometry presented 
below could be applied to almost every known solution concept for finite games, since (with few 
exceptions) these concepts are defined in terms of polynomial equations and inequalities in the 
payoffs and strategic probabilities. 

Since sequential equilibrium is a rather complex notion, it can be better undemtood in relation 
to alternative equilibrium concepts. 

3.1. Nash Equil ibr ium 

3.1.3. Formulat ion of  NMh equilibrium concept 

Intuitively, a vector of mixed strategies is a Nash equilibrium if every player's strategy is an 
optimal response to the other players' strategies in the sense that no player could increase his or 
her expected payoff by deviating from the given ('equilibrium') strategy, assuming other players 
persist with their ('equilibrium') strategies. 

Let us develop some notational machinery to aid formal de~nition of Nash equilibrium. Con- 
sider a normal form game ($~,... ,Sn; ux,. . .u~) and the a~ociated notation developed in Sec- 
tion 2.2.3. Given a m~zed ~trstegy vector ~ = (~ ,  ... , ~ )  ~ xiA(S~), one can compute an 
expected payoff for any Player ~. Assuming that the behaviors of various players are statistically 
independent, the expected payoff is given by the following expression: 

sES 

NOTATION 3.1.1. SUBSTrrUTION. For a E x~A(Si) and ~j E A(Sj), let el~ j be the mixed 
strategr vector o b t ~ e d  by replacing ~ with r#. 

DEFINITION 3.1.1. BEST RESPONSE. We say that ~-j is s best re~o,~e for P/ayer j to ~r ff 
E~1~(ujl > E(-I~J)(u~) for all ~j ~ A(S~); the ~ t  of such best r e ~  is denoted byBR#(~). 

Since E(U~] e) is a multilinear function (in the obvious sense), hence, linear in #j, BR~(~) is the 
set of probability measures on Sj that assign positive prob&bility to pure strategies that are best 
responses to ~. In patriotic_r, BP~ (e) is nonempW. 

DEFINrr[ON 3.1.2. BEST RESPONSE CORRESPONDENCE. The best response eorresp~d~nce B R  : 
A(S1) x . . .  × A(S,,) ~-* A(Si) x - . .  x A(Sn) is defined by BR(a) ---- BR,(a) × . . .  x BRn(a). 

DEFINITION 3.1.3. NAStl EQUILIBRIUM. A mixed strategy vector a* is s Nash efuiHbrium if 
a* • BR(a*). 

In addition to proposing this equilibrium concept, Nash [41] pointed out that the best response 
correspondence satisfies the hypotheses of the Kakutani fixed-point theorem [42], so the set of 
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Nash equilibria is always nonempty. Clearly, this is a minimal requirement for jointly rational 
behavior because if a mixed strategy vector does not satisfy this condition then some player can 
obtain a higher expected payoff by changing to another strategy. 

3.1.2.  I n h e r e n t  dif f icult ies  a s s o c i a t e d  w i t h  t h e  n o t i o n  o f  N a s h  eq u i l i b r i u m  

Although Nash equilibrium has always had a central position in game theory, it has, in every 
period, been subject to attacks from one direction or another. First, we briefly describe the 
questions that  have been raised concerning its relevance, then proceed to the arguments suggesting 
that it is less restrictive than it should be; the latter considerations motivate the definition of 
sequential equilibrium. 

Within the traditional "one shot" interpretation of a game--as a social situation that occurs 
only once, and encompasses all interactions between the agents--it  is ditficult to explain how the 
agents learn each other's strategies. Bernheim [43] and Pearce [44] (independently) formalized 
this critique, arguing that, for the one shot interpretation, a weaker solution concept is the 
correct description of the consequences of the assumption that the rationality of all agents is 
common knowledge. Recently, another interpretation has been advanced as a foundation for 
Nash equilibrium, namely that the game occurs repeatedly, so that  historical information can be 
consulted in forming expectations about the behavior of other agents, but  the agents involved in 
any particular instance do not expect to encounter each other in the future, so that  considerations 
of revenge, rewards, reputation, and so forth, do not drive a wedge between the current payoffs 
and true motivations. In sharp contrast to the one-shot interpretation, this view has no difficulty 
with multiple equilibria: different cultures can have different, stable, sets of customs. 

The modern view implicitly regards Nash equilibria as stationary states of an underlying process 
of strategic adjustment, but general principles do not provide clear cut guidance for modeling 
these dynamics. This is an area of active research and presently the support for Nash equilibrium 
provided by this interpretation seems less than complete in the following sense: although any 
stationary point of a reasonable adjustment process should be a Nash equilibrium, it may happen 
that all equilibria are unstable, with the only stable phenomena being cycles or more complicated 
attractors. 

Finally, Nash equilibrium is vulnerable to the critique that,  as a matter  of both casual ob- 
servation and extensive experimental evidence, it is simply wrong as a predictor of behavior 
in particular games. A careful evaluation of this point seems to require the elaboration of a 
philosophy of inexact science, so we will not discuss it further. 

For us the most relevant criticism of Nash equilibrium is that it is incomplete as a description 
of the consequences of it being common knowledge that all agents are rational. 

A simple and compelling example is the Dea~  Be]ore Dishonor game shown in Figure 2. 
Clearly, a mutual cease ]ire is the optimal outcome for both players. However, Destroy the World 
is a Nash equilibrium if Player 1 believes that Player 2 will choose to A~ack. s 

Figure 3 presents a slightly more complicated example. Here, as the reader can easily verify, 
(passive, mid) is a Nash equilibrium. This time mid is not a dominated move for Player 2, but it 
is unreasonable since there are no 'beliefs' about the relative likelihood of the plays in Player 2's 
information set for which mid is a best response. 

