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Abstract

This paper is a survey of research on autonomous search strategics which originate in engineering and biology. Our
motivation is to identify methods of search in an essentially two-dimensional Euclidean space, which can be applied to the
area of demining. Such search strategies are based on spatio-temporal distributions. These distributions may be known in
advance, because of prior intelligence or through the use of remote sensing, or they may be the result of on-line gathering
of information as the search progresses, or of both. We first review the literature on search and coordination which emanates
from the field of robotics, we then summarize significant research in the field of animal search, and also discuss relevant

resuits in robotics which are inspired by animal behavior.
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1. Introduction

This paper is a survey of research on autonomous
search strategies which originate in engineering and
biology. Our motivation is to identify methods of
search in an essentially two-dimensional Euclidean
space, which can be used in the area of demining.
Such search strategies are based on spatio-temporal
distributions. These distributions may be known in
advance, because of prior intelligence or through the
use of remote sensing, or they may be the result of
on-line gathering of information as the search pro-
gresses, or both. Indeed, the spatial distribution of
mines, whether known beforehand, or learned in the
process of detection, or based on both kinds of infor-
mation, will have a major impact on how the mine
sensors and detectors must be deployed and moved
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in the minefield. Spatial distributions of the mines, or
more generally of the objects being searched for, can
be regular, totally random, patchy or graded. Search
strategies are affected by these distributions and need
to be optimized for various environments.

‘When the distribution is patchy, encountzring one
object should raise the estimate of finding other ob-
jects in the vicinity. An efficient strategy in patchy en-
vironments from behavioral biology is to increase the
rate of turning when the rate of object encounter in-
creases. For graded distributions, it can be shown that
the optimal strategy is to travel up the gradient to re-
duce turning rate while the gradient slope is positive.,
Thus in the sequel we will survey work on navigation
and search which may be relevant both from the field
of robotics, and from research on animal foraging and
behavior.

Preprint of paper appearing in Robotics and Autonomous Systems,
Vol. 22, pp. 23-33. (November 1997).



24 E. Gelenbe et al./Robotics and Autonomous Systems 22 (1997) 23-34

2. Autonomous navigation of robots and agents

According to an early discussion [30], autonomous
navigation in a multi-dimensional environment raises
two main questions: (1) what is an adequate represen-
tation of the world, and (2) what should be the location
of the robot(s) in this map at any given time. Given an
initial location, the robot must find a continuous path
in an environment through obstacles whose spatial lo-
cations are known or are being discovered. This con-
tinuous path cannot always be predetermined because
information about the path and the obstacles is often
only available on-line. In the specific context of dem-
ining, the autonomous agent has to sense the contents
of the terrain where it currently resides as well as of
its immediate neighborhood, and it must make deci-
sions about the “next step” as it collects information.
In [30] comparisons are made between robotic navi-
gation and three great sailors of the past: Magellan,
Columbus, and Ulysses. Magellan knows where all
the obstacles are located, and has to come up with a
map of the world by navigating around the obstacles.
Columbus does not know anything, and has to dis-
cover all the environment and the obstacles and, like
Magellan, Columbus must create a map. Ulysses has
a complete global map, but the environment changes
often due to the will of the Gods against Ulysses’
travels; in his case we could consider that the map is
composed of static and dynamic areas.

In another study [37] Clustering by discovery is
discussed. Landmarks are present in the environment
considered; They can be detected by the sensors of the
robot during the exploration. We define a logical road
(LR) is a straight line between two landmarks. The
physical road (PR) considers the real shapes of the ob-
stacles. During motion, the symbolic mobile “builds”
a map with the landmarks already defined. There are
two kinds of maps: Topological maps describe the pat-
tern of landmarks and their connections with the LR,
while metric maps give the position of each landmark
in a Cartesian space. The knowledge of these two maps
permits the partioning of space into clusters which de-
pend on the scale and the environment. Clustering by
discovery is then the technique for identifying clusters
in a map being learned by exploration. The cluster-
ing problem consists in finding the optimized partition
of a given set of points called landmarks in clusters.
Clusters may change during the motion of the robot

in the environment. There are different types of parti-
tions: edge based and vertex based, characterized by
clusters of edges linked by border sets and by clus-
ters of vertices connected by bridge sets. Clustering
defines a new topology of the environment which can
be used for optimized navigation.

