A Randomized Parallel Algorithm for Planar
Graph Isomorphism

Hillel Gazit and John H. Reif*

Department of Computer Science, Duke University, Durham,
North Carolina 27708-0129

Received November 13, 1996; revised April 8, 1998

We present a parallel randomized algorithm running on a CRCW PRAM, to
determine whether two planar graphs are isomorphic, and if so to find the
isomorphism. We assume that we have a tree of separators for each planar graph
(which can be computed by known algorithms in Oflog? n) time with n'*e
processors, for any € > 0). If n is the number of vertices, our algorithm takes
O(log(n)) time with P = O(n'’ - y/log(n)) processors and with a probability of
failure of 1/n at most. The algorithm needs 2 - log(m) — log(n) + O(log(n)) ran-
dom bits. The number of random bits can be decreased to O(log(n)) by increasing
the number of processors to n*/2*¢, for any € > 0. Qur parallel algorithm has
significantly improved processor efficiency, compared to the previous logarithmic
time parallel algorithm of Miller and Reif (Siam J. Comput. 20 (1991), 1128-1147),
which requires n* randomized processors or n° deterministic processors.

Key Words: Planar graphs; Graph isomorphism; Parallel processing; BFS trees

1. INTRODUCTION

The Graph Isomorphism problem is as follows: given two graphs G,,G,,
determine if there is a renaming of vertices of G, that results in the graph
G,. Although it is not known if the general Graph Isomorphism problem
can be solved in polynomial time, there are efficient sequential and
parallel algorithms for some classes of graphs. For example, isomorphism
of trees can be solved sequentially in linear work [AHU] and can be solved
by a randomized parallel algorithm of Miller and Reif [MR 91], using tree
contraction in O(log(n)) time with an optimal number of processors (or
deterministically with a linear factor more processors), and similar bounds

* E-mail: reif@cs.duke.edu.
290

Preprint of paper appearing in Journal of Algorithms,
Vol. 28, No. 2, pp 290-314, August 1998,

A RANDOMIZED PARALLEL ALGORITHM 291

are known for isomorphism of graphs with constant size separators, for
example, outerplanar graphs [BIM, CDR].

Hopcraft and Tarjan gave an O(n - log(n)) algorithm for isomorphism of
planar graphs [HT 73b] that uses the fact that every 3-connected planar
graph has a unique planar embedding. First they find isomorphism be-
tween the 3-connected components. Then they represent each graph as a
tree, in which internal vertices correspond to separating vertices, and
leaves correspond to 3-connected components. Thus, after they solve the
3-connected planar isomorphism problem, they reduce the problem to tree
isomorphism, which has a simple linear time sequential solution [AHU].
This result was improved later by Hopcroft and Wong [HW] to a linear
time algorithm.

The goal of this paper is to present a parallel algorithm for planar graph
isomorphism. The parallel model that we use is the Concurrent-Read
Concurrent-Write (CRCW) Parallel Random Access Machines (PRAM).
It is a synchronized parallel computation model in which all of the
processors can read and write into a common memory. In the case of
concurrent writes into the same memory location, it is assumed that one of
the processors succeeds arbitrarily. It is further assumed that in one time
step every processor can read, write, and do basic arithmetic operations
with log(n)-bit numbers, and that the processors have access to a random
number generator.

There was a previous logarithmic time parallel algorithm of Miller and
Reif [MR 91] for planar graph isomorphism, requiring n* randomized
processors or n° deterministic processors. This paper presents a random-
ized parallel algorithm that uses an overall approach similar to that of
Hopcroft and Tarjan [HT 73b], but with some interesting new techniques,
including randomization. We assume that we have a tree of separators for
each input planar graph, which can be computed using Gazit and Miller’s
algorithm [GM] in O(log*(n)) time with n'" € processors, for any € > 0.
We check for isomorphism in the 3-connected components using a ran-
domized method, then map each component to a tree and compare the
trees using a tree contraction method. We determine whether the input
planar graphs are isomorphic in O(log(n)) time by using O(n'3 - /log(n))
processors. The probability of failure of our algorithm is less than 1/n.

1.1. Organization of the Paper

Section 2 reviews useful graph definitions and known parallel graph
algorithms. Section 3 gives a summary of our planar graph isomorphism
algorithm. Section 4 presents some new parallel graph algorithms that will
also be used to test the isomorphism of 3-connected components. Subsec-
tion 4.1 describes how to construct lexicographically ordered BFS trees

292 GAZIT AND REIF

from a BFS numbering. Subsection 4.2 gives a parallel algorithm for
computing these BFS trees from multiple sources.

Section 5 describes in detail our planar graph isomorphism algorithm.
Section 6 explains how to reduce the number of random bits required
without increasing the probability of failure. Section 7 concludes the paper
with some open problems.

2. USEFUL KNOWN PARALLEL GRAPH ALGORITHMS

2.1. Parallel Tree Algorithms

We will later introduce, as needed, various known PRAM algorithms to
solve certain tree and graph problems. For example, Euler tree-tour and
tree contraction are methods for solving problems on trees. Tarjan and
Vishkin’s deterministic algorithm for Euler tree-tour [TV] takes O(log n)
time, using an optimal number of processors (see [J]). There are both
randomized [MR 89] and deterministic methods [GMT] for tree contrac-
tion, both costing O(log(n)) time with an optimal number of processors
(see also the texts of JaJa [J] and Reif [R 93]).

2.2. Parallel Graph Connectivity

An undirected graph G = (V, E) consists of a set of vertices V of size n
and a set of edges E of size m. Each edge is an unordered pair (v,w) of
disjoint vertices v and w.

A directed graph is defined similarly to a graph, but every edge is an
ordered pair. The underlying graph of a directed graph is the graph
resulting from the directed graph if the direction of the edges is ignored. A
path joining v, and v, in G is a sequence of vertices v,,0,,...,U; such
that (v,,v,,) € E for 1 <i <k.

A graph G = (V, E) is connected if there is a path from every vertex in
V to every other vertex in V. We will use known parallel algorithms for the
connected components [CV, G 91], which require O(log(n)) time and
(n + m)/log(n) processors for randomized algorithms and (m +
n)/log(n) - a(m,n) for the deterministic algorithm, where a(m,n) is the
inverse Ackerman function. (By using a randomized connectivity algorithm
for planar graphs, the processor bounds can be improved to optimal, but
our isomorphism algorithm will not require this improved efficiency.)

A graph is 2-connected if and only if there is no vertex v such that we
can disconnect the graph by removing v. A graph is 3-connected if and only
if there is no pair of vertices u,v such that we can disconnect the graph by
removing u and v [HT 73a]. There are several efficient parallel algorithms
for finding 2-connected components [TV] and 3-connected components

A RANDOMIZED PARALLEL ALGORITHM 293

[FRT, MR87]. Their parallel complexity is the same as that of the connec-
tivity algorithms. It will suffice for our isomorphism algorithm that all of
these problems take at most O(log(n)) time, using a sublinear number of
processors.

