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We describe a parallel algorithm for testing a graph for planarity, and for finding an
embedding of a planar graph. For a graph on n vertices, the algorithm runs in O(log? n) steps
on n processors of a parallel RAM. The previous best parallel algorithm for planarity testing
also ran in O{log?n) time (J. Ja'Ja’ and J. Simon, J Comput. 11, No. 2 (1982), 313-328), but
used a reduction to solving linear systems, and hence required Q2(M(n)/log®n) processors,
where M(n) is the sequential time for »xn matrix multiplication, whereas our processor
bounds are within a polylog factor of optimal. The most significant aspect of our parallel
algorithms is the use of a sophisticated data structure for representing sets of embeddings, the
PQ-tree of K. Booth and G. Lueker, J. Comput. System Sci. 13, No.3 (1976), 335-379).
Previously no parallel algorithms for PQ-trees were known. We have efficient parallel
algorithms for manipulating PQ-trees, which we use in our planarity algorithm. © 1988

Academic Press, Inc.

1. INTRODUCTION

The study of planar graphs dates back to Euler. A drawing of a graph on a plane
in which no edges cross is called a planar embedding. A graph for which such an
ambedding exists is called a planar graph. The search for an efficient algorithm to
decide planarity and find a planar embedding culminated in Hopcroft and Tarjan’s
linear-time algorithm [8].

Continuing in this tradition, we have developed an efficient parallel algorithm for
this problem. Our new algorithm finds a planar embedding for an n-node graph (or
reports that none exists) in O(log” #) time using only » processors of an exclusive-
write, concurrent-read P-RAM [7].! Thus it achieves near-optimal speedup.
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In contrast, the previous best parallel algorithm for testing planarity, due to
Ja’Ja’ and Simon [9], reduced the problem to solving linear systems, and hence
required at least M(n) total operations (time x number of processors), where M(n)
is the number of operations required to multiply two nxn matrices. Ja'Ja’ and
Simon’s algorithm was important because it showed that planarity could be decided
quickly in parallel. However, such a large processor bound makes their algorithm
infeasible. Moreover, their algorithm found a planar embedding for triconnected
graphs but not for arbitrary graphs. In [17], Miller and Reif showed how embed-
dings found by Ja’Ja’ and Simon’s algorithm could be combined to find an
embedding for an arbitrary graph. However, the processor bound for Miller and
Reif’s algorithm was no better than that of Ja’Ja’ and Simon’s.

The inspiration for our parallel algorithm is an efficient sequential algorithm
resulting from the combined work of Lempel, Even, and Cederbaum [13], Even
and Tarjan [6], and Booth and Lueker [3]. One essential ingredient we use from
the work of Lempel, Even, and Cederbaum is that in building an embedding for a
graph, premature commitment to a particular embedding of a subgraph should be
avoided. Instead, we use a data structure called a PQ-tree, due to Booth and
Lueker, to represent al/l embeddings of each subgraph. We introduce some new
operations for the parallel manipulation of PQ-trees and use the parallel tree con-
traction technique of [17] to help implement these operations.

Our parallel algorithm differs significantly from the sequential algorithm that
inspired it. The sequential algorithm extended an embedding node by node. In con-
trast, we use a divide-and-conquer strategy, computing embeddings for subgraphs
and combining them to form embeddings of larger subgraphs. To handle the
numerous complications that arise in carrying out this approach, we are forced to
generalize the approach of Lempel, Even, and Cederbaum.

Our parallel planarity algorithm is rare among parallel algorithms in that it uses
a sophisticated data structure. We have parallelized the PQ-tree data structure, due
to Booth and Lueker [3], giving efficient parallel algorithms for manipulating
PQ-trees. No parallel algorithms for PQ-trees existed previously. We define three
operations on PQ-trees, multiple-disjoint-reduction, join, and intersection, and give
linear-processor parallel algorithms for these operations. We use PQ-trees for
representing sets of graph embeddings.

However, PQ-trees are generally useful for representing large sets of orderings
subject to adjacency constraints. Booth and Lueker use PQ-trees in efficient sequen-
tial algorithms for recognizing sparse (0, 1)-matrices with the consecutive one’s
property, and in recognizing and testing isomorphism of interval graphs. Using our
parallel algorithms for PQ-trees, one can recognize nx#n (0, 1)-matrices with the
consecutive one’s property in O(log® n) time using n” processors.

In Section 2, we discuss the PQ-tree data structure. In Subsection 2.1, we give
definitions of PQ-trees and the new operations on them: multiple disjoint reduction,
intersection, and join. We show how these operations may be implemented in
parallel in Subsections 2.2, 2.3, and 2.5. In Subsection 2.4, we prove some lemmas
concerning the use of PQ-trees for representing sets of cycles. In Section 3, we
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discuss the problem of planarity. In Subsection 3.1, we give some definitions
and results concerning embeddings of graphs. In Subsection 3.2, we describe our
parallel planarity algorithm.

2. PARALLEL PQ-TREE ALGORITHMS

2.1. PQ-Tree Definitions

In our planarity algorithm, we will need to represent large sets of sequences of
sets of edges. These sets are too large to represent explicitly, so we make use of an
efficient data structure, the PQ-tree, due to Booth and Lueker [3]. In this section,
we define the PQ-tree and some operations on it, and show how these operations
may be carried out effciently in parallel. We freely adapt the terminology of [3] to
suit our needs.

A PQ-tree over the ground set S is a tree with two kinds of internal nodes,
P-nodes and Q-nodes. Every internal node has at least two children, so the number
of internal nodes is no more than the number of leaves. The children of each inter-
nal node are ordered. The leaves are just the elements of S. For example, in Fig. 1 is
depicted a PQ-tree T over the ground set {a, b, c, d, e, [}. Here, as henceforth,
O-nodes are depicted by rectangles and P-nodes are depicted by circles.
Throughout this section, » will denote the cardinality of S.

For concreteness, we will assume that a PQ-tree is represented by a pointer struc-
ture as follows: each node has a pointer to its parent, its left sibling, its right sibling,
its leftmost child, and its rightmost child (using null pointer where necessary). This
representation permits constant time insertion and deletion of consecutive sequen-
ces of children by a single processor, and also O(log ) time tree contraction [17]
on an exclusive-write P-RAM.

A PQ-tree is used to represent certain classes of linear orderings of its ground set
S. Let T be a PQ-tree over S. We will denote by L(T') the set of linear orders
represented by 7, and say that T generates L(T). One element of L(T) is obtained
by reading off the leaves left to right in the order in which they appear in 7. This is
called the fromtier of T, and written {r(7). (The frontier of the tree in Fig. 1 is
bafdce.) The other elements are those linear orders obtained in the same way from

Fig. 1. A PQ-tree over the ground set {a, b, c,d, e, f}.
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all trees T equivalent to T. We say T is equivalent to T if T' can be transformed
into T by a sequence of transformations. The permissible equivalence transfor-
mations are:

(1) the order of children of a Q-node may be reversed (we say the Q-node is
flipped), and
(2) the children of a P-node may be arbitrarily reordered.

It is useful to think of PQ-tree T as a representative of all the trees equivalent to it.
We write T"'= T if T’ is equivalent to T.

We shall occasionally speak of “flipping” all the nodes of a tree For this purpose,
“flipping” a P-node means reversing the order of its children, which is certainly a
permissable transformation. For a leaf, “flipping” has no effect.

Consider once again the PQ-tree T in Fig.l. There are 12 orderings in L(T),
including bafdce, bdafce, ecafdb, ecfadb. The first is just the frontier of T. The
second ordering, bdafce, is obtained by reordering the P-node’s children; the third
ordering, ecafdb, is obtained by reversing the order of the O-node’s children; the
fourth ordering, ecfadb, is obtained by both reversing the order of the Q-node’s
children and reordering the P-node’s children.

Since there is no way a PQ-tree over a non-empty ground set can represent the
empty set of orderings, we use a special null tree, denoted by T, to represent this
empty set.

DerniTION 2.1. If v is any node of some PQ-tree T, the subtree rooted at v is
itself a PQ-tree, whose ground set is the set leaves(v) of leaves below v. The fron-
tier of v (in T') is just the frontier of the subtree of T rooted at v, and is written
fry(v). We write leaves(v) for leaves{(v) and fr(v) for fr(v) when the choice of T is
clear.

Note. Throughout this section, we use the terms descendent and ancestor to
refer to non-proper descendents and ancestors, unless otherwise specified. That is, v
is considered its own descendent and its own ancestor. We use the term proper
descendent to refer to a descendent other than v. An endpoint of a linear ordering is
either a leftmost (first) or a rightmost (last) element. The parent of v is denoted

by p(v).

DEerINITION 2.2, Let A be a subset of the ground set S. We say a linear ordering
A=g,---5, of S satisfies the set A if all the elements of 4 are consecutive in 4; i.e.,
for some i and j, §;5,,,---s; are all the elements of A. For a PQ-tree 7, let
Y(T, A)={ie L(T): 4 satisfies 4 }.

For example, if T is the PQ-tree in Fig.1, then ¥(T, {a, c, f'})= {bdafce, bdface,
ecfadb, ecafdb}. Booth and Lueker prove that given any 7 and 4 < S, there is a
PQ-tree T such that L(T) = ¥(T, A), called the reduction of T with respect to 4. In
fact, they give an algorithm REDUCE(T, 4) which modifies T to get 7. Their
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FiG. 2. Inserting the node u between v and children 2, 3, 4.

algorithm works in time proportional to the cardinality of A. Note that if no order-
ing generated by T satisfies 4, the reduction T is just the null tree.

For applications to parallel algorithms, it is useful to be able to reduce a PQ-tree
with respect to many disjoint sets A,,.., 4, simultaneously. We Iet
Y(T, {4y, .., Ar}) = {4 € L(T): A satisfies each 4, (i=1, .., k)}.

In Subsection 2.2, we give a parallel algorithm for “multiple” reduction,
MREDUCE(T, {A,, .., A;} which modifies T to obtain a PQ-tree T such that
L(T)=¥(T, {4,, .., A}) if the A’s are disjoint. (Any ordering automatically
satisfies a singleton set.)

THEOREM 2.1. MREDUCE can be computed in O(log n) time using n processors.

Next we make some observations and introduce some terminology useful to the
algorithms in this section.

DerFINITION 2.3. Suppose that a node v of a PQ-tree has children v,---v, in
order. To “insert” a node u between v and a consecutive subsequence v, --- v, of its
children is to make u the pth child of v, and let the children of u be v, -- - v, in order.
Note that the operation of insertion does not change the frontier of any node of the
PQ-tree.

In Fig. 2, we show a P-node being inserted between a Q-node v and its children
2, 3, 4. (In this figure and others to come, we use a triangle to represent a subtree; if
the triangle is numbered, we use the number to refer to the root of the subtree.)

If each ordering A e L(T) satisfies A, the part of the tree “pertinent” to the set 4 is
“contiguous,” in a sense described below.?

DErFINITION 2.4, Let lca,(A) denote the least common ancestor of the leaves
belonging to 4. Suppose that v =Ica,{A4) has children v, --- v, in order. We say 4 is
contiguous in T if :

2In [3], Booth and Lueker referred to this part of the tree as the pertinent subtree of a
PQ-tree.
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* vis a Q-node, and for some consecutive subsequence v, ---v, of the children
of v, A=), <;<, leaves(v;), or

e pis a P-node or a leaf, and 4 =leaves(v).