Another approach, the artificial potential field
method was first developed in [32] and subsequently
in [1,2,12,15,50,65] to solve robotic motion planning
problems. In the path finding problem, the mobile
agent must find a collision-free path starting from a
given initial position to a given goal, avoiding a set of
obstacles. This problem is a typical application of the
artificial potential field method, where each obstacle
exerts a repulsive force on while the goal exerts an
attractive one. As an example, in [28], an algorithm
based on an artificial potential field and a hierarchi-
cal cell decomposition technique is given. A hexagon
is labeled passable or impassable. The advantages
of using this partioning is that each hexagon can be
recursively divided into a set of smaller ones and they
each have six immediate neighbors whose distance
between centers are equal. That is not the case for a
decomposition into squares. As we begin the search,
the robot will be at the center of a hexagon. From
this place it has to move towards the goal. The search
algorithm will examine the neighboring hexagons.
It computes the potential of the hexagons that are
passable. 1t selects the best one, according to the al-
gorithm, and the robot moves towards it. If there are
obstacles on the selected hexagon, it is labeled mixed,
then decomposed, and the search step is decreased. If
there are no obstacles, the step is unchanged or even
increased. This method insures that, in the worst case,
the mobile agent will not take a direction opposite to
its goal, but will instead try ove around the obstacle.
This approach is thus a permanent progression around
the optimal direction, namely the straight line, from
the starting point to the goal.

One difficulty of the artificial potential field method
is that the the mobile agent may be caught in local
minima (e.g., a “trap™) rather than a global minima
(i.e., the goal position). Methods to avoid this problem
and to insure convergence to global minimum include
the use of special potential functions and methods to
escape local minima [33,35].

An approach to autonomous navigation is dis-
cussed in [67], with the example of HERMIES-IIB
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(hostile-environment robotic machine intelligence
experiment series) which has been built to perform
complex navigations and manipulations in a hostile
environment with imprecise sensory information.
Algorithms have been implemented to search an op-
timum path to the goal, considering the size and the
shape of the robot, combining the knowledge of the
environment with the data from different sensors. A
network of nodes and node-connections is given to
the robot as an initial navigation map. The different
locations where work has to be performed are also
known, and this knowledge specifies the areas where
HERMIES-IIB has to perform predetermined tasks.
Each work location is associated with a time allowed
to complete the task. For each mission, the robot ex-
amines the different times and paths for an optimized
motion. If during the navigation on the selected path
an obstacle is detected, the robot goes back to the
previous node and checks a new path from this new
origin. If this subgoal is reachable with the new time
constraint, it goes forward. If not, it goes back to the
first starting point, and tries to find another location to
perform work. HERMIES-IIB is a powerful research
tool, but is rather limited as a complete autonomous
robot.

Learning models that are capable of forming a
cognitive map to be used in search and navigation
are discussed in [53] using either discrete elements
of topographic information, or continuously available
and updated information gathered during the search
process.

Another recent direction of research is the relation
between artificial evolutionary paradigms (known un-
der the term “Genetic Programming™) and the search
strategies of animals. In [34] a genetic programming
paradigm that genetically breeds a population of com-
puter programs to solve problems is applied to finding
an optimal food-foraging strategy for the Caribbean
Anolis lizard. Simulation of the adaptive behavior of
the lizard is required to evaluate each possible adap-
tive contro! strategy considered for the lizard. It is
suggested that artificial intelligence, including artifi-
cial life studies, may provide metaphors (e.g., an an-
imal may instinctually possess a simple decision rule
whose repeated application leads to optimal behavior)
for how animals behave adaptively.