What these examples illustrate is that Nash equilibrium does not require rationality, in the 
sense of payoff maximization, in situations that occur with probability zero under the equilibrium 
strategies. Perhaps more important, agents are not required to believe that  others will behave 
rationally in such situations. This seems clearly contrary to the spirit of the equilibrium concept, 
which is to elaborate those properties of behavior which follow from the assumption that the 
rationality (in any contingency) of all agents is common knowledge. 

sir Player 2 is attacking, destruction of the world is a Nash equilibrium because neither player can increase 
expected utility by changing ~trategy. This Nash equilibrium is not only illogical, but also unrealistic and absurd: 
Player 1 is countering a threat that  Player 2 could not rationally carry out. 
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(4,0) (1,1) (4~$)(4,S) (1,1) (4,0) 
Figure 3. Extensive form of a game without ~beltefJ' with Nemh equilibrium (pe-mive, 
mid). 
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Although most researchers accepted the Nash equilibrium concept as central, a certain amount 
of confusion has surrounded its interpretation. 

The players are required to behave as if they are unaware of their strategic interdependence. 
This assumption is plausible only ff there are numerous players, and the consequence of a single 
deviation is negligible. Cournot tatonnement [45] is an example of dynamic process where each 
player adjusts its strategy optimally under the myopic assumption that  the others will not alter 
the game situation. However, this presumption of every player is rendered erroneous a f l~  each 
move {45]. If this process converges we must arrive at a Nash equilibrium. Nevertheless, the 
players go through a series of adjustments without any guarantee of the process converging. 

If, as can easily happen, there are several Nash equilibria, the theory seemed to be at odds 
with itself, since the information available is insu~cient to lead the players to select one of the 
equilibria. Nash equilibria are the only expectations that  are potentially self-reproducing when 
players respond rationally. They can be thought of self-fidfil]|ng prophecies or self-enfurcing 
agreements. Guaranteeing the uniqueness of Nash equilibrium is a difficult procedure which can 
be applied only to special types of games. On the other hand, in the interpretation of game as a 
social interaction, multiple equilibria are no more mysterious than the fact that two cultures can 
have different but stable sets of customs. 

When a game is played repeatedly, the Nash equilibrium concept does not accommodate deriva- 
tion of any benefit to a player by learning about the game, or understanding the behavior of other 
players, or incorporating any other knowledge. In reality, mixed strategies represent the expec- 
tations the players have about each other's behavior, where these expectations are derived from 
the society's history of behavior in this g~me. 

Nash equilibria outcomes are not Pareto optimal in general. We refer interested readers to 
Grote's analysis [46] for a rigorous treatment of Pareto optimality concerns in reference to Nash 
equilibria 

Although Nash equilibrium seems to be a coherent description of rational behavior in such 
interpretations, it is far from a complete description. This can be shown by the simple and 
compelling example of Death Before D i s h ,  or game formulated in Figure 2. As we noted earlier, 
a mutual cease fire is the optimal outcome for both players. However, Destroy the World is a 
Nash equilibrium if Player 1 believes that  Player 2 has chosen to Attack 9. This Nush equilibrium 
is not only illogical, but also unrealistic and absurd: Player 1 is countering a threat that  Player 2 

9If Player 2 is attacking, de.ruction of the world is a Nssh equilib¢ium because neither player can  increase his 
utility by ¢]z~q~g its strategy 
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A° V r:siv° 
Figure 4. Extensive form a game with Nash equilibrium (draw, passive) sustained 
by a 'noncredible' threat. 

Table 7. Normal form of a game with Na~h equilibrium (draw, passive) sustained by 
a 'noncredible' threat. 

Player 1 
Player 2 

Active Passive 
Draw !q.1, q.1) (q.1, q.1) 

Gamble (q.2, q-l) (0, 0) 

could never carry out. This is illustrated more vividly by the next example. 
Consider the extensive form in Figure 4, and the derived normal form shown in Table 7. The 

pair (draw, passive) is a Nash equilibrium of this game: Player 1 does best to play draw if 
he expects Player 2 to play passive, if Player 1 assigns all probability to draw, then Player 2's 
strategy has no effect on his expected payoff (so there is no better  response than passive to draw). 

This equilibrium is clearly unreasonable when we examine the above game in its extensive 
form. If  Player 1 chooses gamble then Player 2's strategy will influence its payoff. On the other 
hand, Player 2 will be prefer to choose active. Player 1 can anticipate this, so he will choose 
gamble. Game theorists say that  the equilibrium (draw, passive) is sustained by a 'noncredible' 
threat. 

Figure 3 presents a slightly more complicated example. Here, as the reader can easily verify, 
(passive, mid) is a Nash equilibrium. This t ime mid is not a dominated move for Player 2, but it 
is unreasonable since there are no 'beliefs' about the relative likelihood of the plays in Player 2's 
information set for which mid is a best response. 

3.2. Perfect Equilibrium 

The next major advance after Nash [41] was the paper by Selten [4], which defined the (rather 
optimistically titled) notion of perfect equilibrium. For sake of completeness, we present a brief 
overview of this notion. We first define this notion for the normal form, then consider how it can 
be applied to extensive form games. 

In earlier work, Seken had defined the notion of subgame perfection as a response to these 
dif~culties, A node in the game tree is the initial node of a subgame if all agents always know 
whether it has occurred, i.e., every information set is either contained in the set consisting of the 
given node and its descendants or disjoint from this set. A behavior strateKy is a subgame perfect 
equilib~um if it is a Nash equilibrium and its restriction to every subgame is a Nash equilibrium 
of the subgame. The undesirable Nash equilibrium of Death Before Dishonor is disqualified by 
this criterion, but this concept does not handle the other example presented above in which there 
are no nontrivial subgames, and in general the notion of a subgame is rather special, so that 
one should not expect subgame perfection to rule out all the "bad" equilibria of the sort that  it 
addresses. The following more restrictive equilibrium notion does not suffer from this flaw. 

DEFINITION 3.2.1. PERFECT EQUILIBRIUM. a* • ×i/k(Si) is a perfect equilibrium if there is a 
sequei2ce ( a  r } C ×~A°(~)  with a* • BR(a r) for ~ / / r  and a r ~-* a*. 