For a general planar graph we use Hopcroft and Tarjan’s algorithm to
build a tree, which we call the 3-connected components tree, such that the
internal nodes represent connected components, 2-connected components,
separating vertices, and separating pairs (between 3-connected compo-
nents); and the leaves are the 3-connected components. For brevity, we
omit here the well-known explicit description, which can be found in
Hopcroft and Tarjan’s papers [HT 73a, HT 73b]. We can run this algorithm
in parallel because we can find the 2-connected components [TV] and the
3-connected components [FRT] in O(log(n)) time, using the same proces-
sor complexity as the parallel connectivity algorithms [CV, G 91] that use a
sublinear number of processors. Summarizing these known results, we
have the following:

LEMmMA 2.1. Given a graph of n vertices and m edges, there is an algorithm
for computing the 3-connected components tree in O(log(n)) time and (n +
m)/log(n) processors by a randomized algorithm and (m + n)/log(n) -
a(m, n) processors by a deterministic algorithm.

2.3. Parallel Planar Embedding

A graph is planar if it has a planar embedding, with each vertex mapped
to a distinct point on the plane and each edge mapped to a 1-path on the
plane between these points, with no pair of crossing 1-paths.

The planar embedding of a graph is specified by the cyclic order of
edges around every vertex [M]. By following this cyclic order from one
edge to the next, we find the faces of the graph. We can flip an embedding
by reversing the cyclic order of edges at every vertex; the number of faces
remains the same under flipping. A 3-connected planar graph has only two
planar embeddings where one is a flip of the other. [E].

Two graphs G, = (V},E,) and G, = (V,, E,) are isomorphic if there
exists a one-to-one mapping f of ¥, onto V, such that (v,u) € E, if and
only if (f(v),f(u)) € E,. Our solution of the isomorphism problem in
3-connected graphs depends on efficient planar embedding. This can be
computed in O(log(n)) time in our model using an almost optimal number
of processors [RR 89, RR 94].

2.4. Computing Separators in Planar Graphs

Given a graph G, a subset of vertices B is a separator if the remaining
vertices can be partitioned into two sets 4 and C such that there is no

294 GAZIT AND REIF

edge from A to C, and max(|A4|,|C]) < 3 -n. The sets A4,B,C form a
partition of V.

We can take every subgraph (A and C) and separate it recursively. On
every recursion, we find a separator where the size of each resulting
separated subgraph is at most two-thirds of the size of the previous
subgraph. We call the first separator a level 1 separator; we call the
separators of 4 and C level 2 separators, and so on. We can continue to
find separators until no subgraph is larger than some constant size. This
generates a separator tree (or separator decomposition) whose vertices are
these separators. The root of the tree is the separator B, and its two
children are the separator of A4 and the separator of C. Each of the
separators of the separated subgraphs is a child of its separator. We say
that every separator S in level i > 1 is a child of the separator in level
i — 1, which separates S from all of the other separators of level i.

Lipton and Tarjan [LT] showed that for every planar graph we can find a
separator B of size V8 - n . They gave a linear time sequential algorithm for
finding the separator B. Gazit and Miller [GM] presented an algorithm for
finding an O(/n) separator in a planar graph in O(log*(n)) time, using
n'*€ processors for any constant € > 0.

LEMMA 2.2. (Gazit and Miller [GM]. Given a planar graph with n

vertices, there is an algorithm for computing an O(/n) separator tree in
O(log(n)) time with n'* € processors for any constant € > 0.

(Goodrich [G 95] gave an algorithm for finding an O(n®"'/?) separator
tree for a planar graph in O(log n) time using n/log n processors, assum-
ing a precomputed BFS tree, for any € > 0. However, this does not seem to
be of use here, since we only know how to efficiently compute a BFS tree
for a planar graph in parallel by use of a separator tree via Lemma 2.3.)

2.5. BFS of a Planar Graph via a Planar Separator Tree

The minimum path problem is to compute the minimum path distance
between specified pairs of vertices. BFS is a graph searching method that
begins at a given source vertex s of the input graph G and produces a BFS
spanning tree such that for each vertex v, v is a path distance d in the
BFS tree from the source s iff d is the minimum path distance in the
graph G to the vertex v from the source s. A BFS vertex numbering
provides this minimum path distance to each vertex from the source.

Pan and Reif presented BFS algorithms for planar graphs [PR 89]. Their
idea was to solve the minimum path problem independently in each
separated subgraph, and then to union the solutions.

The first version of their algorithm required O(log*(n)) time using n'~
processors. In a later version [PR 91] they used a method called parallel

A RANDOMIZED PARALLEL ALGORITHM 295

stream contraction to speed up the calculation to O(log(n)) time, using the
same number of processors, by beginning to calculate the minimum
distances between separators in level i before the calculations from level
i + 1 are complete.

Assume that the last level of separators L < log3/2(n). In every itera-
tion i they find minimum paths that use 2'7/~% or fewer edges between
the vertices of all the separators in every level j. This yields an O(log(n))
time complexity with the same processor bound.

LEmMA 2.3. (Pan and Reif [PR 91)). Given a planar graph with n
vertices, there is an algorithm for computing a BES tree in O(log(n)) time with
n'3 processors.

2.6. Testing Isomorphism of Planar Graphs

Hopcroft and Tarjan [HT 73b] presented a sequential planar isomor-
phism algorithm that runs in O(#n - log(n)) time. Hopcroft and Wang [HW]
improved their result with a linear time algorithm.

Miller and Reif [MR 91] developed the first NC algorithm for planar
isomorphism. Their algorithm for a 3-connected planar graph is based on
performing BFS from every edge e and for each resulting BFS tree T,
they form a list L, of the nodes of the tree by a fixed tree traversal
method (say by preorder). Then they determine the lexicographically
smallest list L, (that is, the list that appears first if the lists are sorted)
among all edges e of the graph. They reduce the planar isomorphism
problem to tree isomorphism for which they also gave both a NC algorithm
requiring O(log n) time and O(n?) deterministic processors and a more
efficient RNC algorithm requiring O(log n) time and O(n) randomized
processors. Their original planar isomorphism algorithm required O(log n)
time and O(n°) deterministic processors or O(n*) randomized processors.
It is easy to decrease the processor bounds by a linear factor using Pan and
Reif’s BFS algorithm for planar graphs [PR 89].

3. OUTLINE OF OUR PLANAR GRAPH
ISOMORPHISM ALGORITHM

We will represent each of the input graphs as a 3-connected components
tree (see Hopcroft and Tarjan [HT 73b]), in which the internal vertices
correspond to separating vertices, and the leaves correspond to the 3-con-
nected components. The Appendix in Section 8 gives a detailed definition
of the 3-connected components tree and discusses its construction, using
the algorithm of Miller and Reif [MR 91], in O(log(n)) time using a
sublinear number of processors.

296 GAZIT AND REIF

Our algorithm for isomorphism in planar graphs uses the following very
well-known series of steps:

Input: planar graphs G,,G, with precomputed oWn) separator trees.
1. Find the 3-connected component of the input graphs.

2. Test isomorphism in the 3-connected components.

3. Build the 3-connected components tree for G, and G,.

4. Check the 3-connected components trees for isomorphism.

It will suffice for our isomorphism algorithm that all of these problems
take at most O(log(n)) time using a sublinear number of processors.

Planar isomorphism algorithms based on these series of steps, and the
proofs of the correctness of the steps, were previously given by many
authors, including Hopcroft and Tarjan [HT 73b], Hopcroft and Wong
[HW], and Miller and Reif [MR 91]. The Appendix in Section 9 gives
details of the reduction from the problem of graph isomorphism of planar
graphs to graph isomorphism of planar 3-connected components, which for
planar graphs takes O(log(n)) time using a sublinear number of proces-
SOTS.