For example, the sets {a, b,d, f} and {a, d, f} are both continguous in the PQ-tree
of Fig. 1. Note that if 4 is contiguous in T, then A is contiguous in any tree T
equivalent to T. In [14a] is proved essentially the following:

LemMMA 2.1.  Suppose that A is a non-empty subset of the ground set of T. Then A
is contiguous in T iff each ordering A€ L(T) satisfies A.

Proof. (=) Suppose A4 is contiguous in T. Clearly i,=fr (v) satisfies A,
because A,=4,---4,, where A,=fr(v;), and 4,---4, consists exactly of all the
elements of 4. But 4, is a consecutive subsequence of fr(T), so fr(7") also satisfies A.
Using the fact that 4 is contiguous in every T’ = T, we conclude that every A e L(T)
satisfies 4.

(«=) Assume every 1€ L(T) satisfies A. If only one child v, of v =1ca (A4) satisfies
the condition

leaves(v;) N A # & (1)

then Ica(A) is a descendent of v,, contrary to choice of v. Thus v has more than one
child v; satisfying condition (1). Let the leftmost such child of v be v, and the
rightmost v,. Suppose that for some child v; (p<i<g), we did not have leaves
(v;) € A. Then either the frontier of T does not satisfy the subset 4, or the frontier
of the tree obtained from T by flipping v; does not satisfy 4 (or both). Hence we
have leaves(v;)= A4 for each p<i<gq. But then A=()7leaves(v;) because v was
chosen to be an ancestor of every leaf in 4. If v is a Q-node, this completes the
proof that 4 is contiguous in T.

Suppose that v is a P-node, and v had some child v, such that leaves(v;) & 4. By
reordering the children of v so that v; is between v, and v,, we obtain a tree whose
frontier does not satisfy 4. Thus for every child v;,, we have leaves(v,)c 4; ie.,
leaves(v)=A. ||

COROLLARY 2.1. Suppose the following non-empty sets are contiguous in T: A, B,
C, AuB, BUC. Then Au Bu C is contiguous in T.

We next define a new operation on PQ-trees, not considered in [3]. A PQ-tree T
is the intersection of two PQ-trees T and T’ over the same ground set if
L(T)=L(T)A L(T’). In Subsection2.3, we describe an algorithm INTER-
SECT(T, T') for computing the intersection of two PQ-trees using disjoint reduc-
tion as a subroutine.

THEOREM 2.2. INTERSECT can be computed in O(log’n) time using n
Processors.
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FIG. 3. Obtaining a cycle cyc(4) from a linear ordering 4.

Note that, like reduction, intersection can “fail,” i.e., the result may be the null
tree.

Remark. As an illustration of the usefulness of INTERSECT for parallel
algorithms, we can use it to obtain a parallel algorithm for reducing a PQ-tree with
respect to a sequence A, .., 4, of subsets that are not necessarily disjoint. The
algorithm works in O(log?n-log k) time using O(kn) processors.* Make k copies
Ty, .., T, of the PQ-tree T, and in parallel reduce each T; with respect to A,. Pair
up the T;s and intersect the pairs, obtaining [ k/27 intersected trees. Iterate, pairing
up the intersected trees and intersecting the pairs, until there remains only one tree.
Each iteration reduces the number of trees by a constant factor, so there are
O(log k) iterations, each of which takes O(log® n) time (to do the intersection).

We can use this algorithm to determine whether a (0, 1)-matrix has the con-
secutive one’s property: after some reordering of rows, the 1’s in each column are
consecutive. For an n xm matrix M, let the ground set S be the set of rows of M.
Fori=1, .., m, let A;=the set of rows in which there is a 1 in the ith column. Let T’
be the trivial PQ-tree generating all orderings over S. Then the reduction of T with
respect to A4, .., 4,, generates those orderings of the rows making the 1’s in each
column consecutive. This is how Booth and Lueker recognized (0, 1)-matrices with
the consecutive one’s property sequentially in time O(n+ m +f), where f=3"7" |4,
is the number of 1’s in M. Our parallel algorithm takes time O(log® n -log m) using
nm processors. Note that this application is not required for our planarity
algorithm.

In our planarity algorithm, we will use PQ-trees to represent sets of cycles, rather
than sets of linear orderings. We next discuss this representation.

DeFINITION 2.5. With each linear ordering 4 we associate the cycle cyc(/4)
obtained from 4 by letting the first element of 4 follow the last.* For example, Fig. 3
illustrates how a cycle cyc(d)= (w,---ws) is obtained from the linear ordering
A=w,w,wyw,ws. The frontier fr(T) of a PQ-tree T represents a cycle cyc(fr(T));
for readability, we define cycfr(T) =cyc(fr(T)). Then the PQ-tree T represents the
set of cycles CYC(T)=cyc(L(T))= {cycfr(T'): T'=T}.

! Note added in proof. The first author has recently discovered an improved algorithm for this
problem, one that works in O(logn-(log(n+1)) time using t processors, where r=3}|A4,|. The
algorithm will be described in the first author’s Ph.D. dissertation.

3 Throughout this paper we use the term cycle to refer to an oriented cycle, analogous to a directed
cycle in a directed graph.
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Note that our representation of a cycle by a linear ordering A= w, ---w, involves
considerable redundancy, as the same cycle is also represented by
Wi w,wy - w,_y, for i=2, ..., n. We make use of this redundancy in obtaining the
following lemma.

LemMma 2.2, Let T be a PQ-tree whose ground set is the disjoint union of non-
empty sets A, B, C. Suppose that each of these sets is contiguous in T. Then T may be
modified to be a PQ-tree T' in which A u B and B U C are contiguous, and such that
CYC(T')y=CYC(T).

See Fig. 4 for an example of this modification. The modification of Lemma 2.2
can be carried out easily (i.e., in O(logn) time using »n processors, where » is the
size of the ground set). We call this modification ROTATE(A, B, C); it is used in
the planarity algorithm. The proof of Lemma 2.2 appears in Subsection 2.4.

DEerFINITION 2.6. In analogy to our terminology for linear orderings, we say a
cycle ¢ of S satisfies a subset 4= S if the elements of 4 form a consecutive
subsequence of o.

An analog of Lemma 2.1 does not hold for PQ-trees used to represent sets of
cycles: even if every ordering in CYC(T') satisfies a set D, it does not follow that D
is contiguous in T. For example, consider the PQ-tree T’ of Lemma 2.2, as depicted
in Fig. 4. While every ordering in CYC(T) satisfies A U C, in fact T" is not (4 u C)-
contiguous. However, with the addition of an extra condition, an analog of
Lemma 2.1 holds.

Lemma 2.3, Suppose A is a proper subset of the ground set of T, and is con-
tiguous in T. If A, < A, then for each i€ L(T), 4 satisfies A, iff cyc(A) satisfies A ;.

We can use Lemmas 2.2 and 2.3 in conjunction to “reduce” a PQ-tree used to
represent a set of cycles. Suppose we have a PQ-tree T representing a set of cycles,
and we want to obtain a PQ-tree 7 such that CYC(T)= {ae CYC(T): o satisfies

T — T 17

= S
A

Fic. 4. Modifying a tree T in which A4, B, and C are contiguous to get a tree 7' in which 4 U B and
By C are contiguous.
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Ay, . Ay }; 16, we want to reduce 7 with respect to disjoint sets A, ..., Ay.
Sometimes (not always), we can apply Lemma 2.2 to modify T so that all the 4/s
are contained in a set A4 that is contiguous in 7. Then by Lemma 2.3, we need only
let T be the PQ-tree computed by MREDUCE.

The proof of Lemma 2.3 appears in Subsection 2.4.

DerFmNITION 2.7. For a cycle o of S that satisfies a non-empty proper subset
Ac S, let o | A denote the consecutive subsequence of ¢ consisting of elements of 4.
Note that ¢ | A is a linear ordering.

For example, if ¢ is the cyclic ordering cyc(w, w,ws;w,ws) depicted in Fig. 3, then
a| {wy, wy, ws} =wsw,w,. This notation extends elementwise to sets and ordered
pairs; e.g., {a,a'> | A is the same as (o | 4, ¢" | 4). Note that if the cycle ¢ of S
satisfies A, it also satisfies S— 4, so ¢ | (S— A) is well-defined.

We next define another new operation on PQ-trees that corresponds to combin-
ing embeddings of subgraphs.* For a linear ordering 4, let A% denote the reverse
of L.

In the following, let S, and S, be ground sets whose intersection E is a non-
empty proper subset of S, and of S, let g, be a cycle of S,, and let o, be a cycle of
S;.

DeFINITION 2.8. If 0, and o, satisfy E and ¢, | E= (0, | E)®, we let o, join o,
denote the cycle of S, u S, obtained from ¢, by substituting ¢, | (S, — E) for o, | E.

Figure 5 illustrates how the join operation works. As we shall see in Section 3.2,
the join operation corresponds to the operation of contracting some edges between
two nodes of an embedded graph, identifying the nodes. The operator join is left-
associative.

DerFiNiTION 2.9, Let T, and T, be PQ-trees over the ground sets S, and S, and
suppose E= S5, S, is contiguous in Ty and in T, and S, — E is also contiguous in
T,. We say T is the join of T, with T, if

CYC(T, )= {g,join o,: 6o CYC(Ty), 6, € CYC(T,), and 0, | E; = (0, | E;)"}.

(2)

Note that CYC(T,) may be empty, even if CYC(T,) and CYC(T,) are non-
empty, because of the last clause in the definition. The PQ-tree join corresponds
roughly to combining embeddings of a pair of nodes.

In Subsection 2.5, we show how to compute the join T, , using PQ-tree intersec-
tion as a subroutine. More specifically, we give two procedures, one for computing
the “provisional” join, and the other for verifying the join. The provisional-join
procedure constructs a PQ-tree T, such that T, satisfies (2) unless the right-hand
side of (2) is empty (in which case T, is the join of T, with T'). The verification

4In their application of PQ-trees to planarity ([3]), Booth and Lueker carried out a tree-splicing
operation that can be viewed as a special case of our new operation. They only needed a rudimentary
version because in their algorithm an embedding was only extended one node at a time.
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FiG. 5. Computing cyc(w, ---ws) join cyc(x,x,waw;). First the cycle are matched up along the
shared ground elements, then the shored elements are deleted and the remaining linear orders are spliced
together.

procedure uses PQ-intersection to determine if the right-hand side of (2) is empty.
In the planarity algorithm, we use the provisional join so as to quickly proceed to
the next stage of the algorithm, and verify all joins simultaneously once the final
stage is complete.

In fact, we can solve a slightly more general problem. It turns out that the
algorithm for computing the join of T, with T, only needs access to the part of the
tree T, that is “pertinent” to E in the sense of Lemma 2.1 (and in the sense of [3]).
Hence it is possible to join T, with many other trees simultaneously, as long as
these other trees have disjoint ground sets.

Let T, be a PQ-tree over the ground set S, as before, and let T, .., T, be trees
over disjoint ground sets S, ..., S;, where E;= 5,1 S, is non-empty for j=1, ..., k.
As before, assume E; is contiguous in T, and in 7}, and §;— E; is contiguous in T},
for all j=1, .., k. In this case, the join T, of T, with T, .., T, is defined to be the
tree obtained by first taking the join of T, with T',, then taking the join of the result
with T, and so on.