An important general issue is the coordination of
multiple robots carrying out a joint task. In the search

for mines, both human and robotic teams with identi-
cal or dissimilar sensors may be deployed and will then
need to be coordinated. Current robotic technologies
make it possible to use robots instead of human beings
to perform demining by sending many robots to a mine
field. In order to demine effectively, the robots are re-
quired to avoid interfering with each other, cover the
terrain effectively, share the workload, help each other
by providing complementary information via different
sensors, and be capable of dynamic redistribution in
case of robot fatality. Together the robots should pa-
trol their “territory”, detecting and neutralizing mines.
Traditional robotic motion planning approaches do
not apply here. Besides the intractable computational
complexity, we do not have the necessary prior knowl-
edge of the field for planning. The drawbacks of tradi-
tional centralized control are high computational and
communication complexity, lack of flexibility and of
robustness. Therefore a distributed control approach
is more suitable for the control of systems of a large
number of robots [6,7,11,25,36,38,47,58,64] as well as
for systems where information about the environment
is being collected or sensed by the robots themselves.
In such a distributed-control framework, each robot
determines its movement by observing the environ-
ment at that moment and applying some pre-defined
control laws. The main idea is to design control laws
such that the robot system as a whole will achieve the
given goals, such as collision-free navigation, moving
an object, or forming a spatial structure.

Social potential fields [49], where a global con-
troller defines (possibly distinct) pairwise potential
laws for ordered pairs of components (i.e., robots, ob-
stacles and objectives) of the system, have also been
proposed as a tool to organize collaboration or, at
least, non-interference between agents. Social poten-
tial fields are more general than the artificial potential
field methods used in robotics mentioned above, where
in most situations, there is only one dynamic robot
among other static components in the system (such
as obstacles), so one robot’s behavior will not change
the environment. The force laws used in robot mo-
tion planning are either attractive force laws assigned
to goals or repulsion force laws assigned to obstacles
but not both in combination. In the social potential
fields method, each robot senses the resultant potential
field from all other components (or from neighboring
components as an approximation) and acts under the
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resultant force. Once the force laws are defined, force
calculation can be carried out by individual robots in
a distributed manner: thus the control is completely
distributed. The force laws are inverse power laws of
distances incorporating both attraction and repulsion,
and are chosen to reflect the relations of robots, e.g.
that they should stay close together or far apart. For
example, we can define a force law where attraction
dominates for far distance and repulsion dominates for
close distance. Such force laws are similar to those
found in molecular dynamics, plasma gases, and flu-
ids. It is known that molecules and plasma gases, while
obeying simple force laws, form interesting and com-
plex structures and arrangements and exhibit a wide
variety of dynamics. These force laws are, however,
more general than the usual molecular force laws; in
fact the parameters of the force laws, i.e. the constants
and the exponents, are chosen arbitrarily by the global
controller. Social potential fields allow for the behav-
ioral control of systems of large numbers of robots.
Although the basic control model is quite simple, the
system can display quite complex and interesting “so-
cial” behaviors, in addition to beyond collision free
movement. Simulations described in [49] successfully
showed the behavior of clustering, guarding and de-
fending against invaders, and they can also display
behaviors such as escorting and patrolling. One gener-
ally can employ a potential law that is the summation
of two terms which are both inverse power functions
of distance (with different coefficients and exponents).
The negative term, which indicates a repulsive force,
dominates when the distance is small (i.e., when the
two robots are close), while the positive term, which
indicates an attractive force, dominates when the dis-
tance is large. Using such a potential law, the robots
will converge to a uniform distribution and the neigh-
boring distance is controlled by the parameters of the
potential law. A dispersion law is one with the co-
efficients and the exponents set such that the robot
will converge to a uniform distribution over a given
area. Social potential fields can be applied to the dem-
ining task in several different phases: in the migrat-
ing phase when a new minefield is discovered and the
robots have to move to the newly discovered field, in
the dispersing or self-organizing phase when a group
of tightly clustered robots spread out and are more
or less evenly distributed over the search area, in the
demining phase, involving territorial patrol and possi-

ble dynamic redistribution, and in the final gathering
phase when the robots, after finishing the job, gather
together to be transferred to other places. During dif-
ferent phases, different sets of potential laws are used.
A centralized controller can detect the transitions be-
tween different phases and broadcast this information
to all the robots, so that the robots can learn which set
of potential laws to use.