We will provide a fast parallel test for isomorphism of 3-connected
components. In our algorithm we use separators to reduce the running
time of the BFS algorithm. We also use random sampling to reduce the
number of BFS trees that we have to compute.

Before we can further detail our Planar Graph Isomorphism algorithm
(which we do in Section 5), we must refine the second step, in which we
test isomorphism in the 3-connected components. As we shall see, this
involves building a separator tree, taking a random sample edge, building
BFS trees starting from vertices indicated by the sampling, using the BFS
tree to determine labelings, and comparing labelings. We will select a
random sample of O(\/n logn) edges in each graph, and, starting from
vertices adjacent to these edges, which we call sources, we build BFS trees
in lexicographic order. If the graphs are isomorphic, and if our sample
includes some pair of corresponding edges, then we get isomorphic or-
dered BFS trees. We label the vertices in every BFS tree using the
Tree-Tour technique [TV] and then represent each graph as a sorted list of
its edges. The set of labels associated with a BFS tree will be called a
labeling of the tree. To test isomorphism of 3-connected components, we
need to resolve here three key remaining problems; these will be solved by
the three further parallel algorithms given in the next section:

e Unique labeling of a BFS tree. This will be done using an algorithm
for building a lexicographic first BFS tree described in Subsection 4.1.

A RANDOMIZED PARALLEL ALGORITHM 297

e Compare these labelings. This is easily done by determining whether
two lists are the same, using a constant time and an optimal number of
processors as described in Subsection 4.2.

e Building multiple BFS trees with specified source vertices (as indi-
cated by the random sampling). This will be done by a multisource BFS
described in Subsection 4.3.

4. FURTHER REQUIRED PARALLEL ALGORITHMS

4.1. Building a Lexicographic First BFS Tree

Assume that we have the BFS numbering of an embedded planar graph
computed by proceeding in clockwise order of edges, beginning with some
arbitrarily designated source vertex s and with a specified first edge (s,v)
to be explored. Consider the following simple processing.

Replace every vertex u of degree 3 or more by a small cycle as follows.
Replace every edge (u,w) with (u,,,w), where u, is a new vertex on the
cycle. If w has degree three or more, we replace (u,w) with (u,,,w,). Thus
u,, has three edges: an outside edge and two cycle edges. The BFS label of

u,, is the same as that of u. We now create a BFS tree as follows:

1. Every original edge that connects level i and level i + 1 vertices is
in the tree.

2. for every new vertex (except s,):
if its outside edge comes from a previous level vertex
then choose that edge for the tree.

else choose the edge to the counterclockwise neighbor in the
cycle for the tree.

PROPOSITION 4.1. The above algorithm creates a tree.

Proof. Every new vertex except s, has exactly one edge that enters it,
either from a previous level vertex or from the left neighbor. Thus no
directed cycles are created, and therefore by definition [E] this graph is a
tree. ||

Direct each edge of this BFS tree as suggested by the wording of the
algorithm: either “from” the vertex of the edge of the previous level or
“to” the counterclockwise neighboring vertex. The order is thus deter-
mined by the planar embedding of the original graph, specified by the
cyclic order of edges around every vertex [M]. We call the resulting

298 GAZIT AND REIF

oriented tree the lexicographic first BFS tree. Thus we have the following:

PROPOSITION 4.2. For every vertex, the list of its children in the tree is
ordered uniquely.

Proposition 4.2 immediately implies: if G = (VV,E) and G’ = (V',E’)
are isomorphic and have the same embedding and isomorphic edges e and
', respectively, then applying breadth first search from e in G and €' and
G' yields isomorphic lexicographic first BFS trees. It is important to note
that vertices that were replaced by cycles may be assigned more than one
label, and so we take the lexically minimum label in this case, which
ensures that the resulting label is unique. Applying the Euler tree-tour
algorithm [TV] of Tarjan and Vishkin to these lexicographic first BFS trees
yields identical preorder labels, and this can be done (see [J]) in O(log n)
time using an optimal number of processors. Thus we have the following:

LEMMA 4.1. If G = (V,E) and G' = (V', E') are isomorphic and have
the same embedding, then by applying breadth first search from isomorphic
edges e in G and €' in G', respectively, all of the isomorphic vertices of G,G’
are labeled with the same label.

4.2. Checking the Labelings

Suppose G, and G, are isomorphic planar graphs with several possible
labelings. We must find the labelings of G, and G, that map correspond-
ing vertices to the same integers.

An obvious method is simply to compare every labeling of the first graph
with every labeling of the second graph. Unfortunately, the complexity of
this algorithm is equal to the product of the number of labelings of the
first graph, the number of labelings of the second graph, and the number
of edges.

Our idea is to assign a number to each labeling of each graph. We make
up this number by encoding every edge as its adjacent vertices, sorting the
edge list, and considering the sorted list as a single number of 2 - m - [log(n)]
bits. Then we sort the labelings and compare consecutive labelings.

PROPOSITION 4.3. A comparison of two labelings can be done in constant
time Using n processors.

Proof. We divide every labeling into n blocks of 2 - [log(n)] bits. Proces-
sor i compares block i in the first labeling with block i in the second
labeling. Since m < 3 - n, every processor has to compare at most three
blocks; this can be done in constant time. We can find the index of the first
block that differs in constant time by using a parallel min algorithm. [

A RANDOMIZED PARALLEL ALGORITHM 299

The labelings that are the same correspond to automorphic mappings
between these elements. Therefore, we sort the labelings and divide them
into sets of labelings such that all of the labelings in each set are the same.
The number of labelings is clearly polynomial in 7, so O(log(the number
of labelings)) < O(log(n)). By Lemma 4.3 and Cole’s parallel merge sort
algorithm [C], we have the following:

LEMMA 4.2. There is an algorithm for sorting the combined list of labelings
of both graphs and to find which of the labelings are the same, which runs in
O(log(the number of labelings) < O(log(n)) time, using n processors per
labeling .

4.3. Multisource BFS

The fixed source distance problem is to find the shortest distance in the
input graph from a specified source vertex to every other vertex. We
compute the BFS trees from a set V' of k source vertices concurrently.
For this, we need to solve the fixed source distance problem for each of
these k source vertices. We use the BFS algorithm of Pan and Reif [PR
89] as a basis, which uses a separator tree ST.

We assume a level decomposition of the nodes of ST where the root has
level 1 and the leaves have level < L = logS/z(n). We divide the graph
using ST and then, in L stages, compute the distance to vertices of
separators at each level i of ST. The original implementation [PR 89] of
this idea costs O(log*(n)) time, using O(n'?) processors to solve the fixed
source distance problem. Pan and Reif [PR 91] reduced the parallel time
complexity of the fixed source distance problem by introducing the parallel
stream contraction technique, where in every iteration i we find minimum
paths that use 2°*/"L or fewer edges between the vertices of all the
separators in every level j. Since after i = Q(log(n)) iterations, 2"/~ * > n,
and we are done. This reduces the time needed to solve the fixed source
distance problem to O(log(n)) time with the same O(n'/") processor
bound.

We use a similar idea in this algorithm, except that we also complete a
BEFS from every source vertex in V',

LEMMA 43. Given a planar graph G of n vertices, and given an OG/n)
separator tree ST for G, there is an algorithm for computing the BFS trees
from a set V' of k arbitrarily selected sources in O(log(n)) time, using
O(k - n + n'®) processors.