THEOREM 2.3. The provisional join T, of T, with T, .., T, can be computed in
O(log n) time using n processors, where n is the total number of ground elements. The
join can be verified in O(log*m) time using m processors, where m is the number

+_1 |E;| of common elements.

Remark 2.1. The elements of CYC(T ) have the form o, join ¢, join ---join o,
where ¢; is a cycle of S; (Vj). An example appears in Fig. 6. Since S|, ..., S; are all
disjoint, the cycle g, join ---join ¢, can be obtained directly from o, by substituting
0,1 (S,—E;) for 64| E,. j=1, ..., k. Thus this cycle does not depend on the order of
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FiG. 6. Computing cyc(w, ---wg) join cyc(w,; wgX, X, W3) join cyc(ws = ws 1 ¥2 ¥3).

Gy, Op ) €.8., 0pjOiN 6, join ---join ¢, denotes the same cycle. It follows that the
order of T}, ..., T is irrelevant to the final tree T', obtained.

Remark 2.2. In the algorithms of this section, we assume n-processor, O(log )
time algorithms for two problems:

« sorting » numbers, each consisting of O(log n) bits (called “small integer sor-
ting”), and
» finding the lowest common ancestors of n pairs of nodes in an n-node tree.

Simple algorithms for these two problems appear in the Masters’ thesis of the first
author [10]. More sophisticated algorithms have appeared in the literature. For
example, the second author has a randomized algorithm solving the first problem
using only n/log n processors. Deterministic algorithms for the first problem follow
from parallel comparison sorting algorithms; see [1, 12, 4]. The second problem
may be solved using techniques of [19].

2.2. Reduction

In this subsection, we describe the algorithm MREDUCE and prove its
correctness, proving Theorem 2.1.
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For notational convenience, we summarize the disjoint sets 4,,.., 4, in a
“coloring” d(v) of the bound elements v € S, where the elements of each A; receive
a single color. We say an ordering 4 satisfies a color if all the elements of that
color appearing in A occur consecutively. (Not all need appear.) We Iet
Y(T,d)={A: Ae L(T), A satisfies every color defined by d}. Note that since any
ordering automatically satisfies a singleton set, we can assume ever element of S
receives a color—each element not appearing in any A; receives its own unique
color.

There are essentially four conditions that necessitate changes to the structure of a
PQ-tree during reduction.

1. Condition: some (but not all) of the children of a P-node have descendents
with the same color. In this case, a new P-node will be inserted between these
selected children and their parent P-node, in order to ensure that these children
remain consecutive under equivalence transformations.

2. Condition: some (but not all) of the c-colored ground elements are descen-
dents of a node. In this case, it must be énsured (by changes to the tree) that these
c-colored elements occur as an initial or final subsequence of an ordering generated
by the subtree rooted at the node. Otherwise, if they are allowed to be internal,
there is no hope that they will meet up with the other c-colored elements to form a
consecutive sequence.

3. Condition: a P-node has children u, v, w, ..., x (in some order) such that u
and v have descendents with a common color, v and w have descendents with
another common color, and so on. In this case, a Q-node must be inserted between
this “chain” of children and their parent in order to ensure that the common colors
are satisfied by any ordering generated.

4. Condition: a @-node’s leftmost child has descendents of some color ¢
different from that of its rightmost child’s descendents, and the Q-node’s left sibling
has descendents of the same color ¢. In this case, the O-node must be prevented
from flipping relative to its parent, in order to ensure that its c-colored descendents
meet up with the c-colored descendents of its left sibling.

The algorithm consists of the following phases:

Pre-processing Phase. The coloring d of the ground elements is extended to a
“coloring” 4 of all the nodes of the PQ-tree T.

Phase A. P-nodes are processed and new nodes are inserted between each
P-node and its children. The resulting PQ-tree is denoted by T .

Phase B. (Q-nodes are processed: their children are assigned labels and then
some are flipped in accordance with the labelling. The resulting PQ-tree is denoted
by Tp.

Phase C. Certain sets of equivalence transformations are disallowed, by
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changing some Q-nodes into special nodes called R-nodes, to be defined later. The
resulting tree is T'c.

Post-processing Phase. Each of the R-nodes of the previous phase is
eliminated and its children made children of its parent.

Note that phases A and B may “fail,” in which case the reduced tree is just T'.

The structure of the proof is as follows: We first prove that L(T)2 L(T,) =
Y(T, §). It follows that ¥(T,, 6)= ¥(T, 8). Since Tp=T,, L(Tp) = L(T ,). Finally,
we prove that L(T¢)= ¥(T, 6)=¥(T, d). Thus T generates exactly the desired
orderings.

We first consider the pre-processing stage. This stage consists of extending the
coloring § of the leaves to obtain a coloring 4 of the entire tree. The following
terminology will be used throughout the proof.

DerFmniTiON 2.10. For an internal node v of T, say a color is complete at v if all
the leaves with that color are descendents of v. Say a color is incomplete at v if
some, but not all, of the leaves of that color are descendents of v. Say that a color
covers v if all the leaves below v are of that color, and that v is uncovered if no color
covers v.

In general, the coloring of the ground elements imposes constraints on the order-
ing of the children of each internal node u. However, if a color is complete at a
child u of v, that color does not constrain the ordering of v’s children at all. The
constraints arise because of colors incomplete at children of v. Therefore, the first
step in extending the coloring is to compute for each internal node v the set INC(v)
of colors incomplete at .

Note that for any T’ = T with a node v, the frontier of the subtree of T’ rooted at
v, denoted fr,.(v), is a consecutive subsequence of the frontier fr(7') of T" (see
Definition 2.1). If in addition fr(7") satisfies the color ¢ € INC(v), then the c-colored
ground elements form a consecutive subsequence t of fr(T"). Since ¢ € INC(c), fr(v)
and 7 overlap, but fr(v) does not contain . These considerations yield the following
lemmas:

LemMma 2.4. If fr(T') satisfies a color ¢ incomplete at v then at least one endpoint
of fr.(v) is colored c.

LemMa 2.5. If (T, 8) = & then each node has at most two uncovered children at
which the color ¢ is incomplete.

Proof of Lemma 2.5. 1f the c-colored elements form a consecutive subsequence t
of fr(T') (where T’ = T), then for each uncovered child « of v at which ¢ is incom-
plete, fr(x) contains an endpoint of 7. ||

If (T, 5)# &, then it follows from Lemma 2.4 [INC(v)| <2 for all nodes v. We
can therefore obtain, using tree contraction:
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Lemma 26. If W(T,0)# @, INC(-) can be computed for all nodes v
simultaneously in O(log n) time using processors.

Proof. By Lemma 2.4, we may assume that INC(v) never contains more than
two elements. Consider the sequence of leaves of 7, read left to right. For each
color ¢, consider the first and the last node in this sequence that have color ¢. Their
lowest common ancestor, which we will call LCA(¢), is the lowest node in the tree
at which the color ¢ is complete. It is easy to compute lowest common ancestors for
all colors simultaneously within the stated bounds (see Remark 2.2).

If v is a leaf colored ¢, INC(v) is either {c}, or, if v is the only node colored c,
then INC(v) is empty. If v is an internal node, then

INC(u)=( U INC(u))— {e: LCA(c)=v}.

u is child of v

For an internal node v, INC(v) can be computed by determining the colors
incomplete at the children of v, and checking each such color ¢ to see if LCA(c) is v.
By Lemma 2.4, each child can be assumed to contribute at most two colors.
Moreover, the colors contributed by all children can be checked against LCA(-)
simultaneously. Thus we have defined the problem of computing INC(-) as an
expression evaluation problem, which can then be solved using the technique of
parallel tree contraction. J

It at any node, the number of incomplete colors turns out to exceed two, the
processor at that node should set a flag signifying failure. After the computation
completes, it can be determined in O(log n) time whether any processor has set a
failure flag. If so, the result of the reduction is T .

If the above computation succeeds, we can proceed with extending the coloring.
The new coloring 4 will assign each node v a pair of colors

A(v) = (¢1, €27

according to the following cases:

« If two colors are incomplete at v, then ¢; and ¢, are these colors.

 If only one color ¢ is incomplete at v but ¢ does not cover v, then ¢, =c¢ and
¢, is a new color ¢,, unique to v.

« If one color ¢ is incomplete at v and covers v, then ¢, =c¢,=c.
 If no colors are incomplete at v, ¢, =c,=c,, the new color unique to ».

If the two colors ¢, and ¢, assigned to v are distinct (i.e., in the first two cases),
we say that v is orientable. Note that no colors are incomplete at the root, so the
root is not orientable.
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DerFiNiTION 2.11. For a color ¢, let

c if ceINC(v)

h”(c)={cu if ¢¢INC(v),

where ¢, is the new color we associated with v in defining A(-).

For a PQ-tree T', if w, and w, are the leftmost and rightmost elements, respec-
tively, of fry.(v), let I.[v]=h,(5(w,;)) and rp[v]=h,(5(w;)). Let Irp[v]=
U [v],r[v]). We leave out the subscript T when the choice of PQO-tree is clear.
We write {a,b)~{a',b') if {a,b}={a’,b'}. We use juxtaposition to stand for
concatenation of tuples.

The following corollary follows from Lemma 2.4 and the definition of 4(u).

CoroLLARY 2.2. If fr(T’) satisfies every color, then for every node u,
Irp[u]~d(). 3)

We now give a lemma that gives a local characterization of color satisfaction.

LemMMA 2.7.  Assume (3) holds for every node u of T'. For each node u, the follow-
ing two conditions are equivalent:

(a) The frontier of u in T’ satisfies every color.

(b) For each (not necessarily proper) descendent v of u, if vy---v, are the
children of v in order, then every color in Ir[v,] Ir[v,] ---Ir[v,] occurs consecutively.

Proof. By induction on height of u; trivial for u=a leaf.

(a)=(b) Let w; and x; be the leftmost and rightmost elements, respectively, of
the frontier of chld v,. Since w, x, ---w,x, is a subsequence of the frontier of u, if the
frontier of u satisfies every color, then certainly so does w,x, ---w,x,. Hence every
color occurring in d(w,)d(x,)---8(w,) d(x,) occurs consecutively. Suppose
c=(w;)¢ INC(v,). Then ¢ must be complete at v;, so ¢ is not the color of any
element of the frontier of any other child »; of v. It follows that every color occur-
ring in d(w,) a(x,)---c,0(x;)---d(w,) 8(x,) occurs consecutively, where we have
simply replaced §(w;) with ¢,. Continuing in this way, we obtain condition (b).

(b)=(a) Suppose condition (b) holds, and let the frontier of u be w,---w,.
Suppose for a contradiction that condition (a) does hot hold. A counterexample to
condition (a) would be a consecutive subsequence w,---w;---w, of the frontier of u
such that &(w;) = 8(w,) # 8(w,). Choose such a counterexample of smallest length. If
w,---w, is contained within the frontier of some child of «, that frontier does not
satisfy d(w;), so apply the inductive hypothesis to obtain a contradiction. Thus w;
and w, must belong to the frontiers of distinct children u; and u, of u (i’ <k’).
Hence the color ¢=d&(w;) is incomplete at u;. and u,, so, by (3), celr[u;] and
celr[u,]. By condition (b), since i' <k’, r[u;]=I[u.]=c

Let u,. be the child of u to whose frontier w; belongs, so i'<;j'<k'. Since i’ <k,
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either i'<j’ or j'<k'. In former case, condition (b) implies that /[u,]=c. It
follows that if w, is the leftmost element of the frontier of u;, then w,---w; is a
smaller counterexample to condition (a) than w;---w,, contradicting the choice of
w;---w,. The case j' <k’ is analogous. ||

The following corollary follows from Eq. (3) and condition (b).