In the demining phase, since the robots are already
distributed evenly, the dispersion law will have a lesser
effect. On the other hand, individual robots may ex-
ecute a random walk in order to patrol for and de-
stroy mines within their territory. Moreover, adaptive
clustering around a discovered high-density mine area
might be achieved with an attractive term between
robots and mines. If we set the parameters such that
the neighboring distance is small, we obtain a garh-
ering law, which will enable the robots gather tightly
together but without colliding with each other. In mi-
grating phase, the central controller can designate a
single or a few robots as leaders and control their mo-
tions explicitly. The rest of the robots, whose motion
are governed by a following law, will follow the lead-
ers to the new mining field. In a following law, the rest
of the robots may feel a stronger potential from the
leaders, but a weaker ones from the peers. In the dem-
ining phase, since the robots are already distributed
evenly, the dispersion law should have a less effect.
On the other hand, individual robot may execute a ran-
dom walk in order to find and destroy mines.

The social potential fields method offers the advan-
tage of being very robust. In contrast to many of the
motion planning algorithms, the method does not re-
quire precise sensors or precise actuators and inaccu-
racies can be tolerated.

Related techniques have been used by computer sci-
entists to model and simulate animal behavior for quite
unrelated applications such as computer graphics.

3. Autonomous search and animal foraging

Nature has many examples of autonomous search,
and some of the instances which have been studied
most extensively cover the behavior of animals forag-
ing for food. Relevant research on foraging covers a
variety of topics:
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e Studies that test whether animals forage so as to
optimize some currency, such as energy intake per
unit time.

¢ Studies that look at refinements of the currency —
taking into account the variance as well as the mean
of the intake distribution over time, or looking at
the probability of a fatal gap in feeding.

o Research that studies how animals balance conflict-
ing demands — to forage and to mate or scan for
predators.

o Studies that look at particular foraging mechanisms
(algorithms), usually in the context of optimization:
how well does the rule do in comparison with some
optimality criterion.

o Research that uses a laboratory analog or model
of foraging to explore either empirical variables or
theoretical ideas about how foraging works.

Much work has been published on this subject in a
variety of sources in psychology and animal behav-
ior. We have selected to survey a number of relatively
recent references in order to summarize the flavor of
this work, and also to indicate potential sources of
ideas and paradigms for artificial organized search
strategies.

A typical example of work on a mathematical
modeling approach to the study of animal foraging is
presented in [45]. Here, a simple instrumental model
of the behavior of an animal selecting a diet, exploit-
ing continuous sources of food distributed in patches
that are depleted as it feeds, and of animals feed-
ing together, distributing themselves among patches
of regenerating food, is compared with variational
models, and the appropriateness of such models for
the description of the behavior of animals is dis-
cussed. This paper is a good example of how an
engineering and modeling approach can be used in
this area.

Some of the research on animal behavior indicates
that the zime cost incurred during individual forag-
ing trips is much more important than energy cost in
terms of maximizing reward over time. This observa-
tion is supported by the work described in [31] which
investigated the behavior of five blue jays hunting for
dispersed, cryptic prey in an operant simulation in
which the birds were trained to search projected im-
ages for noctuid moths. Each image contained either
a single moth or no moth. Each trial was structured
so as to simulate traveling between patches, search-

ing within patches, and attacking and handling each
moth that was detected. In two experiments in which
the travel time between patches was manipulated, in-
creases in travel time produced increased persistence
within patches. Although this qualitative effect was
predicted by the marginal value theorem, quantitative
analyses revealed that the birds were using a strategy
that was more sophisticated and more efficient than
the simple time-in-patch rule implied by the marginal
value theorem.