Proof. The multisource BFS algorithm has four stages:

1. For each separator S of ST, compute the distance between every
pair of vertices in S.

300 GAZIT AND REIF

2. For every source in V', compute the distances from the source to
all vertices of the separators of ST that contain it.

3. For every source in V', compute the distance to all of the vertices
of separators that do not contain it.

We now observe that the above information can be computed in
O(log(n)) time with n'> processors.

Stage 1 is done in O(log(n)) time with n'? processors by the algorithm
of Pan and Reif [PR 91].

In Stage 2, for each source v in V', we determine the lowest level
operator S’ in ST that has a vertex adjacent (in the input graph) to vertex
v. Then we compute the distance from v to the vertices that are contained
in the separators within A(S’), where A(S') is the set of the separators in
ST that are the ancestors of §’. Using the algorithm of Pan and Reif [PR
91], we compute the distances (from each source v in V' to all of the other
vertices) level by level in constant time per level, for a total time bound of
O(log(n)). The processor bound is O(n'?) plus O(n) per source, for a total
processor bound of O(k -n + n'?).

Stage 3 requires the most detailed analysis. There will be O(log(n))
steps. At any step i we assume that we know (via Stage 2 and the previous
steps) the distance from each source vertex v in V' to all of the vertices in
all separators in A(S’) of level i. We now want to compute the distances
between vertex v and all of the vertices of all of the separators of level
i + 1, so the cost of determining these distances from v is upper bounded
by the number of vertices of all of the separators of level i + 1 in A(S").
Thus the complexity of this step is the product of the size of every
separator of level i in A(S’) with the size of the two level i + 1 separators,
which are its children in ST. We will prove that the number of operations
we need for every step is upper bounded by the number of operations
needed for the previous step. There is a constant ¢ such that cvz upper
bounds the size of a separator of a subgraph of z vertices. Assume that

e A level i separator in A(S’) splits a set of z vertices, and so it has
size at most C\/Z.

e Its two child separators S, and S, (of level i + 1 in ST') split sets of
x and z — x vertices, respectively, and so have sizes in at most cyx and

cVz — x, respectively.

e The two child separators of S, (of level i + 2 in ST') split sets of
x —y and y vertices, respectively, and so have sizes at most ¢cy/x —y and
c\/y , respectively.

A RANDOMIZED PARALLEL ALGORITHM 301

The number of operations we need in level i + 1 is at most (cVx) - (C\/}T

+ceyx—y)=c*- Vx - (\/)7 + y/x — y).The expression is maximized when
y = x/2,and equals ¢? - V2 -x. The number of operations required in level
i+ 1 is upper bounded by c¢2-V2 -x+¢c2-V2 - (z—x)=c?V2 -z
Likewise, the number of operations in level i is bounded by (¢vz) - (¢Vx
+cvz —x) =c?-Vz - (Wx + Yz — x), which is upper bounded by ¢?- 2 -
z. It is obvious that the number of operations in the top level is oGn -2
“yn/2)) = O(n); therefore we need O(n) processors per source vertex. |l

5. OUR PLANAR ISOMORPHISM ALGORITHMS

5.1. Isomorphism between 3-connected Planar Graphs

Recall that we flip a planar embedding by reversing the cyclic order of
edges at every vertex, and that the planar embedding of a 3-connected
planar graph is unique up to a flip. Our following algorithm checks the
isomorphism between two 3-connected planar graphs:

Input: 3-connected planar graphs G,,G,.

1. Find a planar embedding of each graph G,,G, (which is unique
up to a flip).

2. Find a tree of separators for each graph G,,G,.

3. Flip (ie., reverse the order of edges around the vertices) the
embedding of one graph.

4. For both graphs G,,G,, choose at random a sample set R of
[\/m -log(m) | edges. For every edge in the sample R, choose a direction
at random: the vertex into which any sample edge leads will be a source
vertex.

5. Perform BFS from all sources for both graphs G,,G, and the
flipped embedding, computing the lexicographic first BFS tree starting
from each edge in the set R of sample edges.

6. Find a labeling for every lexicographic first BFS tree.

7. Sort the labelings using Cole’s [C] algorithm.

8. If two labelings (from different graphs) are the same, then the
graphs G,,G, are isomorphic, and otherwise are not isomorphic.

Recall that the number of edges of a planar graph with no parallel edges
is at most |E| < 3 - n (see [E]. The following bound follows immediately by
inspection of the above algorithm, and from Lemma 4.3.

PROPOSITION 5.1. The planar graph isomorphism algorithm needs O(n'?

- ylog(n)) processors and O(log(n)) time.

302 GAZIT AND REIF

ProrosiTiION 52. If G,,G, are not isomorphic, then the 3-connected
planar graph algorithm is always correct.

Proof. 1In this case, we claim that their labelings are always distinct for
any choice of the sample R. Otherwise, the labeling provide an isomor-
phism, a contradiction. ||

However, if G,,G, are isomorphic, then their labelings may still be
distinct, so the algorithm gives an incorrect output, with a small probability
that we now bound.

LemmA 5.1, If G|,G, are isomorphic, then the 3-connected planar graph
is correct with probability > 1 + 1/n.

Proof. We now show that the probability that no two isomorphic edges
will be picked in both graphs is less than 1 /5. Assume that the number of
edges in the graph is m. The probability that an edge in the sample of the
first graph will be picked in a sample of size 1 in the second graph is at

least /m -log(m) /m. The probability that no isomorphic edge is picked
is at most 1 — ylog(m)/m . Thus the probability that for a random
sample of size [{/m - log(m) | no isomorphic edge is picked is at most (1
— Viog(m) /(m) Wries < (1 eyosm < 1 /n. |

By Lemmas 5.1 and 4.2 we have the following:

THEOREM 5.2. Given two 3-connected planar graphs, with precomputed
trees of separators, there is an algorithm for testing if they are isomorphic, with
probability < 1/n of failure, in OQog(n)) time with O(n'? - /log(n))
Processors.

5.1.1. Directed Planar Graphs

If we have a directed planar graph where the underlying graph is
3-connected, then we run the algorithm with a slight change. We compute
the BFS trees in the underlying graph, but when we sort the edges we look
at them as ordered pairs, Lemmas 5.1 and 4.2 hold for this case also.

5.2. General Planar Graph Isomorphism
Our algorithm is thus as follows:
Input planar graphs G,,G,.
1. Build a 3-connected components tree for each graph G,,G,.

2. For each 3-connected components tree, by use of a parallel sort,
separate the leaves into classes indexed by (n;,m;) according to the
number of vertices n; and edges m; they have.

A RANDOMIZED PARALLEL ALGORITHM 303

3. For every 3-connected component, for each of the two possible

embeddings, pick a random sample of min(m,[y/n - log(n) |) edges, regard-
less of the size of the 3-connected component.

4. Using a parallel sort algorithm [C], find all of the 3-connected
components with the same class (number of vertices, number of edges).

5. Check if 3-connected components with the same class are isomor-
phic, and give isomorphic leaves the same label.

6. Check for tree isomorphism on the labeled 3-connected compo-
nents tree.

The isomorphism of the labeled trees can be computed by a randomized
parallel algorithm of Miller and Reif [MR 91] using tree contraction,
costing O(log(n)) time with an optimal number of processors.