COROLLARY 2.3. Suppose the frontier of T' =T satisfies every color. Then for
each node v and each color ¢, the children of v at which ¢ is incomplete form a

consecutive subsequence v;---v,, where v; | ---v,_, are all covered by c.

Proof. By Corollary 2.2 and Lemma 2.7, condition (b) holds for T". Let v be a
node of T with children v, ---v,, and let ¢ be a color. By (3), any child v, at which
¢ is incomplete has c e /r[v;]. By condition (b), the children v, with color ceir[v,]
form a consecutive subsequence v, ---v,. Moreover, a child v, such that I[v,] # r[v;]
must be an endpoint, ie., either v; or v,. For suppose j<i<k and, say, /[v,]=c
but r[v,]J#c. Then r[v;] lies between two occurrences of the color ¢ in
Ir[v,]---Ir[v,], contradicting condition (b). We see that, for j< i<k, v, must have
I[v;]=r[v;]=c. But then v, must be covered by ¢, or else the frontier of v, would
fail to satisfy the colorc. |

Phase A is shown below. Figure 7 illustrates Phase A being applied to a single
P-node.

PHase A. For each P-node v:

Al Reorder the children of v so that for each color ¢, all children covered by ¢
are consecutive.

A2 For each color ¢, if there are at least two children covered by ¢ (and at least
one child not covered by c¢), insert a new P-node w, between these c-covered
children and v.

A3 At most two colors are incomplete at each child v;. For each color ¢, find
the set 4, of children at which ¢ is incomplete. There is at most one child covered
by c. If there are more than two uncovered children in 4, set a flag signifying
FAILURE. Otherwise, form the degree-2 graph G, whose nodes are the children of
v, where there is an edge between v; and v, if

* there is some color ¢ common to INC(v;) and INC( v;), and
» either one node, say v;, is covered by ¢, or there are no children covered
by c.

A4 Using known pointer-jumping techniques, identify the connected com-
ponents of G,, and verify that each is a simple path—not a cycle (otherwise,
FAILURE). Call these paths color chains.
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Fic. 7. Applying phase 4 to a P-node v, with children labelled 1 through 7. For this example, the
colors are blue, red, and tan. The coloring of nodes is as follows: A(v)= {tan, blue}, 4(1)= {red, ¢, ),
A(2)={tan, c,», 4(3)=<{red,redd, A(4)=<(blue, ), A(5)=<red,cs>,  A(6)= (red,red),
A(T)={eq, €7

A5 For each color chain y containing at least two nodes,

Choose one of the two orientations of y arbitrarily.
Reorder the children of v so that the nodes of y are consecutive,
and insert a new Q-node between these nodes and v.

A6 Consider the subset of v’s current children consisting of nodes at which no
color is incomplete. Reorder the children of v to make this subset consecutive, and,
if it is a proper subset containing at least two children, insert a new P-node v
between v and the subset, and rename v to be a Q-node.

Steps Al, A3, A3, and A6 can be implemented using small-integer sorting. Let T,
be the result of Phase A.
LemMma 2.8. No P-node of T, is orientable.

Proof. A node v that was a P-node in T is a Q-node in T4, or else no color is
incomplete at a child of v in T, in which case INC(v) = &, so v is not orientable.
A node w, created in step A2 is covered by ¢. For a P-node ¢ created in step A6, if u
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is a child of 4, then no color is incomplete at u. Hence no color is incomplete
atv. |

LEmMA 2.9. Every P-node u in T, satisfies (3) of Corollary 2.2 and condition (b)
of Lemma 2.7.

Proof. A node w, is covered by ¢, and hence trivially satisfies both (3) and
condition (b). A node ¢ has no incomplete colors (as shown in the proof of
Lemma 2.8), and hence trivially satisfies (3). To show that 7 satisfies condition (b),
note that no colors appears in the frontier of two different children of ¢ (else the
color would be incomplete at each of the children and hence appear in two distinct
color chains—a contradiction). J

Lemma 2.10. L(T,)< L(T).

Proof. Note that for every node v of T, leaves; (v)=leaves,(v). Moreover,
every node v that is a Q-node in T is also a Q-node in T, and the order of v’s
children is the same in T and T,. It follows that

e there is a PQ-tree T' =~ T with fr(T")=/r(T,), and
¢ any equivalence transformation that may be applied to T, may also be
applied to T.

This proves the lemma. ||

Lemma 2.11. L(T,)=Y(T, d).

Proof. 1If W(T, é)= &, the lemma is trivial. Therefore, assume ¥(T, §)# &. It is
easy to see that if Phase 4 is applied to a tree 7" equivalent to 7, the result T is
always a tree equivalent to T,. Indeed, when a new node is inserted between v and
some of v’s children, the choice of children depends only on what colors are incom-
plete at what nodes, and this is independent of the order of children. Thus each
node of T, has the same children as in 7,. Moreover, since the construction of G,
also depends only on incomplete colors, the color chains are the same, and so the
order of children of each new Q-node is the same in T and T, up to a flip.

Let T' be any PQ-tree = T whose frontier satisfies every color. We will prove that
Phase A may be applied to T, yielding a PQ-tree T, without altering the frontier,
ie., such that fr(7))={r(7’). By the remarks above, T, =T,. This proves that
V(T 0)SL(Ty)

The reader may find it helpful to refer to Fig. 7 as well as to the procedure for
Phase A.

Let v be a P-node of T’ with children v, ---v,. Let ¢ be any color incomplete at
some child. Suppose at least one child of v is covered by c¢; the case in which there
are no such children is similar. By Corollary 2.3, the children covered by ¢ are all
consecutive. Hence in step A2, when a P-node w, is inserted between these covered
children and v, this transformation can be carried out without altering the frontier.
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The result of step A2 is a PQ-tree T, such that fr(7,)={r(7") and each P-node that
was also in T’ has at most one child covered by a given color.

By Lemma 2.5, step A3 does not fail. Let {v,, v;} be an edge of the graph G,
constructed in step A3 of Phase A. By construction of G,, there is some color ¢
incomplete at both v; and v;. If ¢ covers one of these nodes, say v;, then ¢ does not
cover the other, v;. By Corollary 2.3, v; must be adjacent to v, in the ordering of vs
children in T,. If ¢ covers neither node, then ¢ covers none of v’s children. Again v;
and v; must be adjacent by Corollary 2.3.

We have verified that two adjacent nodes of G, are adjacent children of v in T,.
It follows that each connected component of G, is a simple path whose nodes, in
order, are a consecutive subsequence of children of v. (Note that this implies that
step A4 of Phase A does not fail.) Hence in step A5, when a new Q-node is inserted
between v and this subsequence of children, the insertion can be carried out while
preserving the frontier. The result of step A5 is a PQ-tree T, such that for each
P-node v and each color incomplete at a child of v, v has only one child at which
the color is incomplete.

Now if some color ¢ is incomplete at v, it had better be incomplete at a leftmost
or rightmost child of v in T, by Corollary 2.2. Each color incomplete at v occurs in
a unique child of v. Therefore the children of v at which no color is incomplete form
a consecutive subsequence. Hence step A6, where a new P-node i is inserted
between v and these children, may be done without altering the frontier. We thus
obtain T such that fr(T)=1fr(T’). This completes the proof. [

Having processed the P-nodes in Phase A, we focus entirely on Q-nodes in
Phase B. We now give an informal description of Phase B. The goal of Phase B is
to rearrange the PQ-tree so that each node v satisfies (3) of Corollary 2.2 and
condition (b) of Lemma 2.7. Each child v; of v has a pair 4(v;) = {¢,, ¢, of colors.
Assume (in accordance with Corollary 2.2) that Ir[v;]~ {c,,c,». Thus if v, is
orientable (ie., ¢, #c,), then v, has two distinct “orientations,” Ir[v,]= (¢, ¢»)
and Ir[v,] = {c,, ¢, ). Note that by flipping every node in the subtree rooted at v;,
we go from one orientation of v; to the other.

In step B3, each Q-node v “tries” to choose orientations LR[v,] for its children
v,---v, such that ZR[v,]---LR[v,] satisfies every color (cf. condition (b) of
Lemma 2.7). If such orientations can be chosen, v stores in LR[v] the resulting
orientation of v; ie, such that if /r[v;]=LR[v;] for each child v, then
Ir[v] = LR[v].

It is useful to think of LR[v,]={c,,c,» as a “request” that v, adopt the
orientation {c,, c,», if the order of v’s children remains unchanged, and adopt the
orientation {c,, ¢, » if v flips.

In steps B7 through B11, the requests are fulfilled. Each orientable node v com-
pares the request it received (LR[v]) to its “idea” of its current orientation
(LR[v]) and sets OPP[v] to true if there is a discrepancy. Then each node com-
putes the parity REV[v] of the number of discrepances along the path from itself to
the root, and flips if the number of discrepancies is odd. This ensures that if there is
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a discrepancy between LR[v] and LR[v], either v or its parent flips. Thus in the
resulting tree T, all discrepancies wil have been resolved. This is the meaning of
Lemma 2.12. (“OPP” and “REV” are intended to be pneumonic for “opposite” and
“reverse.”)

It can be proved that fr(7,) satisfies all colors. But we can say more. In fact, flips
may be permitted which do not reintroduce discrepancies. Thus if an orientable
node v flips, its parent must also flip, and vice versa. This is the meaning of
Eq. (10).

We use the following notation in phase B and in the proof thereafter.

DermiTion 2.12. If {a,b) ~ {(a', b’ and a+#b, we write {a, b) swap{a’, b">
for the predicate that is true if {a, b) = {b’,a’) and faise if {a,b)>={a',b')>. We
write @ to denote “exclusive-or,” and assign it lowest precedence.

Note that

{a, by swap{a”,b"y={a, b)swapla,b'>@ (a’, b ) swap{a", b") (4)

if all three predicates are defined. Phase B is shown below. (The function 4, is
defined in Definition 2.11.)

PHASE B.

B1 For each Q-node v:

B2 Let the children of v be v, ---v,.

B3 Assign to each_ﬁ[v,-] either 4(v;) or A(v;)® such that every color in the
sequence LR[v,---LR[v,] occurs consecutively, and such that
h(<L[v,], R[v,])) ~ 4(v).

B4 If this is impossible, return FAILURE.

BS  Otherwise, set LR[v] :=h,({L[v,], R[v,]1)).

B6 For each node v:

B7 if v is orientable, then L
set OPP[v] :=LR[v] swap LR[v]
otherwise, set OPP[v] :=false.

B8 For each node v:

B9 set REV[v] := ® ,anancestorore OPPLu].

B10 For every orientable node v:
Bi11 if REV[v] then flip v.

Let Ty be the result of Phase B. Note that by steps B3 and BS, if v is an orien-
table node of T, then each of LR[v] and LR[v] is ~ 4(v). The implementation of
Phase B uses only elementary techniques. In particular, step B3 can be done using
ideas from the proof of Corollary 2.3. Note also that step B9 of Phase B can be
done using standard parallel pointer-jumping techniques.



210 KLEIN AND REIF

DerFINITION 2.13. For a (Q-node v (or an R-node, to be defined later) in
PQ-trees T, and T,, define T, flip, T, to be true if the order of children of v in T is
the reverse of the order in T,, false if the order is the same, and undefined
otherwise.