In [26] a computer model of the searching activ-
ity of an ant species, based on quantitative data ob-
tained in the field about search for individual items
of food in the open on flat ground on which search
paths mapped, is presented. Actual behavior was well
described by the model in which individuals went out
for the first time to search in a direction determined at
random. Individual ants searched in restricted areas,
commonly sectors centered on the nest. This behavior
was reproduced in the model, as were quantitative as-
pects of the nest behavior. Communication between
ants was not required in the model. In [62] an exper-
iment is designed to distinguish between two mod-
els of risk-sensitive feeding behavior: the variance
discounting model, which assumes that mean reward
levels do not affect preferences over reward variabil-
ity, and the z-score model which assumes that mean
reward levels do affect preferences over variability.
Two choices were presented to feeding rufus hum-
mingbirds (Selaphoruous rufus). One alternative had
a higher mean and a higher variance than the other.
After measuring preference, the mean of both alterna-
tives was increased by adding the same amount to all
possible outcomes. The variance discounting model
predicts that such a general shift should not change
preferences, but the z-score model predicts that prefer-
ences will change. Results support the z-score model.
Observational data imply that foraging paths of bum-
blebees may be determined, in part, by a tendency to
visit nearest inflorescences [59]. The angular distribu-
tions from the field data were similar to those derived
from a computer model in which consumers visited
the nearest inflorescenses provided that they revisited
few flowers. There was no evidence of area-restricted
foraging.

In [41] a model was developed for daily patterns
of singing and foraging in a small male bird singing
for a mate. The bird must balance singing o attract a
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mate with the need to forage. Energy expenditure and
reserves were used to calculate the optimal pattern by
dynamic programming. The cost of energy consumed
in singing is not constant throughout the day, being
greater in the morning and less in the evening when the
birds build up energy reserves for the night. A peak in
singing at dawn can come from variability in overnight
use of energy. The model is robust to changes in a
wide range of parameters and shows that there can be
great differences in song level produced at different
times in relation to energy and foraging.

Another interesting aspect is the switching in search
dynamics for a given population of foragers [46]. Field
mark recapture studies and analysis of the behavior
of wild female pipevine swallowtail butterflies of dif-
ferent ages were used to distinguish between the al-
ternative mechanisms for the shift in the populations’
leaf-shape search mode. Results support the hypoth-
esis that the seasonal shift in searching behavior was
due to (1) the successive emergence of naive females
that learn to prefer host species with different leaf
shapes and (2) the synchronous switching by experi-
enced foragers from one learned preference to another.
A simple model of an environment in which prey are
distributed in patches is considered in [40]. Each patch
contains at most one item, but items can vary in the
ease with which they can be found. The time spent
in unsuccessful search on a patch gives information
about whether a patch contains an item, and if it does,
how difficult that item is to find. Ways in which this
information can be used to find the policy that maxi-
mizes the mean rate of reward for the environment are
outlined, with two examples of studies of blue jays
and crows. The examples suggest that the reward rate
on the patch must be based on what is expected to
happen in the immediate future.

Research reported in [14,29] also sheds light on the
issue of optimizing behavior during animal foraging.
In [29] four male rats were housed in a laboratory
environment that simulated foraging costs with bar-
pressing requirements. The rats encountered sequen-
tial opportunities to eat meals in two food patches that
differed in the size and/or “cost” of food pellets, and
accepted more opportunities and ate larger meals in
the patch offering the more “profitable food”, whether
the larger or the lower cost pellets. Despite widely
varying patterns of intake between the patches, total
daily intake was constant across most conditions. The

degree of difference in the feeding measures between
patches was strongly correlated with the relative unit
cost of food, and more strongly with the relative rate
of food intake, at the feeders. Results contradict a sim-
ple, effort-minimization model of optimal foraging,
but support the notion that the cost of suboptimal be-
havior will influence its occurrence.