PrROPOSITION 5.3. After decomposing a graph into 3-connected compo-
nents, the number of edges in all of the components together is upper bounded
by 4-n.

Proof. The number of edges in a planar graph with no parallel edges is
upper bounded by 3 - n. The number of edges may increase since the edge
between each separating pair will be in more than one 3-connected
component. Still, the 3-connected components are in a tree, so the number
of these new edges is upper bounded by the number of edges in the tree,
which is at most n — 1. ||

THEOREM 5.3. Given separator trees for two planar graphs, there is an
algorithm for testing if they are isomorphic, with probability 1/n or less of

failure, which takes O(log(n)) time with O(n'5\/log(n)) processors.

Proof. By Lemma 4.3, it immediately follows that computing BFS from
k sources in every 3-connected component has at most the same time and
processor complexity as computing BFS from k sources in the original
path. The complexity bound follows readily. The proof of correctness of
our algorithm for the isomorphism of 3-connected components is given in
Theorem 5.2.

It remains for us to upper bound the probability of failure. Let us
assume that there are d distinct 3-connected components C,,C,,...,C,,
which have sizes s,,s,,...,s;.1f a component C; has size s; < \/n log(n),
then there can be no failure for that component, since we have picked all
of its vertices. So to upper bound the probability of failure, we can assume
without loss of generality that each component C; has size s; > \/n -log(n)
and that m > \/n -log(n) . In component C; of size s; > \/n -log(n) , the
probability that a given random edge that is picked is not an isomorphic

304 GAZIT AND REIF

edge is at most (1 — \/n -log(n) /s;). Hence for that component C;, the
probability of failure when using y/n -log(n) random edges is at most

(1 — /n-log(n) /s)Vrioem . < g=nloe/si Thus the total probability of
failure is upper bounded by

d N\ Vrlog(n)
(1 _ \/I’l IOg(ﬂ)) < de—n~log(n)/x,»-
S.

)»

i=1 i

This probability is maximized if there is just one connected component,
with size s, = n. Thus the probability of failure in components is at most
e—n~log(n)/n < e—log(n) < l/ﬂ I

6. REDUCING THE NUMBER OF RANDOM BITS

We would like to achieve the same probability of failure using a smaller
number of random bits. We use the following lemma by Luby [L]:

LEmma 6.1. Let E|,...,E, be mutually independent events such that
PrlE.] = p,. Then the probability that at least one of the events will happen is
at least 3 - min(1,X"_, p,).

In one graph we pick an arbitrary sample of y/m - log(m) edges, and we
compute BFS trees for both directions of each edge. For the other graph

we pick log(n) pairs of random numbers in the domain [1...m]. Using a
method similar to Luby’s, every pair of random numbers is used to pick
vm/log(m) mutually independent edges. For every edge we compute
BFS trees from both directions. The probability that one edge in the

sample is isomorphic to an edge in the arbitrary set is at least \/log(m)/m ,

and we have y/m/log(m) such edges. Luby’s lemma implies that the
probability that at least one of them is isomorphic is at least one-half. By
using log(n) independent pairs, we decrease the probability of failure to
1/2°¢"™ =1 /n or less. Finally, we need an additional O(log(n)) random

bits for the randomized tree isomorphism parallel algorithm of Miller and
Reif [MR 91].

6.1. The Number of Random Bits for General Planar Graphs

In a general planar graph we need random numbers for every 3-con-
nected component. We can reduce the number of random bits by comput-
ing a BFS tree for the whole graph and then using subtrees for every
3-connected component. However, this approach risks producing a collec-
tion of branches, rather than a tree, for the 3-connected components.

A RANDOMIZED PARALLEL ALGORITHM 305

The solution is to add an edge of length zero between every separating
pair of vertices. We will prove that the resulting graph is planar by using
arguments similar to those in Lemma 7.4 of [E].

PROPOSITION 6.1. If an edge is added between a separating pair of vertices
of a planar graph, then the resulting graph is planar.

Proof. We can contract any 3-connected component to a single edge
between the separating pair vertices, and the graph will still be planar
because contraction preserves planarity [LT]. Therefore, we can add such
an edge to each 3-connected component, and the graph will still be planar.
We can embed each 3-connected component so that the edge we add will
be on the external face, and then compose all of these planar embeddings
in the cyclic order of the contracted edges. |

The length-zero edge assures us that there will not be more than two
branches of the BFS tree in every 3-connected component. We call these
branches 7| and T,. Let T; and 7, be the flipped (as previously defined)
embeddings of 7| and T,, respectively. Note that since an isomorphism
cannot map a strict subset of the vertices of a branch to vertices of the
other branch, the numbering of all vertices of one of these branches must
precede the numbering of all vertices of the other branch. That is, we have
the following cases (note that the first two need not exclude the latter
two):

1. All of the vertices of T, are before all of the vertices in 7,.
2. All of the vertices of T, are before all of the vertices in T.
3. All of the vertices of T are before all of the vertices in 7.

4. All of the vertices of T, are before all of the vertices in T5.

For every 3-connected component, we will have to calculate at most four
numbers, corresponding to each of these above cases.
Summarizing the above discussion, we have shown the following:

THEOREM 6.2. Given trees of separators for two planar graphs, there is an
algorithm for testing the graphs for isomorphism, and if they are isomorphic,
the algorithm constructs an isomorphism mapping, with probability 1 /n or less
of failure, in O(log(n)) time with O(n'? - +/log(n)) processors, using 2 -
log(n) - log(m) + O(log(n)) random bits.

Note that we can reduce the number of random bits to O(log(n)) by
taking larger samples of n'/?" € edges, for a constant € > 0. Then we can
use the result of Chor and Goldreich [CG] for k-wise independent events.
(A k-wise independent event has a probability that is the product of the
individual probabilities of the k events). In that case we will need n®/2"¢
processors.

306 GAZIT AND REIF

THEOREM 6.3. Given trees of separators for two planar graphs, there is an
algorithm for testing the graphs for isomorphism, and if they are isomorphic,
the algorithm constructs an isomorphism mapping, with probability of 1/n or
less of failure, in O(log(n)) time with O(log(n)) random bits, using O(n'>* <)
processors, for any constant € > 0.

7. OPEN PROBLEMS

1. Develop a processor efficient deterministic isomorphism NC algo-
rithm.

2. Develop an isomorphism algorithm that does not need BFS as a
subroutine.

8. APPENDIX: THE TREE OF 3-CONNECTED COMPONENTS

Let S be a subset of the vertex set V' of graph G. Two edges e and ¢’
are S-equivalent if there exists a path from e to e’ avoiding S. The induced
graphs on the equivalence classes of the S-equivalent edges are called the
bridges of S. A bridge consisting of a single edge is trivial. A separating pair
is a pair of vertices that have 2 or more nontrivial bridges or three or more
bridges.

Let the 3-sets of graph G be the maximum subsets of vertices of size
> 2 that are pairwise 3-connected. Each bridge of a 3-set § contains at
most two vertices in S. If G is 2-connected, then the bridge contains
exactly two vertices of S. Thus there is a unique 3-connected graph
associated with each 3-set. A 3-set S is proper if it is of size > 4.

Hopcroft and Tarjan [HT 73b] define the unique tree of 3-connected
components of a graph and give a linear time algorithm for finding the
tree. Miller and Reif [MR 91] give a fast parallel algorithm for finding the
tree of 3-connected components of a graph.