Note that
T] ﬂlpv T3=TI ﬂlpl TZEBTZ ﬂipv T3 (5)

if all three predicates are defined.
The following lemma captures the effect of the flips performed in step B11 of
Phase B (see Definition 2.11.)

LeMMA 2.12. If v is an orientable node of T ,,
LR[v]swap LR[v] =T flip, T,@® T, flip o) T'p-
Proof. 1In step B7 of Phase B, we set
OPP[v] := LR[v] swap LR[v].

In step B9, we have

REV[v] := & OPP[u«]

uanancestorofp

=OPP[U]@( D OPP[u])

uanancestorofp(v)

=O0PP[v]@®REV[p(v)]

and by step B11, T, flip, Tz =REV[v] and T, flip,, Tp=REV[p(v)]. The lemma
follows. |

The following lemma states that the frontier of a tree satisfies every color iff every
request is fulfilled in that tree.

LeMMA 2.13. For Tp=Ty, f1(T}) satisfies every color iff for every orientable
node v,

LR[v] swap l"ri;.[”} = TpMlip,) T4 (6)

Proof. Assuming that (6) holds for every orientable child v of u, and that LR[v]
is chosen in accordance with step B3 of phase B, it follows that (3) and condition
(b) hold for u, and hence that fr,.(u) satisfies every color, by Lemma 2.7. On
the other hand, a violation of (6) would mean a violation of either (3) or
condition (b). |
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Note that it follows from the proof that if Phase B fails, there is no ordering
generated by T, satisfying all colors.
The following lemma states that if no discrepancies are introduced below a node

[134

of a tree, that node’s “idea” of its own orientation is correct.

LemMA 2.14.  For any orientable node u, if Tpilip, Tp=Tpflip,,, Ty for each
orientable proper descendent v of u, then LR[u] swap eré[u] =Tpflip, T,.

Proof. By induction on height of u. Trivial for leaves, which are not orientable.
Let u be an orientable node, and assume the lemma holds for the children u, ---u,
of u. We consider the case T flip, T, =false. (The case in which Ty flip, T, = true
is analogous.) In this case, u; and u,, respectively, are the leftmost and rightmost
children of u in Ty, so

Ire,[ul = h ({7, lun ] rolu10)

In step B5, LR[u] is assigned h,({L[u,], R[u,])). We therefore must prove that
hu(f[ul])=hu(lré[u1]) and h(R[u,])= h(r7,[u;]). We show the former equality;
the proof of the latter equality is analogous.

We know LR[u,]~Ir[u,]; the equality is then trivial if u; is not orientable.
Therefore, assume u, is orientable. Our premise implies that Tpflip,
Tg@® Ty flip, Tp=false. We assumed T, flip, T = false, so

Tgflip,, Tp® T flip, Tp=(Tpflip,, Ts® T3 flip, T5) D (T, flip, T)
= (false) @ ( false) by Eq. (5).

Then
T, flip,, Tp=T,flip,, Tp® (Tsflip, T,® T, flip, Tp) 0y
=T, flip, T,®T,flip, Ty
=LR[u,]swap LR[u#,] by Lemma 2.12. (8)
By the inductive hypothesis,
LR[u,] swap Irré[ul:l =T, flip,, Ts. (9)

By combining (7) and (9), we obtain LR[u,] =IrTé[uI] which implies the desired
equality. [

Now we give a locally enforceable condition for a tree equivalent to T to have a
frontier satisfying every color.

LEMMA 2.15. For Ty=Ty, the frontier of T, satisfies every color iff for every
orientable node

Ty flip, Ty =Ty flip,, Tp. (10)
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Proof. By Lemma 2.13, the frontier of T} satisfies every color iff (6) holds
for every orientable node v of T5;. We use (4) and (5) to combine (6) with the
conclusion of Lemma 2.12, obtaining

LR[v]swap Iry,[v]=T,flip, Ts® Tp lip ) T5- (11)

Thus the frontier of T satisfies every color iff (11) holds for every orientable node
v. It remains to show that (11) holds for every orientable node v iff (10) holds for
every orientable node v.

(=) Assume that (10) holds for every orientable node v. Let v be an orientable
node. By Lemma 2.14,

LR[v]swap Irp,[v] =Ty flip, T,
=Tyflip, Tp® Tpflip, T,  by(5)
= Tpflip,,) Tp® Tpflip, T, by assumption.

We have proved (11) holds for any orientable node.

(=) Assume that (11) holds for every orientable node v. We prove that (10)
holds for every orientable v, by induction on height of v. The basis is trivial because
leaves are not orientable. Assume (10) holds for all orientable proper descendents of
v. By Lemma 2.14,

LR[v]swap Iry,[v]=Tgflip, T,.

We use (11) to substitute for the left-hand side, yielding
Tpflip, Ty=T,flip, Tg® Tslip,.) Ts
which implies (10). §

In order to enforce (10), it is useful to invent a new kind of node, an R-node,
which is like a @Q-node, only more restrictive. A “legal” set of equivalence transfor-
mations on a PQ-tree with R-nodes is a set which flips each R-node if and only if it
flips the parent of the R-node. In this sense, an R-node “follows the lead” of its
parent node. (An R-node is not permitted to be the child of a P-node, only of a
O-node or another R-node.)

Another way to view an R-node is as a notational device for signifying that the
R-node’s children should be inserted into the sequence of its parent’s children. An
R-node may be eliminated and its children reattached to its parent without disturb-
ing their order; the resulting tree generates exactly the same set of orderings. This is
illustrated in Fig. 8, where we signify that a node is an R-node by using two lines
to connect it to its parent. R-nodes are merely a notational and computational
convenience—they do not enhance the expressibility of PQO-trees.
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Fic. 8. Eliminating an R-node by reattaching its children to its parent without disturbing their
order.

In order to ensure that (10) holds for every orientable node v, we merely carry
out phase C:

PHASE C. For each orientable node v, rename v to be an R-node.

Let T be the result of phase C.

LEMMA 2.16. L(Tc)=¥(Tg, 0).

Proof. Suppose Tp= Tp. Consider the set of equivalence transformations used
to obtain T from T'p. If this set of transformations may be legally applied to T,
the result would be a PQ-tree T equivalent to T and having the same frontier as
Ty, so fr(Tp)e L(T.). Otherwise, fr(T;)é L(T-). The set of transformations is
applicable to T iff an R-node is flipped whenever its parent is flipped; i.e.,
Tpflip, Tp= Typflip,,, T for each R-node v in T.. The R-nodes of T, are the
orientable nodes, so we have

fr(Tg)e L(T¢)

iff for each orientable node v,
Tpllip, Tp= Tpflip,, Ts.
In view of Lemma 2.15, this completes the proof. ||

It remains to obtain a PQ-tree 7 such that L(T)= L(T.) and T has no R-nodes.
We can accomplish this in O(log ) time using n processors as follows: First com-
pute a preorder numbering of T~ (using the techniques in [19]). Now, by use of
parallel pointer-jumping techniques, each child v of an R-node can determine its
lowest O-node ancestor. This will be v’s new parent. Each Q-node can use the
preorder numbering to sort all its new children to obtain the proper order for them.
The resulting tree 7 generates the same orderings as T, but has no R-nodes.
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This completes the description of the disjoint-reduction algorithm and the proof
of Theorem 2.1.

2.3. Intersection

In this subsection, we give an algorithm for intersecting a pair of PQ-trees. For
each node v of a PQ-tree T over a ground set S, we define a collection of sets, called
the constraint sets of v (in T), as follows:

¢ One constraint set is leaves(v).
o If v has children vy, .., v, in order, and 4, =1eaves(v;), then the sets

Al""! As (12)

are also constraint set of v.
« Finally, if v is a O-node, the sets

Ay U Ay, A3 U Ay, ey Ao gp -1V Ay o (13)
and the sets
AZUA33A4UA5:""AZF:/?.'IgZUAer/Z'I—l (14)
are also constraint sets of v.

Remark 1. The sets (12) are all disjoint, as are the sets (13) and the sets (14).
Hence the collection of constraint sets of v can be devided into four subcollections,
where each subcollection consists of disjoint sets.

Remark 2. 1Tf T, is any subtree of T (i.e., any connected subgraph of 7'), v is an
internal node of T, and A, is a constraint set of v in T, then the corresponding
constraint set of v in Tis 4 =], 4, leaves{(w).

LemMa 2.17. For a PQ-tree T over the groud set S, an ordering A of S is in L(T)
iff A satisfies every constraint set of every node of T.

Proof. Note that the constraint sets of v in T are the same as the constraint sets
of vin any T'= T, and for any T' = T, fr(T") satisfies every constraint set of every
node. It is easy to show by induction on the height of v that if an ordering t of
leaves(v) satisfies all the constraint sets of v and all its descendents, then 7 is the
frontier of some PQ-tree equivalent to the subtree of T rooted atv. [

COROLLARY 2.4. Let T and T' be two PQ-trees over the same ground set. Then
L(Tyn¥Y(T)=¥T", {Cy, .., C,}),

where C,, ..., C, are all the constraint sets of all of the nodes of T.
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Corollary 2.4 suggests an algorithm for finding the intersection of T with T:
reduce T’ with respect to all the constraint sets of all the nodes of 7. While this
approach would work, it would require many calls to MREDUCE, which expects
its sets to be disjoint. Instead, we achieve the same effect using a decomposifion of
T'; we invoke MREDUCE in parallel on many different parts of 7". We then make
use of the following lemma:

Lemma 2.18. Let T be a PQ-tree, and let T, be a tree obtained from T by
deleting all the proper descendents of some nodes of T. The ground set of T, consists
of leaves of T,, which are nodes (not necessarily leaves) of T. Suppose we reduce T,
with respect to a subset A, of its ground set. The effect on T is the same as if we had
reduced T with respect to the set A=\J,. 4, leaves {v).

Proof. Denote by T the tree T after the subtree T, has been reduced with
respect to A,. Also, let T, be the subtree T, after reduction. Let 7” be any tree
equivalent to T, and let T be the corresponding subtree. For each leaf v of 7, let
Ay=fra(v). I fr(T))=v, ---v,, then fr(F') = Ay o+ Ay By definition of 4, if v,€ 4,,
then A, consists entirely of elements of 4. It follows that v, ---v, satisfies A4, iff
Ay, -+ 4, satisfies 4. The lemma then follows from the correctness of the reduction
procedure. ||

To ensure that in our intersection algorithm, only a few parallel invocations are
necessary, we use a well-known technique of parallel algorithm design: a tree
separator.

Fix a tree T of n nodes. A node v of T with s children determines a separation of
T into s+ I subtrees: let T',), ..., T|,, be the subtrees of T rooted at the children of v,
and let T, be the subtree obtained from T by deleting T, .., T,,. We say v is a
good separator of T if each subtree Ty, .., T, has no more than n/2 nodes. It is
well known that every tree with at least two nodes has a good separator. To see
this, let size(v) be the number of descendents of v, for each node v of 7. Since
size(root of T)=n and size(any leaf of T)=1, there must be some node v of
maximal depth such that size(v) > 1 + (n/2). Then v is a good separator. Using, e.g.,
the Euler tour technique of [19], size(-) can be computed in O(log ) time using n
processors. We have, therefore,

LemMMa 2.19. A good separator for a tree with n=2 nodes can be found in
O(log n) time using n processors.