In [14], patch-use behavior of small bluegill sunfish
foraging for chironomid larvae in artificial macrophyte
patches is investigated, to examine search patterns and
to determine the decision rule used to leave a patch.
The subjects were exposed to a sequence of habitats
which differed in quality (i.e., total prey density); how-
ever, within a habitat all patches were of equal qual-
ity. Results show that when foraging in a single patch,
the fish encountered prey randomly. Agreement was
observed between fish behavior and predictions of a
rate decision rule indicated that the decision to leave
a patch was based on some estimate of capture rate in
the patch. The sunfish generally stayed longer and cap-
tured more prey than predicted by a model based on an
exponential distribution of intercapture intervals, us-
ing “giving-up” times that were longer than optimal.
The relationship between rate of prey capture for the
habitat and giving-up times was such that it appeared
that the sunfish minimized the cost, in terms of a de-
crease in capture rate, by overestimating the optimal
giving-up time.

The work in [68] observed the influence of prey dis-
tribution and capture on the search path configuration
of the beetle Gyrinus picipes. All paths were analyzed
before and after prey capture. Prey distribution had
little impact on search configuration. However, prey
capture caused significant reductions in step length,
linear displacement, and path straightness. Thorough-
ness and turning angle increased significantly after
prey capture. A simulation model was developed to
analyze influences of search parameters on search ef-
ficiency. Simulated search paths did not differ from
actual search paths, indicating that the model accu-
rately describes gyrinid search behavior. Actual search
paths were compared to a simulated Brownian (ran-
dom) search. Results indicate that gyrinid searches are
not random. However, search behavior after prey cap-
ture was similar to that derived from the Brownian
model.

In [56] the problem of how animals keep track of
unpredictable changes in the profitability of foraging
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sites is studied. An optimality model was used to pre-
dict the frequency with which a forager should sam-
ple a foraging site in which the probability of reward
fluctuates randomly between high and low and an al-
ternative site that offers an intermediate probability of
reward. The model was tested with pigeons in a shut-
tlebox in which the two ends represented the foraging
sites. The pigeons succeeded in tracking the changes in
the fluctuating site, and the payoff attained was close
to the optimum. Another detailed study of pigeon be-
havior is reported in [27]. Studies of “optimal” search
plans in animals seems to indicate that time cost in-
curred during individual foraging trips is much more
important than energy cost, in terms of maximizing
net resource intake over time [66]. In [68] the influ-
ence of prey distribution and capture on the search
path configuration of the beetle Gyrinus picipes, was
observed. All paths were analyzed before and after
prey capture. Prey distribution had little impact on
search configuration. However, prey capture caused
significant reductions in step length, linear displace-
ment, and path straightness. Thoroughness and turn-
ing angle increased significantly after prey capture. A
simulation model was developed to analyze influences
of search parameters on search efficiency. Simulated
search paths did not differ from actual search paths,
indicating that the model accurately describes gyrinid
search behavior. Actual search paths were compared
to a simulated Brownian (random) search. Results in-
dicate that gyrinid searches are not random. How-
ever, search behavior after prey capture was similar
to that derived from the Brownian model. Bovet and
Benhamou [8] examined the case of a hypothetical
forager searching for immobile, randomly distributed
prey items from a central place and homing straight
back to determine the optimal sinuosity of the search
path. The optimal policy consists of minimizing the
expected total path length required to survey a given
area, depending on the number of prey items the sub-
ject is able to carry, its search path width, and the
prey density. An “optimal sinuosity” formula was de-
rived using computer simulations. For a given prey
density, the formula predicts a logarithmic decrease
with the number of prey items the central place for-
ager was searching for. The formula was also extended
to deal with patchy environments. Applicability of
this formula and its robustness to errors in the sub-
jects’ estimate of the prey density are discussed. In [3]