REMARK 1. The most important mathematical fact about the set of perfect equilibria is that  it 
is a nonempty subset of the set of Nash equilibria. 
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REMARK 2. Note that a perfect equilibrium nece____~sarily assigns probability 0 to all pure strate- 
gies s~ that are t#ea~y dominated: we say that strategy s~ is weakly dominated by strategy t~ if 
there u~(s~, sl-{~) ~_ u~(~i, 8z-{~}) for all sx_{0 E Sz_{~} --- xj,,~Sj with strict inequality for at 
least one s/_{Q. 

The reader may wish to ex~tmlne the examples above to verify that the concept of Nash equi- 
librium described above as unreasonable is also not perfect in the sense of Definition 3.2.1. 

It turns out that applying the concept of perfection to the normal form derived as above is not 
the correct application of the perfect equilibrium concept to extensive form games. Informally, 
the difficulty is that normal form perfection does not require a player to behave rat~onMly at an 
information set that cannot be reached under the player's equilibrium strategy due to a choice 
made by the player at an earlier information set. For a more expansive treatment of this point, 
with examples, the reader is referred to Section 13 of Selten's paper [4]. 

Those unfamiliar with the intellectual history of game theory may wonder why such a long time 
elapsed between Nash's paper and later attempts to develop more refined concepts. Certainly 
an important factor was the belief that the normal form was sufficient for the description of 
rational behavior in equilibrium. The fact that notation for extensive form games is bulky and 
cumbersome may also have contributed to the delay. 

Between 1950 and 1975, the accepted solution concept for games in extensive form was Nash 
equilibrium applied to the associated normal form game. This solution concept has the difficulty 
(which is not apparent when looking only at the normal form) that it allows irrational behavior at 
information sets that are reached with zero probability. In addition, any sensible theery ofrational 
behavior at unreactmd ~ i o n  sets must incorporate some theory of beliefs concerning the 
relative likelihood of the nodes in such information sets. Presuming that the beliefs are irrelevant 
at information sets reached with zero probability would not render complete treatment, since the 
equilibrium concepts has to be well defined to account for all possible deviations of the players 
from equilibrium. 

3.3. Sequential Equil ibrium 

A more suitable approach is to apply the perfect equilibrium concept to the 'agent normal 
form', which is obtained by regarding each information set as a different player. The mixed 
strategy vectors of the agent normal form are, of course, precisely the behavior strategies. To 
see the import of perfect equilibrium in this context, suppose that ~* is a perfect equilibrium 
of the player normal form, and that (~r) is a sequence of totally behavior strategies converging 
to or* with ~* E BR(a') for all r. Suppose the initial assessment assigns positive probability to 
all initial plays. Then, for any r, the behavior strategy crr induces a probability distribution on 
terminal plays that is totally mixed, since any allowed sequence of moves has positive probability. 
In particular, every play in the game tree occurs with positive probability, so the condition ~* E 
BR(~ ~) implies utility maximizing behavior at information sets that occur with probability zero 
under #*. 

Moreover, each ~ induces a well defined conditional probability distribution on the plays in 
each information set. For a given information set this distribution may be thought of as the 
Bayesian ballef~ of the player who chooses there. Knowledge of the strategy ~* alone is enough 
to compute that player's expected payoff conditional on any node £n the information set and any 
choice of action. Combining this infurmation with a belief, in the sense of a distribution over the 
nodes in the information set, one can compute expected payolfs for each of the available actions, 
thereby defining a notion of rationality. 

We must confront the fonowing problem. The beliefs at an information set are conditional 
probabilities, and are not unambiguously determined by ~* unless the conditioning event (i.e., 
the information set) occurs with positive probability. At the same time, even when they are 
not completely determined, they should not be completely arbitrary; among other things an 
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agent should not believe that his opponents' actions are correlated when the opponents have 
no way to coordinate their behavior. Kreps and Wilson [1] discuss a number of conditions that 
could be imposed on the relationship between strategies and beliefs, settling, with misgivings, on 
Definition 3.3.1 below. 

DEFINITION 3.3.1. SYSTEM OF BELIEFS. A system of beliefs is a function t~ : X ~-* [0,1], such 
that ~'~z~h/~(x) ---- I for each h • H.  

DEFINITION 3.3.2. ASSESSMENTS. An assessment is a pa/r (~,#) in which q is a behavior 
strategy and ~ is a system of beliefs. 

DEFINITION 3.3.3. CONSISTENT ASSESSMENTS. We say that an assessment (~,/~) is consistent 
f l i t  is the limit of a sequence {(a r,/~r)} where each a r is totally mixed and #r is the system of 
beliefs derived from a r by forming conditioned probabilities. 

DEFINITION 3.3.4. SEQUENTIALLY RATIONAL ASSESSMENTS. We say that an assessment (a,$~) 
is sequentially rational ff  the behavior strategy cr assigns positive probability only to those moves 
whose expected payoffs~ computed [rom (or, Iz) in the manner described above, are not less thau 
the expected payoff of  some other move allowed at the same information set. 

DEFINITION 3.3.5. SEQUENTIAL EQUILIBRIUM. A sequential equilibrium is an assessment that 
/s both consistent and sequentially rational. 

REMARK 3. The sequential equilibrium concept is weaker than the notion of agent normal form 
perfection in the following sense. 

If a* is a perfect equilibrium, then it is the limit of a sequence (a r } of totally mixed 
strategies with a* E BR(a r) for all r ,  and this implies that  a* is a best response to 
each assessment (a r, #r) in the sense described above. The expected payoffs of moves 
are continuous functions of the assessment, so if/~* is a limit point of the sequence (/if}, 
then a* is a best response to the assessment (a*, #*), and of course this assessment must 
also be consistent. This argument shows that every perfect equilibrium of the player 
normal form is the behavior strategy component of a sequential equilibrium. 

There are sequential equilibria whose behavior strategy components are not perfect equilibria. 
Among other things, a (weakly) dominated action may have positive probability in a sequential 
equilibrium, but not in a perfect equilibrium. The sequential equilibrium can be regarded as the 
natural generalization of the Nash equilibrium for games in extensive form. It is similar in spirit, 
since sequential rationality is a minimal condition for rational behavior in the environments 
in question. (The notion of consistency may not be a minimal requirement for beliefs to be 
sensible. See [1, Section 5] for a discussion of this issue.) It is possible [47] to define a best 
response correspondence that  has the set of sequential equilibria as its set of fixed points and 
that coincides with the best response correspondence defined above in the special case of normal 
form games, so the sequential equilibrium is also a natural generalization of the Nash equilibrium 
from a mathematical viewpoint. 