Let G be a 2-connected graph. The nodes of the tree T of 3-connected
components are proper components, cycles, and m-bonds, as defined
below.

e A proper component C is a 3-connected graph with no multiple
edges whose vertices consist of a proper 3-set §. If two vertices of C share
one or more bridges in G, then they share an edge in C, as follows. Each
edge e = (u,v) in C is either (i) an original edge from G (if e is a trivial
bridge of S and e is the only bridge of G common to its vertices u,v), or
(ii) a new virtual edge: if a pair of vertices x,y share a nontrivial bridge or

A RANDOMIZED PARALLEL ALGORITHM 307

two or more trivial bridges, then a new virtual edge e = (u,v) is placed
between u and v in C, and a copy of the virtual edge is also placed in G.

e A cycle component C is a simple cycle whose vertex set is a
maximum subset of vertices §, where the bridges of S in G form a simple
cycle of size 3 or more (possibly with pairs in S containing multiple
bridges). A unique trivial bridge e of S becomes an edge of C; otherwise
we place a new virtual edge in C and place a copy of the virtual edge in G,
as in the definition of proper components.

e An m-bond component C is a multiset of m identical edges (u,v),
one for each bridge of (u,v) in G, and C has as its vertex set a pair of
vertices (u,v) that are both separating and 3-connected (2-bonds are
between two proper components or a proper component and a cycle
component). The m-bonds lie between the components (proper compo-
nents and cycles). For each bridge of {u, v} in G, we place the original edge
e = (u,v) of G in C if the bridge is trivial, and otherwise we place a new
virtual edge (u,v) in C and a copy of it in G.

JaJa and Simon [JS] compute the 3-connected components of a graph
and its 3-sets in O(log n) time and O(n°") processors, and Miller and
Ramachandran [MR 87] (see also Fussel, Ramachandran, and Thurimella
[FRT]) reduced this processor bound to sublinear for planar graphs; and
their parallel complexity is the same as that of the connectivity algorithms.
Thus the vertex sets of the proper components can be computed in
O(log n) time using a sublinear number of processors.

As described in Ramachandran and Reif [RR 89, RR 94], the bridges of
the proper components can be computed by reduction to the known fast
2-connectivity algorithm of Ramachandran [R 92] in O(log n) time, using a
sublinear number of processors given the 3-connected components (again,
the parallel complexity is the same as that of the connectivity algorithms).

Two components will be adjacent if they both contain a copy of the
same virtual edge. Since a separating pair (u,v) has at least two bridges,
u,v are 3-connected if either they have three or more bridges or one
bridge is 2-connected. Thus the m-bond components can be computed in
O(log n) time using a sublinear number of processors, given the 2-con-
nected and 3-connected components, proper components, and bridges.

Miller and Reif [MR 91] describe how to construct in O(log n) time the
unique tree of 3-connected components of a graph from the above three
types of components by applying parallel tree contraction. They used the
3-set algorithm of JaJa and Simon [JS], and their processor bounds were
bounded by the O(log n) processor bounds of that algorithm. If their
algorithm instead uses the 3-connectivity and 3-set algorithm of Miller and
Ramachandran [MR 87], then it can easily be seen that by use of their
same parallel tree contraction process, the tree of 3-connected compo-

308 GAZIT AND REIF

nents of a planar graphs is constructed in O(logn) time, using only a
sublinear number of processors (bounded by the processor bounds of the
algorithm of [MR 87]).

9. APPENDIX: CANONICAL FORMS OF TREES AND
PLANAR GRAPHS

9.1. The Canonical Forms Problem

Let the darts be associated with an undirected edge, and let (u,0) be the
two directed edges from u to v and from v to u. We define the canonical
forms problem to be as follows: given a 3-connected graph as input, with n
vertices and m edges, and possibly with labels on its darts, determine a
canonical (linear) ordering of the vertices that is a linear ordering of the
vertices that defines an incidence matrix unique up to isomorphism. The
canonical ordering of the n vertices can be given as a numbering of the
vertices from 1 to n. Given such a canonical vertex numbering, a canonical
form for the graph will be compactly given by a number obtained by (i)
encoding every edge as its adjacent vertices, (ii) sorting the edge list, and
(iii) considering the sorted list as a single number of 2 - m - [log(n)] bits.

9.2. Canonical Forms of Trees

A canonical node labeling of a tree is defined to be a labeling of each
node x by the canonical labeling of the subtree rooted at that node x.
Such a canonical node labeling of a tree can be used to induce a canonical
ordering of the vertices of the tree, by ordering the children of each node
by their canonical labeling. Miller and Reif [MR 91] give a parallel
algorithm for canonical labeling and canonical ordering of trees, which we
will very briefly sketch here, since similar techniques will be used for
canonical forms of planar graphs. To compute this canonical labeling for
each node v, and the resulting canonical ordering of their tree, the
algorithm of Miller and Reif [MR 91] uses parallel tree contraction. The
RAKE and COMPRESS operations of parallel tree contraction have two
purposes: (a) they determine canonical labels of nodes and (b) determine a
canonical ordering of nodes, in particular, the ordering of the children of
nodes. The center of a tree is either a node or edge where the distance to
all other nodes is minimized, and so induces a rooted tree of minimum
height. The parallel tree contraction executes the following operations:

(1) first compute the center of the tree, which is unique up to
isomorphism, and

(2) then recursively compute canonical orderings and canonical la-
belings for the subtrees induced by deleting the center.

A RANDOMIZED PARALLEL ALGORITHM 309

Each of the children u of the center are ordered (i) first by the time
when they computed their canonical label and then (ii) second by their
label given by the recursively computed canonical labeling of the subtree
containing u. Thus the nodes are canonical ordered by a postorder
traversal of the tree rooted at the center.

9.3. Reducing Canonical Forms of Planar Graphs to the 3-Connected Case

We now describe the O(log n) time reduction of Miller and Reif [MR
91] from finding canonical forms for general graphs to that of canonical
forms for 3-connected graphs. We shall observe that by use of processor
efficient 3-connectivity and 3-set algorithms, the reduction done by their
parallel tree contraction process takes only a sublinear number of proces-
sors for planar graphs.

We assume that the input graph is planar, and without loss of generality,
we assume that the input graph is 2-connected. The methods of Section 8
allow us to compute a unique decomposition of the input graph into a tree
of 3-connected components, where each 3-connected component is either
a proper 3-connected component, a simple cycle, or an m-bond. We have
already given algorithms for canonical forms of proper 3-connected com-
ponents; these canonical forms have O(nlogn) bits and consist of an
integer encoding the canonical listing of the sorted edges.

Here we will determine the canonical forms of 2-connected planar
graphs. We can easily extend (with no asymptotic increase in resource
bounds) our canonical form algorithm for proper 3-connected components
to the case where some of the edges may be labeled. The canonical forms
are given in this case by an integer encoding the canonical sorted listing of
the edges paired with the edge labels. Canonical forms for labeled cycles
and m-bonds, where some of the edges are labeled with integers, can also
easily be constructed in O(log n) time, using a sublinear number of
processors.

Miller and Reif [MR 91] extend the parallel algorithm described in
Subsection 9.2 for the canonical labeling and canonical ordering of a tree,
to compute the canonical labeling and canonical ordering of the 3-con-
nected component tree. The 3-connected component tree is unique up to
isomorphism. In this algorithm, two 3-connected components are related
by identifying a virtual oriented edge (a dart) in one with a virtual oriented
edge in the other.