two spatial memory-based searching mechanisms are
modeled by combining elementary orientation mech-
anisms with a path-integration process. These mech-
anisms make it possible to account for the behavior
of many animals that locally increase their search ef-
fort in the vicinity of a given memorized location to
discover with maximal efficiency a small target that
is likely to be close to this location. The efficiency of
a predator searching for clustered prey items with a
mechanism of this type was computed in four habi-
tat types with differing grains and/or heterogeneity
levels. A predator exhibiting optimal spatial memory-
based area-concentrated searching behavior was able
to harvest about 1.6 times more prey items than if it
exhibited optimal area-concentrated searching behav-
ior without referring to a spatial memory. In [13] it
was noticed that during the dry season, collembolans
ants aggregate in wet patches randomly scattered in
the dry litter. The authors simulated this situation and
observed that the ants seemed able to use the hu-
midity gradient direction to efficiently orient them-
selves toward a wet patch. Once the patch had been
reached, they exhibited area-concentrated searching.
After capturing a collembolan, they returned to their
nest along nearly straight paths. This ability may rely
on a spatial memory of nest location by means of a
path-integration process. In the absence of prey, var-
ious behaviors were observed after an unsuccessful
search. Comparison with results obtained with a ho-
mogeneously wet environment, simulating the rainy
season, showed that the ants are also sensitive to de-
gree of patchiness in the environment. Cassini [10]
tested the qualitative predictions on patch use for two
searching strategies, random forager and systematic
forager, for four adult armadillos. Results on patch use
suggest that Ss developed a systematic search strat-
egy. and the observed tendency toward a spiral route
seemed to be their searching strategy for minimizing
revisits. Sheehan et al. [55] examined the role of both
visual and olfactory cues in discriminating previously
searched sites by M. croceipes females foraging freely
in an experimental patch. Sites contained a natural host
kairomone but no host. Wasps spent less time search-
ing frass sites previously searched by themselves or by
conspecifics than unsearched frass sites. In addition to
chemical marking, spatial memory of visual cues was
implicated as a mechanism for discriminating against
self-visited, host-free sites.
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The interaction of multiple animals is examined in
several papers. In [60] the effect of perch height on
the allocation of search and pursuit foraging behav-
ior in hawk owls was studied. 178 artificial perches
of three different heights were mounted in a 20-ha
clear cut area, and data on nine hawk owls were col-
lected. Results indicate that increasing perching height
increases search area and increasing search area in-
creases perching time. Also, hawk owls seldom start
searching at perch base and progress outward. The
probability of capturing prey declines with its dis-
tance from the predator; if no prey is detected, the
hawk owls move to another perch that would mini-
mize travel time and overlap between search areas of
successive perches. McMahon and Evans [39] exam-
ined foraging strategies of the American white pelican,
and classified them along a continuum based on de-
gree of coordination, ranging from mobile individuals,
then uncoordinated aggregations, through increasing
degrees of coordination in following, nuclei, and semi-
circles. Prey size and capture rates were greatest for the
more highly coordinated strategies, while less coordi-
nated strategies appeared to be involved primarily in
searching. Switching among strategies appeared to fit
along the same continuum, with a tendency to switch
from less to more coordinated when prey was located
and to return to less coordinated search when capture
rates declined. Search in a coordinated group bene-
fited from the presence of others. Thus, the American
white pelican has an effective group foraging system
for harvesting mobile clumped fish prey.

In [13] the problem of spatial components of for-
aging was examined, both at the colony and at the in-
dividual level, in a generalist predatory species of the
African stink ant. Colony fragments consisting of a
queen, 75 workers, 100 larvae, and several eggs were
installed in two adjacent test tubes. Foragers were
tested as to whether they foraged individually or as
members of a group of workers, and whether they spe-
cialized on particular zones to ensure the simultane-
ous coverage of a wide foraging area. Also tested was
whether workers can increase their rate of net energy
delivery to the nest by shortening their homing trips.
Solitary worker hunting-zone specialization was found
as well as different prey-searching path characteristics.