4 .  A L G E B R A I C  C H A R A C T E R I Z A T I O N  
O F  S E Q U E N T I A L  E Q U I L I B R I U M  

4 . 1 .  C o n s i s t e n c y  and  Sequen t ia l  R a t i o n a l i t y  

The language of the theory of real closed fields consists of formulae and propositions built up 
out of polynomial equations and inequalities, together with the logical quantifiers "for all" and 
'%here exists." In this subsection we present formulae that make it evident that the definition 
of the sequential equilibrium is a formula in this language. This result alone suffices to imply 
the applicability of the algorithms for computing semialgebraic sets discussed in Section 4.5. 
In subsequent sections, we re-express the definition in ways that  do not employ any logical 
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quantifiers. Insofar as the computational complexity of the algebraic algorithms is exponential 
in the number of variables, and the typical method of computing sets defined by quantified 
formulae is to compute the set defined by the associated tmquantified formula, then project, this 
reexpression should result in a considerable reduction in computational complexity. 

Let BS  denote the space of behavior strategies, and let BS ~ denote the subspace of interior 
behavior strategies. Given ~ E BS, we can compute the probability that an arbitrary play 7~ • T 
will occur by multiplying the initial assessment of the initial position (from which that play 
originates) with probabilities of each move along the play. 

P r o b "  (,~) = p( ,o  (~-)) • C~r (,~ 0~I ( ,~ ) ) ) . . . , ,  (~ 0~  (~) (~) ) ) ) .  

This equation reflects our assumption that  the players' behavior is statistically independent, 
that is, they cannot correlate their behavior with each other, or with unobserved choices of nature. 

Let M = ×h~HA(h) be the space of beliefs, and let M ° : ×hGltA°(h) be the space of interior 
beliefs. Recall that  p is assumed to be interior, so if a is interior, then Prob~(~r) > 0, for all 

E T. In this situation, we can define Bayesian beliefs by taking conditional probabilities, 

erob ~ (It) 
for 7r E T : 9 ,  (g) -- Prob" (H (~r)) 

These numbers constitute a vector of probability distributions p~ E A°(h). 
Let the space of consisten~ interior assessments be ~° -- {(#¢,~) I ~eBS°), and let • be the 

space of con~.ftent assessments (recall that this is the closure of ~o in M × BS). The formulae 
above show that  ~o is a semialgebraic set, and in general the closure of any semialgebraic set 
is a semi-algebra set since, if F is the formula defining a set X, i.e., X = {x I F(z)}, then the 
closure is the set of • satisfying the formula '~or all e > 0 there exists z such that  F(z) and 

I1~ - ~11 ~ < ~". 
We now explain how an assessment (p, ~) determines expected payoifs for the various moves. 

To begin with we note that  cr atone determines expected payu~  for all playsrs at all plays in a 
game tree. 

LEMMA 4.1.1. For each behavior strategy ~ there is a unique system of expected payoffs [or each 
• T where the payoff to Player i at ~his node is denoted by E~(ui [ lr) and defined (backward) 

inducti~ly by, 

[ u~(lr), for 7r E Z, 
/ E°~-c~)  ~(a) .  E ' (~ ,  I FC(~, a)), for ~ ~ X. 

PROOF. Define Zj inductively by letting Z0 ~- Z, and Zj ~- {~r [ FC(~r) C Zj-1).  It is clear 
that  the condition above defines E ~ (u~ ] ~) uniquely for all lr E Z~ - Zj-1 if E ~ (u~ [ ~) has 
already been defined, for all ~ ~ Z~-I. The proof follows from the principle of mathematical 
induction. | 

At an information set h • H, the possible consequences of choosing a ~ re(h) are the plays 
FC(~,a),  for ~r ~ h. The expected payoff associated with move a is the belief-weighted average 
of the expected payoffs of the plays FC(~r, ~). 

E"." ( ~  I ~,a)  = y "  ~,(,r). ~,~ C~'~ I FC (,r. ~)) .  

D~FIN~T~ON 4. I . i .  SEqV.~NT~V.LY RA~ONXL. An assessment (p, a) is sequentially rationog if, 
for ali h • H and a • ~ (h ) ,  a(a) > 0, tmp/ies that E~,~(~  1 h,a) >_ E ~ ( ~  [ ~,a'), fur a// 
a ~ • re(h), that is, players do not assign positive probability to moves that have suboptimal 
expected payoffs. 

For our purposes, it is crucial that  the equilibrium conditions be of the form Q _> 0, where Q 
is a polynomial whose variables are the components of p, ¢, u, and possibly other quantities. 
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To make this completely explicit note that  the inductive definition of Ea(u~ [ w) shows that  
this term is a polynomial in the components of a and u, so E~,a(u~ I h, a) is a polynomial in the 
components of p, or, and u. Now observe that  sequential rationality is equivalent to the condition, 

Va, a' • re(h), h e H :  I h,~) - E " , ~ ( ~ ( h )  I h,a'))  >_ O. 

4.2.  Funct ional  N o t a t i o n s  

In the remaining section, we will show how the set of consistent assessments can be decomposed 
into finitely many sets, each of which can be described by means of finitely many  (unquantified!) 
polynomial inequalities, and subsequently we can employ results from the theory of real dosed 
fields to compute solutions. The basic technique is to develop a set of constraining nonalgebraic 
relationships, and then apply logarithms to these relationships to achieve algebraic constraints. 

DEFINITION 4.2.1. BASIS. The basis of  an assessment (p ,a)  is b(p ,a)  = bx(p) U bA(~), where 
bx( ) -- • X I > 0} and hA(or) = {a E A I > 0}. In genera ,  a basis a 
b =  bxUbA c_ X U A .  