Finally, we call upon another technique that is specific to PQ-trees. Once we
have reduced a PQ-tree with respect to a set E, Lemma 2.1 implies that E is
contiguous in 7. Recall from Definition 2.4 that this means that

» cither E=leaves(Ica(E)), if lca(E) is a P-node or a leaf,

* or else there is a consecutive subsequence v, --- v, of the children v, ---v, of
Ica(E) such that E=){ leaves(v,).
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We need to separate the portion of the tree pertinent to E from the rest of the tree.
We call this segregation.

DerFINITION 2.14. We say E is segregated in T if E =leaves(lca (E)).

If E is contiguous in 7, we can modify 7, obtaining T, so that E is segregated in
T" and L(T’")=L(T). Namely, if E is not already segregated, then v=Ica(E) is a
Q-node, by contiguity. Insert an R-node z between the children v,---v, and v.
(R-nodes are defined at the end of Subsection2.2.) In the resulting tree T,
z=lcay(E) and leaves(z)= )¢ leaves(v;)= E. Moreover, it follows from the
definition of the R-node that L(7')=L(T). We can easily carry out this
modification or undo it in O(log ) time and » processors, where # is the number of
nodes in T. In fact, if E,, .., E, are disjoint subsets of the ground set of T, all
contiguous in T, we can segregate T with respect to all these sets within the same
resource bounds.

The algorithm for PQ-tree intersection follows. In the way we describe it, the
algorithm modifies 7" to be the intersection. In applying the algorithm, it may be
desirable to copy T’ first and work with this copy, so the original 7"’ remains
available. Also, the intersection tree resulting may have R-nodes, but these can be
eliminated as described at the end of Subsection 2.2.

INTERSECT(T, T").

I1 If T has only one node, return.

12 Find a good separator v of T, with children v, ---v,. Using at most four
invocations of MREDUCE (in accordance with Remark 1 above), reduce 7' with
respect to all the constraint sets of v.

I3 Segregate T’ with respect to leaves(v), and let v’ =lca,(leaves{(v)).

14 For i=1,..,s segregate 7' with respect to leaves;{v;), and Ilet
v} =lcar(leaves (v;)).

IS Let T\, .., T, be the subtrees of T determined by v, as defined above. For
each subtree T);, there is a corresponding subtree T, of T": for i=1, .., s, let T, be
the subtree of T’ rooted at v;, and let Tj be the subtree of 7' obtained by deleting
all proper descendents of ¢v’. Thus v’ is a leaf of T, just as v is a leaf of Tg,. If
we identify v with v, then corresponding subtrees have identical ground sets.
Recursively intersect corresponding subtrees of 7T and 7.

To prove the correctness of the intersection procedure, a simple induction on the
number of nodes of T shows that the effect of INTERSECT(T, T') is that of reduc-
ing T’ with respect to all the constraint sets of all the nodes of T. (The correctness
then follows from Corollary 2.4.) The basis, where T has only one node, is trivial.
The induction step follows from Remark 2 and Lemma 2.18.

The time for each recursive call is dominated by the time for reduction, which is
O(log n) if n processors are used, where » is the number of nodes. The recursive
calls on the subtrees may be done in parallel; the node sets of the various subtrees
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are disjoint, so we may again assign one processor per node. Because a good
separator is used in step 12, the recursion depth < logn. Hence the total time is
O(log” n).

This concludes our description of the intersection algorithm and the proof of
Theorem 2.3. ||

2.4. Representation of Cycles with PQ-Trees
In this section, we prove lemmas 2.2 and 2.3, which are reproduced below:

LEMMA 22. Let T be a PQ-tree whose ground set is the disjoint union of non-
empty sets A, B, C. Suppose that each of these sets is contiguous in T. Then T may be
modified to be a PQ-tree T' in which AU B and B U C are contiguous and such that
CYC(T')=CYC(T).

Lemma 2.2 allows us to place a PQ-tree T in a special form, if T is being used to
represent cycles.

LEmMMA 2.3. Suppose A is a proper subset of the ground set of T, and is con-
tiguous in T. If A, < A, then for each i e L(T), 4 satisfies A, iff cyc(A) satisfies A,.

Lemma 2.3 allows us to reduce a PQ-tree T used for representing cycles. For
suppose A, .., A, are disjoint subsets of a proper subset 4 of the ground set of 7,
and A is contiguous in 7. It follows from Lemma 2.3 that

cyc(P(T, {4y, ... Ay })) = {0 € CYC(T): o satisfies 4, ..., A}

and the left-hand side is just CYC(T), where T is the PQ-tree computed by
MREDUCE.

Proof of Lemma 2.3. Certainly if 1=w,---w, satisfies 4, then cyc(4) satisfies
A,. For the converse, suppose cyc(/4) satisfies 4,. Suppose both endpoints of A were
in A. By Lemma 2.1, since A4 is contiguous, /4 satisfies 4, so all the elements of /4 are
in A4, contradicting the fact that 4 is a proper subset of the ground set of T. Thus at
least one endpoint of A, say the left endpoint w,, does not belong to A. It follows
that the consecutive subsequence of cyc(4) consisting of the elements of 4, is con-
tained entirely in w,---w,. This prove the lemma. [

We next proceed with the proof of Lemma 22. We begin with a simple
observation.

Observation. If v, ---v, are some children of a node r, and leaves(r)=
(J$ leaves(v;), then r has no other children.

Lemma 2.20. Let T be a PQ-tree with root r having children v, ---v, in order. Let
T, be the same as T except that the order of r's children has been cyclically shifted,
i.e., the order is v;---v,v,---v;,_,. Then CYC(T,)=CYC(T).

Lemma 2.20 follows directly from our redundant representation of cycles.
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Lemma 2.21. Let T be a PQ-tree with root r having exactly two children v, and
vy, both Q-nodes. Let T, be the same as T except that one child, say v,, has been
renamed an R-node. Then CYC(T,)=CYC(T).

(R-nodes are defined at the end of Subsection 2.2.)

Proof. Clearly CYC(T,) = CYC(T). To prove the reverse containment, let 7' be
any PQ-tree equivalent to 7; we show that cycfr(T) e CYC(T,). Obtain 7" from T’
as follows: if T"flip,, T=T"'flip, T then let T"=T"; otherwise, obtain 7" from
T’ by flipping the root r. We then have T flip,, T=T" flip, T. This means that
the equivalence transformations used to obtain T” from T may be applied to T,
while respecting the R-node in T,. Hence fr(T")eL(T,), so certainly
cycfr(T")e CYC(T,). It remains to show that cycfr(T”)=cycfr(7T’). Let
Ay=1r;(v,) and let i, =fr;(v,). Then fr(7"’) is either 4,4, or A,4,, so fr(T") is
either 4,4, or 1,2,. In either case, cycfr(T")=cyc(4,A,) =cycfr(T’). |

Proof of Lemma 2.2. Segregate A, B, and Cin T, and let a=Ica(4), b =1ca(B),
and ¢ =Ica(C). We first want to make «, b, and ¢ all children of the root r. Assume
they are not already; then at least two of these nodes, say b and ¢, are descendents
of a single node v which is a child of r. Using the observation above and the fact
that every node has at least two children, one can verify that r has exactly two
children, a and v, and v has exactly two children, 4 and ¢. Carry out the following
three modifications on T

1. If a is an R-node and v is not, rename a to be a @-node, obtaining 7.
2. Rename v to be an R-node, obtaining T,.
3. Eliminate v and attach its children b and c¢ to the root, obtaining 7.

By Lemma 2.21, CYC(T,)=CYC(T) and CYC(T,)=CYC(T,). Finally, CYC(T;)=
CYC(T,) by definition of an R-node (defined at the end of Subsection 2.2).

In 75, the root r has exactly three children a, b, and ¢, in some order. Using
Lemma 2.20, we can obtain T, such that CYC(T,)=CYC(T;) and the order of
children is either a, b, ¢ or ¢, b, a. Hence T, satisfies the lemma. [

The R-nodes can be eliminated as in Fig. 8.

2.5. Join

In this subsection, we show how to compute the join of two PQO-trees. The reader
is referred to Subsection 2.1 for notation and definitions.

To review from Subsection 2.3, we say a subset E of the ground set of T is
segregated in T if E=leaves(lca,(E)). If E is contiguous (Definition 2.4) in T but
not segregated, we can introduce an R-node into 7, obtaining 7", so that E is
segregated in T, and L(T")=L(T).
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If E is segregated in T, we denote by T'| E the subtree of T rooted at lca(E).
Note that T| E is a PQ-tree whose ground set is E.°
We use the following notation: For a node z, we let CYCy, (T') denote the set

{cyefr(T’): T'= T and the order of children of z is the same in 7" and T7}.

In the case in which z is a leaf, the last clause in the definition of CYCy,.(T) is
trivially satisfied, so CYCy,.(T)=CYC(T).
If z is a Q-node or an R-node, we let CYCy;,.(T) denote the set

{cycfr(T"): T'= Tand T’ flip, T = true}.

Note that if z is a 0-node or an R-node,
CYC(T)=CYCy,(T)u CYCy,.(T).

In this section, z will typically be lca(E).

Define the one-place function splice(-) on pairs {a, f> of linear orderings by
splice({a, f>)=cyc(azf). (We choose to define splice on pairs, rather than make it a
two-place function, for reasons that will be apparent later.) For example, if ¢ is a
cycle of the disjoint union of non-empty sets E and D, and ¢ satisfies E (and hence
D as well), o =splice({c | D, | E}). More specifically, if T is a PQ-tree whose
ground set is the disjoint union of E and D, and leaves(z) = E, then fr(T) has the
form offy, where f=fr(z), and hence cycfr(T)=splice({ya, f)).

LEMMA 2.22. Suppose E is contiguous and segregated in PQ-trees T and T*, and
T* | E is identical to T | E. Then cycfr(T*) | E=cycfr(T) | E.

Proof. For any PQ-tree T in which E is segregated, cycfr(T)|E=
fr{lca(E)). |

DEerINITION 2.15. Suppose the ground set of T is the disjoint union of non-
empty sets D and E, and E is contiguous in 7. We say E is rigid in T if the
following two conditions are satisfied:

1. if E is segregated, then lca(E) is an R-node, and

2. if D is segregated, then lca(D) is an R-node.
Otherwise, if E is not rigid, we say E is hinged in T.

If 1 holds and 2 does not, we can first segregate E if it is not already segregated,
and then use Lemma 2.21 to modify T so that 1 no longer holds. We therefore make
the following assumption in this subsection:

*T| E is essentially what Booth and Lueker called the pertinent subtree of T, in [3], although they
did not consider the notion of segregation.
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Assumption. 1If E is hinged in T, then E is segregated and Ica,(E) is not an
R-node.

Given a PQ-tree T with n nodes, it is easy to find Ica,(E) and determine whether
E is rigid in T in O(logn) time using n processors. The significance of the term
“hinged” arises from the following corollary.

COROLLARY 2.5. If E is contiguous and hinged in T, then
CYC(T)=splice(CYC(T) | Dx CYC(T) | E).

In other words, for any o, e CYC(T), there is a ye CYC(T) such thaty | D=« | D
andy| E=f | E.