Noda et al. [44] examined patterns of searching
behavior in a local population of stout-body chromis
(Ss) feeding on zooplankton in mobile foraging

aggregations. Although Ss tended to wander inde-
pendently of each other, their foraging ranges over-
lapped. The local population had a more or less
common home range within which there were three
foraging regions. Within these regions, each identi-
fied S usually stayed for more than 1h, irrespective
of the presence or absence of prey, and searched
in a tortuous pattern with reduced velocity. In con-
trast, movements between regions tended to be rapid
with almost no feeding. Ss employed a local search
strategy involving spatial memory and expectation.
This searching pattern probably enables foraging to
be concentrated at the front of zooplankton-supply
routes associated with tidal currents, thus resulting in
relatively high capture rates per unit effort. In [43] a
behavior-based, analytical model that finds the ideal
free distribution of predators searching for food in a
patchy environment, incorporates the effects of the
degree of interference and the total prey density on
such distributions. An over-representation of preda-
tors in the best patch is always predicted. This effect
is enhanced by increasing prey abundance.

4. Conclusions

Much of the work we have surveyed on robotic
search parallels the ideas concerning animal search
strategies. Studies of “optimal” search plans in ani-
mals seems to indicate that time cost incurred during
individual foraging trips is much more important than
energy cost, in terms of maximizing net resource in-
take over time [66]. Many other studies show that an-
imals do indeed optimize.

The volume edited by Meyer et al. [42] presents
ideas about how to use the inspiration from animal
cooperation and social interaction in the design of
robotic systems. “Designing Emergent Behaviors:
From Local Interactions to Collective Intelligence”
by Maja J. Mataric describes a research program for
studying social interactions leading to group behavior
(tested on a herd of physical mobile robots). “Adap-
tive Action Selection for Cooperative Agent Teams”
by Lynne E. Parker discusses two types of animal
societies — differentiating and integrative — and their
parallels to cooperative mobile robot work. “From
Tom Thumb to the Dockers: Some Experiments with
Foraging Robots” by Alexis Drogoul and Jacques
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Ferber experiments with different implementations
of the “explorer robots application”; these are “Tom
Thumb” robots whose behavior is based on the for-
aging behavior of ants, and chain-making robots, the
“dockers”, governed by local perceptions and interac-
tions. “Collective Robotic Intelligence” by C. Ronald
Kube and Hong Zhang examine the problem of con-
trolling multiple behavior-based autonomous robots.
“Collective Choice of Strategic Type” by Chisato
Nu-maoka and Akikazu Takeuchi proposes a com-
putational model for an emergent collective behavior
that collectively changes strategy, such as from attack
to defence (and describes the result of an experimen-
tal simulation with multiple autonomous robots). “An
Adaptive Communication Protocol for Cooperating
Mobile Robots” by Holly Yanco and Lynn Andrea
Stein describe mobile robots engaged in a coopera-
tive task that requires communication by adapting an
initial fixed but uninterpreted vocabulary. “Dimen-
sions of Communication and Social Organization in
Multi-Agent Robotic Systems” by Ronald C. Arkin
and J. David Hobbs present extensions of schema-
based reactive navigation as a basis for constructing
multi-robot societies. “Evolution of Trading Strategies
Among Heterogeneous Artificial Economic Agents”
by Andrea Beltratti and Sergio Margarita consider
an artificial stock market populated by three types
of neural network based agents (trying to outperform
each other by improving their ability to forecast the
forecasts of others). Gerard Weiss” “Action Selection
and Learning in Multi-Agent Environments” dis-
cusses how several artificial agents can collectively
adapt to their environment by learning to generate a
sequence of action sets that solves an environmental
task.

As a whole, the work we have surveyed indicates
parallels between robotic and animal search. Indeed,
animal foraging appears to follow optimization rules
which can be represented formally and sometimes de-
scribed mathematically as decision rules under uncer-
tainty. They also indicate that animals appear to use
local optimization heuristics more systematically than
global rules. Also, the importance of map formation
is apparent in many studies; this points to interesting
links between purely local strategies and global opti-
mization rules. A companion paper will discuss search
strategies with local and global optimizing rules in a
randomly characterized environment [22].
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