Intuitively, basis b(#, a)  consists of the elements of Z (leaf nodes) which occur with nonzero 
probability under the system of beliefs p, and all the moves ( •  A) which are made under the 
strategy a. 

DEFINITION 4.2.2. QUASICONSISTENT. A ba.~s is said to be quasiconsistent f f  there is at  least 
one move at every information set. Forma]ly, a basis b = bx UbA is quasiconsistent ifbA N m( h ) 
{}, for all h • H.  

DEFINITION 4.2.3. CONSISTENT. We say that a basis b is consistent i f  b ---- b(p, a) for some 
consistent assessment (/~, a).  

Our principal concerns are 

1. to determine computable conditions for the consistency of a basis; 
2. to provide an algebraic characterization of the set of consistent assessments for each con- 

sistent basis; 
3. to bound the complexiW of these tasks. 

We now fix a basis b that  will be the focus of our discussion for the remainder of this section. 
Since b cannot possibly be consistent unless it is quasiconsistent, the quasiconsistency of b will 
be a maintained hypothesis. 

The following notation facilitates the analysis. For each ~r E X, we let m ~ : (@1+)A ~_, @t+ 
be the monomial, whose variables are the components of some strategy w, that  computes the 
probability of reaching ~r from the root of the its tree, 

e(',T)-- 1 
= 

kffi0 

For ~r • W ,  m~(w) --- 1 (for any w). We can regard BS ° as a subset of (~)a  in the obvious way 
to derive the following formula for the probability that  node 7r occurs, 

Prob ~ (~r) = p (w (~)).  m*(a) ,  for ~r E X and c re  BS °. 

For Ir E X we let l ~ : @1A ~_. @1 be the linear function, 

~(~-)-z 

k=O 
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Now, observe that 
In m" (~) = l" (in ~) 

where lnw denotes the vector in ~A[ whose components are the natural logarithms of the com- 
ponents of ~. Our overall strategy is to conduct the analysis in logarithmic temps so that linear 
algebra can be brought to bear, then rephrase the results in multiplicative terms so that the 
relevant equations are algebraic. 

We are now ready to define the requisite linear functions. Let re(b) ffi hA, and let Lm(b) : ~ 
~m(b) be the standard projection onto a coordinate subspace. We also define EQ(b) to be the set 
of pairs of strategic plays in the basis that are in a common information set, 

EQ(b) = {(~,lr') [there is some h with 7r,~' E hNbx} .  

Let LEQ(b) : ~A ~_. ~EQ(b) be the linear function who6e (~, lr~)-coordinate is l ~ - l ~'. For 
E BS °, the (lr, lrJ)-component of LEQ(b ) (In if) is then, 

=, ( Prob" (~r) ~ ( p ( ~ 0 r ) )  ~ 
LEQ(b) (ln~)[~r, ~]  = _ ~,Prob" ( , ' ) )  - In ~ ~ ) ,  

so, among other things, for each information set h the information in Lzq(b)(ln~) allows one 
to compute the conditional probability distribution on h n bx induced by a. Let L : 7 H 
(Lm(b)(7),L~.Q(b)(7)) be the Cartesian product of Lm(b) and LEQ(b). Roughly, the use of the 
following result will be to characterize "orders of improbability" that support the given basis b: 
if each move has an order of improbability, which we think of as the negation of the logarithm of 
the probability assigned to the move in a some behavior strategy, then (up to order of magnitude) 
the belief probabilities at each information set will be dominated by tho~e nodes in the information 
set that  are minimal with respect to the sum of the orders of improbability associated with moves 
required to reach the node. 

LEMMA 4.2.1. There is a set of moves B C A with the property that LIRa is I-1 and L(~ s) ~- 
LenA). There exist algoritI~n(s) fur fmdi~  such a set, wh/ch runs in space po/ynomia/in the 
cardinality of the set T, i.e. ITI. Any such set satiates bA C B. 

PROOF. Consider two vector spaces WI and W'2 such that L : W'I ~-* W2 is linear, and zvl, . . .  ,wn 
is a b~q|s for a vector space Wrl . We know fTom elementary linear algebra that  

L (span {wl, . . . .  W~-l, t#~+l,. . . ,  m~}) # L (W1) 

if and only if 
ker (n) _C span (w~,..., w~_~,~+~,..., w,}. 

Consequently, in general, them must be some w~ with L(spa~{~v~,..., ~_~, ~+~,..., w,}) --- 
L(W~) unless ker(L) = {0~. By computing certain determinants, we can ascertain whether or 
not this latter inclusion holds, provided we are given a matrix for L in terms of ~,... ,w,, and 
some basis for W~. This can be accomplished by standard polylog algorithms for solving linear 
systems like Csanky's algorithm [48]. It is necessarily the case that bA C B, since otherwise, 
Lm(b)(~ 1~) ~ Lm(b)(~k). The ].emma follows. | 

Let V be the kernel of L. Fixing a B satisfying the conditions of Lemma 4.2.1, we have 
V N ~  = (0} and V + ~  ~ -- K ~ .  Let Projv : ~ ~ V and P r o j ~  : ~ ~ ~ s  be the projections 
o f ~  A onto V and ~ ,  respectively, (parallel to ~ and V, respectively). COnsequently, for -f ~ ~"~ 
we have Projv(~) e V, Pzoj~,(~) ~ ~s ,  and Projv(~) + Projs, (7) - -  ~ .  

4.3. Labe l ing  

Our next step is to introduce a labeling system which assigns a nonnegative real number for 
each node, and every edge. 
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DEFINITION 4.3.1. LABELING. A hbe/ing for the extensiv~ form is a function K takingA and Y 
into the nonnegative integers. 

In particulsx, we define b-labeling, and show that it is equivalent to the consistency properties 
ofb. 

DF~mITION 4.3.2. b-LABELING. A b-labeling is a function K : Y U A , R + satisfying the 
following conditions. 

i. For a ~ A: K(a) = O ff and onIy f f  a ~ b^. 
2. For ~r • Y: K(~)  = E t ~  )-1K(a(pk(lr))) .  
3. For*r,*r' E T : / f  (,r,,r') E EQ(b) then KOr ) = K ( ~ ) .  
4. For ,r,,V • T: I f  ~r, ld • h, with ~r • bx and ,d ~ bx, then K(~r) <_ K(IV) + 1. 