['] In O(log n) time they root the 3-connected component tree by
either a 3-connected component or an identified virtual edge, which
induces a rooted tree of minimum height (the center of the tree) in the
tree of 3-connected components. (If the center is an edge, they simply

310 GAZIT AND REIF

introduce a 2-bond as a new component that will be the center of the tree.)
They use parallel tree contraction to find this root in O(log n) time with a
sublinear number of processors.

[2'] Then they again use parallel tree contract to recursively com-
pute canonical orderings and labelings from the canonical orderings and
labelings of subtrees. To do this they order the vertices into blocks
according to which component they belong to. The separating pair is in the
same block as the parent component. The blocks are ordered by postorder,
using an ordering of the children determined below.

Recall that each node of the 3-connected component tree is a 3-con-
nected component, and the children of a component are coupled to their
parent in the 3-connected component tree by an edge rather than a vertex.
The 3-connected component tree is unique up to isomorphism, and so the
center of the tree is unique. The 3-connected components will be ordered
by a postorder traversal of the 3-connected component tree rooted at the
center. Each node C of the 3-connected component tree induces a
subgraph G of the input graph consisting of the 3-connected components
of the subtree rooted at that node.

As in the canonical tree labeling algorithm of Subsection 9.2, the RAKE
and COMPRESS operations of the parallel tree contraction have the
purpose of determining (a) the ordering of the children of nodes (which
are 3-connected components) of the tree, where the children are again (i)
first ordered by the time when they computed their canonical label and
then (ii) ordered by their label, and (b) the ordering of the vertices within
each of the 3-connected components.

The RAKE and COMPRESS operations of the tree contraction deter-
mine at each node C of the 3-connected component tree a canonical
ordering of the vertices of the induced subgraph G,.

The RAKE operation also provides (c) a canonical labeling of the
induced subgraph G, given by a canonical listing of the sorted edges.

In the RAKE and COMPRESS operations given immediately below for
canonical labeling, one of several orderings for a component are arbitrar-
ily, but uniquely, picked when the labelings for the component are sorted
and the largest is picked. (Thus the tree contraction phase does not
determine where each vertex is mapped in the final ordering, but this is
not required for canonical labeling. The image of the vertex mapping is
completely computed by a subsequent tree expansion phase.)

Let e = (u,v) be the virtual edge of component C common to its
parent, and let d, and d, (the reverse of d,) be the two darts associated
with edge e. For the purpose of canonical labeling, the 3-connected
component trees in the tree contraction phase, RAKE and COMPRESS,

A RANDOMIZED PARALLEL ALGORITHM 311

are defined as follows:

e RAKE: We can assume that C is a 3-connected component that is a
leaf of the 3-connected component tree. Note that C may contain edges
that have been recursively labeled by the algorithm. We compute a
canonical labeling L(C) for C, as previously described. If C is a trivial
bridge (that is, it does not correspond to a virtual edge, and so is not a
proper 3-connected component), then C corresponds to a single edge in its
parent component, and RAKE simply labels that corresponding edge with
the canonical labeling L(C) for C, and removes C. Otherwise, in its parent
component C corresponds to a virtual edge, and we proceed as follows.
RAKE first chooses a new distinct label L. using L, RAKE determines
two possible labelings for the 3-connected component C and its virtual
edge e:

A canonical label L, of C when dart d, is labeled with L.
A canonical label L, of C when dart d, is labeled with L.

As described in Miller and Reif [MR 91], the labels L, L, correspond to
the two possible ways in which the virtual edge e may be flipped in
isomorphisms of the input graph. RAKE then labels the dart correspond-
ing to d; in the parent of C with L,, for i = 1,2 and removes C. The
ordering of all of the vertices of C except u,v are given as follows. If
L, > L,,then RAKE uses the ordering from L, and similarly if L, > L,.
As described in Miller and Reif [MR 91], the labels L, L, correspond to
the two possible ways C may be flipped in automorphisms of the input
graph. If L, = L,, it does not matter which one RAKE picks, since there
is an automorphism sending d, to d,. RAKE executes this operation for
each leaf in parallel, and thus has the effect of labeling the corresponding
darts in the 3-connected component associated with the parent of each
leaf and then removing all of the leaves.

e COMPRESS: Let C be a component with only one child in the
3-connected components tree, with corresponding virtual edge e'. Darts d,
and d, of virtual edge e are common to the parent of C, and there are
darts d} and d), of virtual edge that are common to the only child of C.
COMPRESS first chooses two new distinct labels L and L'. Using these
labels, COMPRESS determines four possible labelings:

A canonical label L, of C when dart d, is labeled with L and dart
d) is labeled with L.

A canonical label L, of C when dart d, is labeled with L and dart
d, is labeled with L'

A canonical label L; of C when dart d, is labeled with L and dart
d; is labeled with L.

312 GAZIT AND REIF

A canonical label L, of C when dart d, is labeled with L and dart
d; is labeled with L'

As described in Miller and Reif [MR 91], the labels L,,..., L, correspond
to the four possible ways in which the virtual edges e, e’ (i.e., each virtual
edge can be flipped two ways) may be flipped in automorphisms of the
input graph. COMPRESS uses the label L with maximum value to
determine the order of the vertices in C, excluding the end vertices x,y of
e.(As in RAKE, if two labels are equal, then C has a symmetry and either
order is the same up to isomorphism.) The effect of COMPRESS is thus to
merge the current node and its only child into a new node and to uniquely
restrict the order of the vertices of C — {x, y}. (Since this new node may
now have children, which may be processed by further RAKE or COM-
PRESS operations, we have determined the canonical order of the vertices
in components below C. If this new node has no children, then its
canonical label will be computed during the next RAKE operation by
using this vertex ordering.) Unlike RAKE, COMPRESS only orders ver-
tices within C, and so does not yet determine the canonical label of the
subgraph including the components below C.

For our resource bounds in this reduction, we assume an oracle for
canonical labeling of proper 3-connected components in logarithmic time
(that is, we do not charge to the processor bounds of the oracle). Since
these RAKE and COMPRESS operations with k& arguments each take
time logarithmic in k and require a number of processors sublinear in k, it
follows by the results of Miller and Reif [MR 91] that this parallel tree
contraction phase takes O(log n) time with a sublinear number of proces-
sors. Thus we have a randomized reduction from canonical labeling of
2-connected planar graphs to canonical labeling of proper 3-connected
components, and have shown that the reduction takes logarithmic time
with a sublinear number of processors.

Miller and Reif [MR 91] also give a tree contraction phase, also taking
O(log n) time, which determines a unique ordering on components, up to a
flip and the final ordering where each vertex is mapped. To compute the
image of each vertex in the new ordering, they determine the orientation
induced on the virtual edges by the new ordering, specifying whether a
given virtual edge is either (i) left alone or (ii) flipped over in the new
ordering. To implement COMPRESS (RAKE is similar) in the parallel
tree expansion phase, they show how to compute the coset of canonical
orderings for a consecutive pair of components from the coset of canonical
orderings for each component. Let C be a component with two virtual
edges e and ¢'. The possible symmetries consist of the Klien 4 group K,:
flipping over e and, independently, ¢’. The actual symmetries will be one of
five possible subgroups, and so the canonical orderings will be a coset of
one of these subgroups. There is a total of 13 possible such cosets, and

A RANDOMIZED PARALLEL ALGORITHM 313

they determine these cosets using the precomputed canonical forms of the
components. (This is rather straightforward, and for the sake of space we
omit the details.) Since these RAKE and COMPRESS operations with k
arguments also each take time logarithmic in k and require a number of
processors sublinear in k&, it again follows by the results of Miller and Reif
[MR 91] that this parallel tree expansion phase also takes O(log n) time
with a sublinear number of processors.