Proof. For any T,, T;=T, construct T, from T, by reordering the children of
each node v of T, | E as they are ordered in T. Then T, | E is identical to T, | E,
so cycfr(T,) | E=cycfr(T;) | E by Lemma2.22. Also, for each node v whose
children were reordered, leaves(v) contains no elements of D, so cycfr(T,) | D=
cycfr(7,) | D. Finally, because E is hinged in T, we assume that z =1ca E) is not an
R-node, so T, =T. ||

Corollary 2.5 shows that when T is E-hinged, there is independence between the
induced ordering on E and the induced ordering on D: each may be chosen
independently of the other. In the case in which E is rigid in T, there is still a partial
independence: each may be chosen almost independently of the other (viz., up to a
reversal).

COROLLARY 2.6. If E is contiguous and rigid in T, and z =Ica(E), then

CYCy, .(T) =splice(CYCy, .(T) | DxCYCq,.(T) | E (15)
CYCp.(T) =splice(CYCpyp(T) | Dx CYCyy,.(T) | E. (16)

In particular, for any o, e CYC(T), there is a y€ CYC(T) such that y| D=« | D
and y | E is either B | E or (B | E)R.

Proof. The proof resembles that of Corollary 2.5. Choose PQ-trees T,, Ty=T
such that the order of children of z in T, and T, is the same as the order in T.
Obtain T, from T, as in the proof of Corollary 2.5; we need only note that this does
not change the order of children of z. This ensures that T, flip, T, = false =
T, flip, () T, where p(z) is the parent of z, so the R-node z is respected; thus T, = T.
This proves (15); the proof of (16) is analogous. ||

The next two lemmas show that the partial independence of Corollary 2.6 is the
best we can prove, since cycfr(7T) | £ depend on the orientation of the node z and
cycfr(T) | D does as well if E is rigid in 7.

DEerFINITION 2.16. Suppose E is segregated in 7, and z=Ica(E). We define T’s
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partition of E to be the partition {leaves(v;): v; is a child of z}. The order of
children of z in T provides a natural ordering among the blocks of this partition:
say the children of z are vy, ..., v, in order. If a € leaves(v,) and b € leaves(v;), we say
a precedes b in the partition ordering if i <j, and a follows b if i>j.

LEMMA 2.23. Suppose E is segregated in T, and z=Ica(E) is a Q-node or an
R-node. Suppose a precedes b in T’s partition ordering of E. Then

CYC4,..(T) | E={4eCYC(T) | E : a precedes b in the ordering A}. (17)

Proof. Let the children of z in T be v,, .., v, in order. Suppose T' =T, and let
A;=fr(v;) for i=1, .., s. Then cycfr(T"') | E=fr,(z) is either A,---4; or 4;---4y,
depending on whether T"flip, T is false or true. Since a precedes b in 4, ---4, and
follows b in A,---4,, this proves that T'flip. T= false iff a precedes b in
cycfr(T') | E. §

Using Lemma 2.23, we can test if a given Ae CYC(T) | Eis in CYCy,.(T) | E;ifa
and b are in different blocks of T”s partition of E, they serve as a “test pair” for E.
Note that unless z is a leaf, it has at least two children, so there exists such a test
pair.

LEMMA 2.24. Suppose E is segregated and rigid in T, and z=Ica(E). Then
CYCEX:(T) | D r‘\C’Y.(:ﬂip:(T') ! D =@

Proof. By definition of rigidity, z is an R-node, and hence has a parent p(z),
which in turn must have at least one other child u. Assume without loss of
generality that u is immediately to the left of z as a child of p(z) in T. If leaves(u) is
strictly contained in D, we choose xeleaves(u) and yeD—leaves(u). If
leaves(u) = D, then p(z) is the root of 7. Moreover, condition 2 of the definition of
rigidity implies that  is an R-node; we choose x to be a leaf of the rightmost child
of u, and choose y to be a leaf of some other child of .

Then for any PQ-tree T'= T such that T flip. T= false, we have T'flip,, T=
false as well, because z is an R-node, and additionally T’ flip, T'= false if u is an
R-node. Then fr(7’) has the form «fy, where o contains x, f consists of the
elements of E, and either y precedes x in « or y is in y. In either case, y precedes x
in cycfr(7')| D. Similarly, we can show that if T"=T but T"flip, T=true,
y follows x in cycfr(T")| D, so cycfr(T')| D#cycfr(T") | D. This proves the
lemma. |

In the above proof, x and y serve as a “test pair” for D in the same way that a
and b served as a “test pair” for E in the proof of Lemma 2.23.

We now make use of the new terminology and associated lemmas in showing
how to compute the join of T, with T,,.., T,. We assume for the following
procedure that T, ..., T, are PQ-trees over the ground sets S, ..., S, respectively,
and that S,, .., S, are disjoint. We also assume that for j=1,..,k, E;=8§,n S, is
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non-empty and contiguous in T, and T, and D;=S§,—E; is also non-empty and
contiguous in 7.

We first describe a method for computing the join of T, with T,,.., T, in

O(log n) time using n processors (where n= 3% |S;]), assuming that the join is not
the null tree. This is called the “provisional” join, because it is the correct join
provided the correct join is not T,,;. Then we show how to verify the correctness of
the provisional join—that is, determine whether the correct join is T,,,—in

O(log® m) time using m processors, where m = 3% |E;|. For this, we use the PQ-tree
intersection algorithm of Subsection 2.3.

Jon. Forj=1, .., k in parallel:

J1  Segregate T, and T; with respect to E,. If |E;| =1, let T be T; and skip to
step J4.

J2  Find two elements g; and b; of E; that lie in different blocks of T’s partition
of E; and different blocks of T;’s partition of E;. Assume that a; precedes b; in the
frontler of Ty; otherwise, swap a, and b,

J3 Obtain the PQ-tree T from T; as follows: if b; precedes a; in the frontier of

» then let T be T;. Otherwise (if b, follows a;), let T be the tree obtained from T
by flipping every node This ensures that b; precedes a; in the frontier of T

J4 Segregate D; in T Replace the subtree T, | E; of T, by T | D;, letting z be
the root of T | D; in the resultmg tree. If E; is rlgld in both T, and TJ, then rename
z to be an R-node If E; is hinged in T, but z is an R-node, rename it to be a
QO-node. Let T, be the resulting PQ-tree.

Before giving the proof of correctness of the join procedure, we discuss the
implementation of step J2.

Lemma 2.25. Let m, p be two partitions of E, and assume that each is non-trivial
(i.e., has at least two blocks). Then there exist two elements a, and b, of E that are in
different blocks of © and different blocks of p.

Proof. First let a be any element of E; it belongs to some block B, of z and C,
of p. If there is an element b€ E that lies outside of both B, and C,, then we may
let @, =a and b, = b, satisfying the lemma. Otherwise, every element of E— B, lies
in C,. Then every block of = other than B, is contained in C,. Let B, be such a
block, and let a, € B,. Let b, be any element of E— C; then a, and b, satisfy the
lemma. [

Note that the proof of Lemma 2.25 may be easily implemented in parallel to find
a suitable pair a,, by, in O(log |E|) time using |E| processors. Hence each step in
the JOIN procedure takes at most O(logn) time using n processors, where
n=Y¢1S).

The verification of the previsional join is as follows. For j=1, .., k in parallel,
assuming T, and T, are segregated with respect to E;, we intersect T, | E; with
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T;| E;. If the result of any of the intersections is a null tree, the correct join is the
null tree. Otherwise, the provisional join is the correct join.

We commence the proof of correctness of the join procedure. For the sake of sim-
plified notation, we will assume that k = 1. However, the proof directly generalizes
to k> 1. We let E denote E,=S,n S,, and let D, denote S, — E. Note that D, is
contiguous and segregated in T, , the tree resulting from J4, because Ica,, (D) =z.

For i=0, 1, and any linear ordering 4 of E, let

A}={0;| D;:0,€CYC(T,)and g, | E=A}.
The following lemma states that the join procedure is correct.

LEMMA 2.26. Let T, be the tree resulting from step J4. Then either
CYC(T+)=spiicc(U A;;xA{»“) (18)

or a null tree arises in the intersection performed in the verification step, in which case
the right-hand side of (18) is empty.

We start by proving the following claim:

CLAM.  The join is null (the right-hand side of (18) is empty) iff a null tree is the
result of the intersection performed in the verification step.

Proof. For the right-hand side of (18) to be non-empty, there must be some
ordering 4 of E such that 4} and 47" are non-empty. Suppose there were such a A.
Then there exist Ty =T, and T;= T, such that cycfr(T;) | E= A= (cycfr(T7))" If
we let T be the tree obtained from T| by flipping every node, it follows that
fr(T; | E)=A=1fr(T| | E), proving that the intersection of T, | E, with T, | E, is not
the null tree.

Next suppose that the intersection yields a non-null tree with frontier 4. Then
there exist T=~T,|E and T#=T,|E such that fr(T§)=A=(fe(T*)" If
zo=Icar(E) is an R-node, we assume that T flip., T, | E= false (for otherwise
consider A%). Obtain a tree T from T, by ordering the children of each node of
T; | E as these children are ordered in Tf. Then T = T; this holds even if z, is an
R-node, because in this case z, did not have to be flipped to obtain T from T,,. We
can similarly obtain T from T, (although in this case if z, =Ica,,(E) is an R-node,
zs parent may have to be flipped to ensure T;=T,) We then have
cycfr(Tg) | Doe A4 and cycfr(T) | D, € A", showing that the right-hand side of
(18) is not empty. f§

We now prove the correctness of the provisional join procedure, assuming that
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the join is not empty. First suppose that E is hinged in T,. Then by Corollary 2.5,
A is independent of 1 and is always equal to CYC(T,) | Do, so

U Al x A¥=CYC(T,) | Dy x U A%
=CYC(Ty) | Do xCYC(T;) | D;.

Similarly if E is hinged in 7). But if E is hinged in either T, or T,, then D, is
hinged in T, , the tree resulting from step J4. Therefore, by Corollary 2.5,

CYC(T, ) =splice(CYC(T,) | Do x CYC(T,) | D,)

and we are done.

Now suppose that E is rigid in both T, and T,. Let zo=Ilcar(E), and let
zy=lcar(E). In this case, z, and z, are R-nodes. Also, D, is rigid in the tree /
By Corollary 2.6,

CYCroAT', ) = splice(CYCpy.(To) | Do x CYCyy.(T) | Dy)
CYCﬂipz(T+ ) a Splice(CYCﬂipzo( TO) I DO X CYCﬂip:](Tl) | Dl)'

If we could show that
U Afi X AI:R = (CYCﬁxzo(To) | Do x CYCﬁle(Tl] | D)
A

U (CYCripz(To) | Dox CYCai,,(T)) | D), (19)

we would thereby show that CYC(T , ) =splice(|J, 4% x 4%%), and would be done.

To prove (19), we start by showing that the left-hand side of (19) contains the
right-hand side.

Let A be any ordering of E in CYC(T,) | En CYC(T,) | E such that g, precedes
by in A. (Since CYC(T,) | EnCYC(T,) | E is closed under reversal and we assume
it is non-empty, there exists such a A.) By Lemma 2.23, AeCYCy,. (T,) | E. By
Corollary 2.6, CYCy,.(To) = splice(CYCgy.,(To) | Do x CYCy,.,(Ty) | E). Hence for
any aeCYCq,. (T,) | Dy, splice(a, 1) € CYCq,.,(T,), proving that xeAj. This
shows CYCy,.(To) | Do < A¢. Similarly 2% e CYCy,.,(T,) | E, so we have

CYCri.o(To) | Dox CYCy,. (T1) | D, € A x A3,

An analogous argument shows that CYCpy,. (T,)|Dgx CYCﬂipzi(f',) | D, =
A % Al

0It remains to prove that the right-hand side of (19) contains the left-hand side.
Every element of ), 4§ x 41" is of the form (g, | Dy, o, | D, ), where 6o CYC(T,),
¢, CYC(T)), and oo | E= 1= (o, | E)*® for some ordering A of E.