We now show that  the consistency of b is equivalent to the existence of a b-labeling becatme 
we have phrased the definition of a b-labeling in such a way that  the set of b-labelings coincides 
with the set of feasible solutions of a particular linear program. Consequently, the following 
results show that  the enumeration of the set of consistent bases can be achieved by the simplex 
algorithm. 

LEMMA 4.3.1. I f  b has a b-labeling, then it is consistent. 

PROOF. Suppose that K is a b-labeling. 
Fix a • BS o, and for a E A and positive integers n, we define a~, 

a ,  (a) = e (n, MOVSET (a)) .  - a (a),  

where MOVSET(a) is defined to be m-a(a), and the normalizing constant e is defined as follows, 

1 
c(n,h)  = 

( 1 / n )  K¢*)  " a ( a )  " 

Let #n be the belief derived from an, mad let (p*,a*) be a limit point of the sequence {(/~, an)}, 
i.e., (#*,a*) = limn_,oo(/~n,a"). 

Since b is quasicensistent, there must be a move available at every information set. Further- 
more, by Condition 1, K(a')  = 0 if and only if a' E bA, therefore, ( l / n )  K(*') = 1 if a' E hA. 
Consequently, 

1 
lira c ( n , h ) =  

E a (a)" 
o'E(m(h)Nm(b)) 

Since the constant e(n,h) is nonzero, it follows that limn-.oo a~(a) > 0 if and only if 

Lira > o, 
. - - * w  \ n /  

and since a(a) is always positive, this will be the ease if and only if K(a)  = 0, which by Condition 1 
happens if and only if a • hA. Recall that a*(a) = l imn-,~ an(a). It follows that  a*(a) > 0 if 
and only if a E hA. 

Recall, 
t(~)-i 

Prob°"(') = P (w Or))" l'I (a" (~ (P~ (~))))" 
k----O 

For % • X, our labeling scheme yields 

t(.)-~ (hi_) K(,,.¢.,,(.))) 
Pr°b" (~) = P (~ (r))" I ~  c (n, MOVSET (c~ (p~ Or)))). • a (a (p~ Or))). 

k----0 
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Applying Condition 2, we get 

( 1 )  .R'(~. ) t(~')--I 
Prob" (~r) ---- p (w (Tr)), ' I-[ c (n, MOVS~ (a (Ph (~)))) • a Ca (p~ Or))). 

k~0 

By its definition, 
Prob #" Or) 

/~ (~) = Prob "n (H (~))" 

We see now that p~(Tr) is a constant times (l/n) K(') divided by a sum in which the term 
corresponding to each ~ ~ H(~r) is a constant times ( l / n )  K(n'), so #*(~r) = lints-.~op~(~) > 0 
if and only ff K0r  ) ~ K ( ~ )  fur all ~ E H0r),  and in view of Condition 4 this occurs precisely 
when ~r ~ b~. 

LEMMA 4.3.2. ~f b is consistent t~en there exists a b-labeli~. 

PROOF. Suppose that b is consistent, so that  b = b(p*,o*), for some (p*,o*) = lim~-~m(p~,on), 
where, for each n, on is an interior strategy and #n is the belief derived from on. We note that 
lim~_.oo 1"(on(a)) = ln(#*(a)) for all a E hA. Moreover, for (~r,~d) e EQ(b), we have, 

lim l ~r (In on) -- l "r" (ln rrn ) = rnn In [Prob e'` ( ~r ) / p ( w (~'))] - In [Prob ~ (~r ~)/p ( w (~d))] 
11;--+00 ~t==*O0 

= .m I. - 1. 

= 1. [#* (~r)/p (o~ (~r))] -- In (#* (~d)/p (to (~d))] 

Consequently, the sequence (L(1" o,))  is convergent. 
Since L ---- L o  ProjR~ and L is 1-1 on ~B, the sequence (Projn~(lno,)))  must also converge, 

and in particular it must be bounded. 
On the other hand, for any n, ~ E h, such that ~r E bx and ~' ~ bx, l = (ln ~ , ) - I  =' (In on) ---* co, 

as n ~ oo. Furthermore, for any 7 E ~R A, we have 7 = ProjRm (7) + Projv(7), so the fact that 
(ProjRB (In On)) is bounded implies/~(Projv(ln on)) - l~ ' (P ro jv ( ln  o~)) , oo as n - ~  oo. 
FLxing an n, such that /n(Projv(1"  ~n)) - l~(ProJv( lu on)) _~ 1, for all lr, ld E h, such that 
~r E bx and ~d ~ bx, for each a E A let K(s) be the a-component of -Pro jv( lnon) ,  and let K(~r) 
be defined by Condition 2. Conditions 1 and 3 follow from the fact that  Projv(lnon) E ker(L), 
and the ineq~Al!ty above implies Condition 4, so R" is a b-labeling, and the lemma follows. I 

THEOREM 4.3.1. b is consistent f f  and only f l i t  has a b-labeling. 

PROOF. The theorem follows from Lemma 4.3.1 and 4.3.2 above. I 

REMARK 4. Our proof that  consistency implies the existence of a b-labeling is different from [1], 
and in fact, we would like to take this opportunity to point out that their proof is incorrect. 
Specifically, the K constructed at the bottom of page 887 need not be a b-labeling, as the readers 
can verify for themselves. 

4.4.  Algebraic Charac t e r i za t i on  o f  Cons i s ten t  Assessments  

Having charac~rized the consistent basis, we now turn to the problem of giving an algebraic 
characterization of the set of consistent assessments for a given consistent basis. Henceforth, we 
assume that  b is consistent, and we fix a b-labeling K.  

Our method is to introduce a set of auxiliary variables that  is homeomorphic to the set of 
consistent assessments with basis b by an algebraic homeomorphism. Let 

~ . b . B = { ~ E ( ~ + ) A , ~ ( a ) = l i f a f ~ B ,  and Vh : ~.m(h)n..~(b) ~ ~(a) = 1 ) .  