ACKNOWLEDGMENTS

We thank Sandeep Sen for directing us to the paper of Chor and Goldreich [CG].
Supported by National Science Foundation grant NSF-IRI-91-00681, Rome Labs Contracts
F30602-94-C-0037, ARPA /SISTO contracts N00014-91-J-1985, and N00014-92-C-0182 under
subcontract KI-92-01-0182. This paper appeared in the 2nd Annual ACM Symposium on
Parallel Algorithms and Architectures, Crete, Greece, July 1990, pp. 210-219.

REFERENCES

[AHU] A. Aho, J. E. Hopcroft, and J. Ullman, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, MA, 1974.

[BIM] T. Beyer, W. Jones, and S. Mitchell, Linear algorithms for isomorphism of
maximal outerplanar graphs, J. Assoc. Comput. Mach. 26 (1979), 603-610.

[CDR] B. S. Chlebus, K. Diks, and T. Radzik, Testing isomorphism of outerplanar graphs
in parallel, in “Mathematical Foundations of Computer Science 1988, Lecture
Notes in Computer Science,” Vol. 324, (Michael P. Chytil, Ladislav Janiga, and
Vclav Koubek, Eds.), pp. 220-230, Carlsbad, Czechoslovakia, August 29—Septem-
ber 2, 1988, Springer-Verlag, Berlin, 1988.

[CG] B. Chor and O. Goldreich, On the power of two-point based sampling, J.
Complexity 5 (1989), 96-106.

[C] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (1988), 770-785.

[CV] R. Cole and U. Vishkin, Approximate parallel scheduling. II. Applications to
logarithmic-time optimal parallel graph algorithms. Inform. and Comput. 92 (1991),
1-47.

[E] S. Even, “Graph Algorithms,” Comput. Sci. Press, New York, 1979.

[FRT] D. Fussel, V. Ramachandran, and R. Thurimella, Finding triconnected compo-
nents by local replacements, in “Proc. 16th ICALP, Lecture Notes in Computer
Science No.,” Vol. 372, pp. 379-393, Springer-Verlag, Berlin, 1989.

[G 91] H. Gazit, An optimal randomized parallel algorithm for finding connected
components in a graph, SIAM J. Comput. 20 (1991), 1046—-1067.

[GM] H. Gazit and G. L. Miller, A parallel algorithm for finding a separator in planar
graphs, in “28th Annual Symposium on Foundations of Computer Science,” pp.
238-248, IEEE Press, New York, 1987.

[GMT] H. Gazit, G. L. Miller, and S. H. Teng, Optimal tree contraction in the EREW
model, in “Concurrent Computations: Algorithms, Architecture, and Technology”
(Tewksbury, Dickinson, and Schwartz, Eds.), pp. 139-156, Plenum Press, New
York, 1988.

314

[GR]

[G]

[HT 73a]
[HT 73b]
(HW]
(M]

)

1Is]

[LT]

(L]

M]

[MR 87]

[MR 89]

[MR 91]
[MT]

[PR 89]
[PR 91]

[R 92]

[RR 89]

[RR 94]
[R 93a]
[Sc]

[TV]

GAZIT AND REIF

H. Gazit and J. H. Reif, A randomized parallel algorithm for planar graph
isomorphism, in ‘“2nd Annual ACM Symposium on Parallel Algorithms and
Architectures,” pp. 210-219, Assoc. Comput. Mach., New York, 1990.

M. T. Goodrich, Planar separators and parallel triangulation, J. Comput. System.
Sci. 51 (1995), 374-389.

J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components,
SIAM J. Comput. 2 (1973), 135-158.

J. E. Hopcroft and R. E. Tarjan, A v log(v) algorithm for isomorphism of
triconnected planar graphs, J. Comput. System Sci. 7 (1973), 323-331.

J. E. Hopcroft and J. K. Wong, Linear time algorithm for isomorphism of planar
graphs, in “6th ACM SIGACT,” Assoc. Comput. Mach., New York, 1974.

O. H. Ibarra and S. Moran, Probabilistic algorithms for deciding equivalence of
straight-line programs, J. Assoc. Comput. Mach. 30 (1983), 217-228.

J.JaJa, “An Introduction to Parallel Algorithms,” Addison-Wesley, Reading, MA,
1992.

J.JaJa and J. Simon, Parallel algorithms for planar graph isomorphism and related
problems, SIAM J. Comput. 11 (1982), 314-328.

R.J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J.
Appl. Math. 36 (1979), 177-189.

M. Luby, A simple parallel algorithm for the maximal independent set problem, in
“STOC 85,” pp. 1-10, Assoc. Comput. Mach., New York, 1985.

G. L. Miller, Finding small simple cycle separator for 2-connected planar graphs,
J. Comput. System Sci. 32 (1986), 265-279.

G. L. Miller and V. Ramachandran, A new graph triconnectivity algorithm and its
parallelization, in “19th Annual ACM Symposium on Theory of Computing,” pp.
335-344, Assoc. Comput. Mach., New York, 1985.

G. L. Miller and J. H. Reif, Parallel tree contraction and its applications, in “26th
IEEE Symposium on Foundations of Computer Science,” pp. 478—489, Portland,
OR, 1985. (Published as Parallel Tree Contraction, Part I, Fundamentals, in
“Advances in Computing Research,” Vol. 5, pp. 47-72, 1989.)

G.L.Miller and J. H. Reif, Parallel tree contraction, Part II. Further applications,
SIAM J. Comput. 20 (1991), 1128-1147.

G. L. Miller and S. Teng, Tree based parallel algorithm design, in ‘“2nd Interna-
tional Conference on Supercomputing,” pp. 392—403, Santa Clara, CA, May 1987.
V. Pan and J. H. Reif, Fast and efficient solution of path algebra problems, J.
Comput. System Sci. 38 (1989), 494-510.

V. Pan and J. H. Reif, The parallel computation of minimum cost paths in graphs
by stream contraction, Inform. Process. Lett. 40 (1991), 79-83.

V. Ramachandran, “Parallel Open Ear Decomposition with Applications to

Graph Biconnectivity and Triconnectivity,” Technical Report no. CS-TR-92-02,
University of Texas, Austin, TX, January 1, 1992.

V. Ramachandran and J. H. Reif, An optimal parallel algorithm for graph

planarity, in “30th Annual IEEE Symposium on Foundations of Computer Sci-
ence,” R.T.P.,NC, pp. 282-287, 1989.

V.Ramachandran and J. H. Reif, Planarity testing in parallel, J. Comput. System
Sci. 49 (1994), 517-561.

J. H. Reif, Ed., “Synthesis of Parallel Algorithms,” Morgan Kaufmann, San

Mateo, CA, 1993.

J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identi-
ties, J. Assoc. Comput. Mach. 27 (1980), 701-717.

R.E. Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm, SIAM
J. Comput. 14 (1985), 862-874.