Recall that bA C B, so ~ , n  is nonempty. 
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DEFINITION 4 .4 .1 .  ~TRATEGY AND BELIEF. 

,,'(¢) by 
= ~' O, 

o'(~) (ll) 
t ~(a), 

We define an associated belief #(~) by 

0, m ~ ( O  

(~)(~) = P(~  (~)) E 
"a"~H (n') Flbx 

~ i v e n  ~ ~ ---b,s, we define a /~ehavior s~ra~egy 

if a ~t b , ,  

if a • hA. 

i r a t e  bx, 

[p(w(~r')) . m  =' (~)] ,  if ~r E bx. 

LEMMA 4.4.1. The function ~ ) ( # ( 0 , a ( ~ ) )  /s a homeomorphism between ~b and the set of 
consistent assessments (tz, a) with b(#, a)  = b. 

PROOF. Fix ~ E ~.b,S. For n ---- 1, 2 , . . . ,  we define cr~ • BS ° by 

( 1 ' ~  K(") ' 
a ,  (a) = c (n, MOVSET (a)) .  ~ (a ) .  \ n ]  

where c(~, h) = [E~e~(h~ e (a ) .  0/~)~(-1] -~. 
Clearly, as n ~ co, c(n, h) * 1 for all h. Therefore, an * a ( 0 .  Supposing ~ be the belief 

derived from an, straightforward computations show tha t  #~ > ]~(~). Consequently, the assess- 
ment (/~(~), a(~)) is consistent, and of course our construction guarantees tha t  b ( # ( 0  , a(~)) -- b. 

Conversely~ suppose tha t  (~, a)  is consistent with b(#, a)  ---- b. Let  (an [ n -- 1, 2, 3 , . . .  } be a 
sequence in BS ° with (# , ,  a,~) - -~  (~, a) where, for each n, #n is the belief derived from an. We 
claim tha t  

(mee footnote 10) 
(/~,a) = (/~ ( ~ ) , a  (~)) for ~ = exp ( lira Pro ja~  (ln an) )  

To begin with we must show tha t  the limit exists, and this is equivalent to the convergence of 
the sequence {L(lnan) [ n = 1, 2 , 3 , . . .  }. However, for a C bA we have lim,,--.o~ lnan(a)  ---- her(a) ,  
and for (It, ~d) • EQ(b), we have 

lira l "  (lno',~) - / : '  (Incr,~) = lira In r# -  (~) I  - I n  ] 
" - ~  - - ~  L~ (,,")/ Lp(~ (,,-))J 

L~ (,~')] I.,o (~ (~'))J " 

We must now verify tha t  (#(~), a(~)) -- (#, a). For a e bA we have 

a (~) (a) = ~ (a) = exp ( lim In an (a)) = lim an (a) = a Ca). 

For ( r ,  ld) E Eq(b) ,  we have 

In [/~(~) (m') ] - I n  I P ( W ~ l  
t~ ~ ~)J tp(~, (~))J 

= l '~ (I. 0 - l-' (in 0 

= limoo l ~ (In a.)  - l ~' (In a,~) 
["oI')l ] 
t~. ( " ' )J  LP(~ (~')) 

=In [J'( 'O]-In [ e ~ ]  
L~(~')J [ p ( ~ ( ~ ) ) J  " 

1o For x E ~ A  exp(x) is the ve~or with components exp(m(a)). 
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For any finite set X and any A • A°(X), the ratios A(~-)/A(~r') completely determine A. 
Consequently, we have shown that ~(() = ~. We have proved that the image of (p(-), ~(-)) is 
precisely the set of consistent assessments with basis b. 

We will now show that  (p(.), ~(.)) is one-to-one. Suppose (~(~), ~(~))  = (/~(~2), ~(~2)). Sub- 
sequently, ~(~)  ---- ~ ( ~ )  implies that f t(a) = f~(a) for all a • re(b). Hence, Lm(b)(ln~l) = 
Lm(b)(ln~2). For (~r,~) ~ EQ(b), the equation/~(fx) = /~(~)  is eadly seen to imply that: 

~" ( ~ x )  - r ~' ( ~ ¢ x )  ffi t" (tn~2) - r" (tn,~2). 

Consequently, LEQ(b)(In~) = LF.Q(b)(In~2). Thus, L(In~l) ffi L(In~2), but the condition ~i(6~) ---- 
~(a) = i (for a ~ B) implies that In~l,ln~2 e R s. Therefore, Lemma 4.2.1 yields ~1 = ~2. 

The map (/t(.),cr(.)) is visibly continuous, so it now suffices to show that its inverse is also 
continuous. Let f~ = L~(b) : R A ~ R re(b) be the standard projection. For (~rjr') • EQ(b), let 
f2 : (R+) bx~*(st+)z~(b) be given by 

/2 (~) (~, ~') = ~(~)/P(~ (~)) (~')/p (~ (~'))" 

Let / (p ,~ )  -- (ft(~),f2(/~)) E ~m(b) × ~ZQ(b). The point of this construction is that  if 
(p(~), ~(~)) -- (p, ~), for some ~ E F-~,B, then we must have L(ln ~) -- In f(/~, ~). Since ln~ • K ~ ,  
it follows that 

= exp [(LIm,,)- '  (In f (~, ~))]. 
I I 

L J 

The continuity of this formula establishes the continuity of (/~(.), #(-))-', and the lemma fol- 
lows. | 

4.5. Repercussions of Algebraic Consistency: 
Our  Algor | tbm~ for Sequent ia l  Equi l ibr ia  

We now summarize the results of this section in a way that  displays the set of co-__~!_Rtent 
assessments for a given basis as the projection of an algebraic variety. 

PROPOSITION 4.5.1. We Imve estab/ished the followbJg. 

* A basis b is consistent i f  and only f l i t  has a b-labeling. 
• Ira basis b is consistent and B is as in Lemma 4.2.1, then the set of consistent assessments 

v~¢h ~ i s  b is the set of(p, ~) E ~ x  X R A for wtdch there is ~ E ~A sat~nrying the f o l l o w ~  
condOr.ions. 

1. For (~ ¢ bx)- ~C~) = 0. 
2. For (a ~ hA): o'(a) ---- O. 
3. For (a f~ B): ~(a) = 1. 
4. For (a • bA): ~(a) ~- ~(a). 
5. For (h • H): 

6. For ~ E bx: 

~ (a) = 1. 

,,.,(~-). [ ~ PC'."C~"))'''r'(~) = P('"(~))" ~('~). 
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The procedure for computing the set of sequential equilibria has two phases, the first of which 
is the enumeration of the consistent bases. This caa be accomplished using linear programming, 
and should be a relatively small part of the total computational burden. The second phase 
analyzes the set of sequential equilibria for each consistent basis. One possibility is to ask, for 
each consistent basi% whether the basis has any sequential equilibria. Since the set of consistent 
assessments is a semia/gebraic set, by virtue of Proposition 4.5.1, and the equilibrium conditions 
are semialgebraic, such queries are instances of the existential question for the theory of real 
closed fields. Ben-Or, Kozen, and Reif [49], Canny [9], and Renegar [10] present algorithms 
for this problem. The most efficient, in terms of asymptotic requirements~ is Renegar's, which 
requires polynomial space, and whose temporal requirements grow exponentially with the number 
of variables, but are polynomial in the size of the system for a fixed number of variables. More 
detailed information (dimension, number of components, etc.) can be obtained by applying the 
cellular decomposition algorithm of Kozen and Yap Ill] to those consistent bases with nonempty 
sets of sequential equilibria. The latter algorithm also requires exponential (parallel) time. 

The exponential time requirements of the algorithms described above are discouraging, since 
they suggest that the range of practical application of our procedures will be rather small, and 
will grow slowly with advances in computing technology. Whi]e we do not disagree completely 
with this assessment, we think it is mitigated by at least two factors. The first is simply the 
observation that  algorithmic computation can hardly fail to be an improvement over calculation 
by hand, so that  implementations of our procedures would have some usefulness. Second, there 
is the possibility of speed-up. To a certain extent this could be a matter of improving the 
general algorithms for dealing with systems of polynomials. Perhaps more interesting and fruitful, 
though, would be those improvements that take advantage of the specific nature of the problem. 
To a certain extent at least, the qualities of mind described vaguely by the phrase "strategic 
insight" are a matter of deft application of ideas that allow one to eliminate certain possibilities 
without extensive computation; the most elementary examples are the implications of dominance. 
Implementations of the algorithms given here would provide a f~amework in which such ideas 
could be precisely specified, tested, and refined. 

In conjunction with our observation that  the sequential rationality condition can be described 
in this fashion, this shows that the set of sequential equilibria decomposes into a finite system 
of semialgebralc sets (i.e., a set of polynomials with rational coefficients and real variables). 
Subsequently, we can apply the decision algorithm for deciding the existential theory of real closed 
fields [9,10]. These algorithms run in space polynomial in its input, i.e., size of semialgebraie sets. 
Subsequently, we can apply the methods of Kozen and Yap [11] to compute the algebraic cell 
decomposition of the semialgebraic sets. Finally, using the results of Ben-Or, Feig, Kozen, and 
Tiwari [50], we can compute the roots in exponential space. This will give us (in the reverse 
transformed space), the connected components of consistent assessments, which give connected 
components of mixed strategies satisfying sequential equilibria. This algorithm runs in space 
exponential in its input, i.e., size of semialgebraic sets. Since the size of semialgebraic sets 
is polynomial in the size of the information sets, we get the following theorem specifying the 
complexity of our algorithm: 

THEOREM 4.5.1. In space polynomAal in the size of the information sets we can compute an 
example m/xed strategy satisfying the sequential equilibria condition. Furthermore, in space 
exponential in a polynomial of size of the information sets, and we can compute the comlected 
components of mixed strategies satisfying sequential equilibria. 

5. C O N C L U S I O N  

In this paper, we reduced producing an example mixed strategy satisfying the sequential equi- 
librium to the existential theory of real closed fields. Furthermore, we can see that the solution 
of the resulting semialgebraic sets are polynomial in the size of the information set. 
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RESULT 1. In  space polynomial  in the  size of the  informat ion sets, we can compute  an example  

mixed s t r a t egy  sat isfying the sequential  equi l ibr ia  condit ion.  In space exponent ia l  in a polynomial  

of the  size of the  informat ion sets, we can compute  the  connected components  of mixed s t ra tegies  

sat isfying sequential  equil ibria.  

We can unravel informat ion by  using techniques of Azhar ,  Peterson,  and  Reif  [28:29]. This  

yields the  following result .  

RESULT 2. Given a recursively represented game, wi th  a pos i t ion  space bound  S(n)  and a log 

space computab le  next  move relat ion,  we can de te rmine  the existence of sequential  equi l ibr ium 

and compute  an example  mixed s t ra tegy  sat isfying the sequential  equi l ibr ia  condit ion,  all  in space 
bound  O(S(n)2) ,  Fur thermore ,  in space O(S(n)3) ,  we can compute  the  connected components  of 

mixed s t ra tegies  sat isfying sequential  equilibria.  

The  sequential  equi l ibr ium concept is general ly regarded as a powerful descr ipt ion of  simul- 

taneous  ra t ional  behavior  in an environment  in which ra t iona l i ty  is common knowledge. One 

possible appl ica t ion  of the  decision a lgor i thm proposed  here is as an exper imenta l  tool  in the  

development  and analysis  of appl icat ions  of game theory  in compute r  science and economics. 

Another  appl ica t ion  of our a lgor i thm is for explorat ion of new refinements to equi l ibr ia  concepts.  
There  is an  extensive l i te ra ture  concerned wi th  the  possibi l i ty  of  even further  refining the  

sequential  equi l ibr ium concept ,  where cer ta in  equi l ibr ia  are disallowed to accommoda te  fur ther  

res t r ic t ions of  concern to  the  economists.  For example,  see [40~51,52]. 
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