Suppose a, precedes b, in A Then ¢, CYCy,.(7,) and ¢,€CYCy,. (T),) by
Lemma 2.23. On the other hand, if a, follows b, in 4, then 6, CYCy, (T,) and
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o, eCYCﬂiPZI(Tl). This proves that the right-hand side of (19) contains the left-
hand side, and we are done. This completes the proof of correctness of the join
procedure. [

The following lemma is used in finding a planar embedding, once the planarity
algorithm of Section 3 succeeds.

LEMMA 2.27. Given ce CYC(T, ), we can use the intersections trees computed in
the verification step to choose ¢, CYC(T;) for i=0, ... k such that 0 =0, join o,
Jjoin ---join 6, and ¢y | E;=(0;| E;)®.

Proof. As before, assume for simplicity that k=1. We have o, | D;=0 | D, by
definition of ¢ = g, join ¢,. We need to choose an ordering o, | E;= (g4 | E )% such
that o, e CYC(T},) and 6, CYC(T,). The frontier of the intersection tree is a linear
ordering 4, of E, such that A,—and hence also Aif—are members of
CYC(T,) | E;nCYC(T,)| E,. Thus 4, and A are two candidates for the desired
ordering of E;.

If E, is hinged in both T, and T, the choice between 4, and Af is arbitrary by
Corollary 2.5—either choice will work. Suppose E| is rigid in T, or T;. (If both, we
need only work from one; the correctness of 7', ensures that the result will be con-
sistent with the other.) Say E, is rigid in T,. To determine if 4, belongs to
CYCﬁx:,(f’l) | E,, we can use the test pair a,, b, as in Lemma 2.23. To determine if
¢, | D, belongs to CYCq,.(T,) | D; or to CYCyy,(T) | Dy, we use another test
pair as in the proof of Lemma 224. If £,eCYC. (T))|E, and o,|D,€
CYCHUI(TI)]DI, then we let o, =splice({a, | Dl,}.l)) S0 aleCYCﬁx_.l(Tl).
Similarly if 1, e CYCyy,., (7)) | £, and o, | D€ CYCy, (7)) | D,y Otherwise, we let
o, =splice({a, | D, AR)). In either case, g, is then determined by the requirement
that oo | E;=(a, | E))*. 1

We conclude this subsection with a technical lemma that is used in the planarity
algorithm.

LEMMA 2.28. Suppose that T, is the join of Ty with Ty, ..., Ty, obtained using the
procedure of this subsection. Let E, be the intersection of the ground set S, of T, with
the ground set S; of T, for j=1, .., k:

(1) Suppose a proper subset A of Sy is contiguous in Ty, and each E;= A. Then
(A—Uf E)u U5 (S;—E)) is contiguous in T ...

(2) Suppose a subset A; of S;— E; is contiguous in T;. Then A; is contiguous
inT,.

Proof. The lemma follows from the procedure. To prove (1), assume for sim-
plicity that A is segregated in T, and let y=Icaz(4). Since E; = 4, lcar(E;) is a
descendent of y. In carrying out the join, we substitute T} | (S;— E;) for T, | E;, so
lca, (S;—E;) becomes a descendent of y, and leaves, (y)=(4-— USE)u

Ui(S;— ).
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To prove (2), assume for simplicity that A; is segregated in 7, and let
y=lcar(4;). Then y is a node in T;| (S;—E;), and therefore y and its subtree
appear in T, . Thus leaves, (y) =4;. 1

3. PLANARITY TESTING

3.1. Preliminaries

The graphs we discuss in this section will typically be “multigraphs,” i.e., there
may be many edges sharing the same endpoints. Moreover, we need to manipulate
these graphs in ways that preserve the identity of edges while changing their
endpoints. We therefore use a non-standard definition of a graph, in which an edge
is not determined by its endpoints:

DEFINITION 3.1. A graph G is a pair G={p, E), where E= {ey; .; ¢} 18 a
finite set, the set of edges of G, and p is a partition of the set Ex {0, 1} of daris.
Each block v of the partition p is a node; an edges e is incident to a node vep if v
contains a dart of e, ie. if {e,0>€v or {e, 1) ev. Paths, cycles, connectivity, etc.
can be defined in terms of edge-node incidence. However, because a block of a par-
tition is by definition non-empty, our definition of a graph disallows isolated points.
We therefore assume in this section that a graph has no isolated points.

For any edge ec E and € {0, 1}, the pair (e, 6) is a dart of e; the other dart is
then (e, 1 —0). We define the permutation other: (Ex {0, 1}) - (Ex {0, 1}) of the
darts of G by other[ (e, d)]=<e, 1 — ). For notational convenience, if d is a dart,
we denote other(d) by d*.

The ordinary definitions of graph embeddings and planarity are topological.
However, a technique commonly used in the literature (see p.22 of [21]) is the
combinatorial representation of an embeding. We make use of this technique.

For a graph G = {p, E), an embedding of G is a permutation =z of the set of darts
Ex {0, 1} whose orbits are exactly the blocks of p. Thus for every node vep, n
determines a cycle on the set of darts belonging to v. We say {(n, E) is an embedded
graph, and we typically denote it by G,. Its underlying graph is G. To define the
Jfaces of the embedded graph, we define another permutation 7* of the set of darts
by composing n with other, so n* = nc other. Then the faces of the embedding 7 are
the cycles of n*.

As described in, e.g, Theorem 3.5 of [21], there is a correspondence between
(combinatorial) embeddings and topological embeddings onto surfaces in which
(intuitively) the darts incident to a node are cyclically arranged around that node
clockwise in the sequence determined by the corresponding cycle of #. Moreover, if
G is connected, our combinatorial “faces” are the boundaries of the faces of a
corresponding topological embedding; in particular, the number of faces is just the
number of orbits of n*,
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For an embedded graph G,, we say that = is a planar embedding and G, is a
planar embedded graph if this version of Euler’s formula is satisfied,

m—n+2c=f (20)

where m =number of edges of G, n=number of nodes, ¢ =number of connected
components, and f=number of faces. It follows from Theorem 3.5 of [21] that an
embedding which is planar according to this definition corresponds to a topological
planar embedding, and vice verse. A graph is planar if there exists a planar embed-
ding.

We define the dual of an embedded graph G,= {(m, E) to be the embedded
graph (G,)* = (n*, E). Thus the edges of (G,)* are the edges of G and its nodes
are the faces of G,. If G, is connected and planar embedded, our definition of
the dual corresponds to the topological definition. Since the topological dual is
connected, it follows that if G, is connected, the dual (G,)* is connected.

Fact 3.1. The dual of the dual of G is G ..

Proof. (n*)* = (moother)* =m-othercother=m. |

Fact 3.2. G, is planar iff its dual is planar.

Proof. Taking the dual exchanges the number of nodes with the number of
faces. Substituting into (20) gives the result. ||

Two natural operations on graphs are deletion and contraction. To delete an
edge ¢ from the graph G = (p, E) is to remove e from E, remove ¢’s darts from p,
and, if necessary, eliminate any resulting isolated nodes. We denote the result by
G —e. To contract an edge e is to identify the endpoints of the edge e (i.e., union the
blocks containing darts of ¢), and remove e from E and ¢’s darts from p. (Again any
resulting isolated nodes are eliminated.) We denote the result by G/e.

The operation of deletion of an edge e is also applicable to an embedded graph
G, = {m, E). The embedded graph G, —e is defined to be {n’, E— {e} ), where 7’
is obtained from = by removing e’s darts. (To remove a dart ¢, from a permutation
7, we write 7 as the product of its cycles, and remove d, from the cycle in which it
appears, i.e., the cycle (d,d, - - -d,) is replaced with (d, ---d,). Thus the cyclic order
among the remaining darts in the cycle is preserved.)

Fact 3.3. Deleting an edge from a planar embedded graph results in a planar
embedded graph.

Although the fact can be proved combinatorially, it follows directly from the
topological definition of an embedding.

We will define the operation of contraction as applied to an embedded graph in
terms of deletion in the dual. Say the contraction of an edge e in a graph G is a
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proper contraction if e is not a self-loop in G. This definition is motivated by the
following lemma.

LEMMA 3.1.  Suppose G, is an embedded graph in which e is not a self-loop. Then
the underlying graph of the dual (G, — e)* is the graph obtained from the underlying
graph of the dual (G,)* by contracting the edge e.

Note. The case in which G, is planar embedded was proved by Whitney [22]
for his version of a combinatorial dual.

Proof. Suppose n[d,]=d and n[d*]=d,. Then n*[d®] =d and n*[d] =d,. If
we delete the dart d from n*, obtaining n*', we change the value of the function 1*
only at dff. Namely, n*'[df]=d, but for any other dart d; #d, n*'[dy] =n*[d;].
Now let n'=n*"oother. We have n'[d,]=d, but for any other dart d,#d~,
n'[d;]=nld;].

Let d and d’ be the darts of e, and suppose the (distinct) cycles of 7 containing
these darts (i.e., the endpoints of e) are 6 =(da, a,---a,) and ¢'=(d’ b, b,---b)).
By the above remarks, if n*' is obtained from n* by deleting d and 4’, and
n'=(n*')*, then n’ contains the cycle (a,---a, b, ---b,) instead of ¢ and ¢, but is
otherwise identical to . Thus the collection of darts (# d, d') previously belonging
to the endpoints of ¢ now belong to a single node. [

DeFmNiTION 3.2, The result of contracting the edge e of the connected embedded
graph G, is defined to be ((G,)* —e)*, and is denoted by G, /e.

By Lemma 3.1, if the contraction of e in G, is proper, the underlying graph of
G./e is the same as G/e, where G is the underlying graph of G,. By Facts 3.2 and
3.3, if G, is planar, G,/e is planar.

DEeFINITION 3.3. If G is a graph and the graph G’ can be obtained from G by
deletions and proper contractions, we say G’ is a minor of G. If & is an embedding
of G, then applying the deletions and contractions to the embedded graph G, yields
an embedded graph G;.. We say in this case that G is an embedded minor of G ..

By deletions and contractions of edges, a connected subgraph H of a planar
embedded graph G, can be reduced to a single node A The resulting planar
embedding associates a cycle ¢ with the node /. This cycle describes how the edges
of G — H were arranged around H in the original embedded graph G,. We will use
such cycles to represent embeddings in the planarity algorithm of Subsection 3.2.
Here we develop machinery enabling us to show that under certain circumstances
the cycle ¢ is determined uniquely by the embedded graph G,, regardless of which
edges of H are deleted and contracted to reduce H to a single node A.

We say a node v of a graph G is an articulation point if there are two edges such
that any path connecting endpoints of the two edges also contains v. For example,
if v has a self-loop in a graph containing at least two edges, then v is an articulation
point.
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We now state the two main results of this section.

UNIQUENESS LEMMA. Suppose G, is a connected planar embedded graph with a
minor G'. There is a unique embedded minor of G, having G' as underlying graph, if
the following condition is satisfied:

For any node v of G' resulting from the identification of at least two
nodes, of G, v is not an articulation point.

For example, if G’ is biconnected, the condition is satisfied.
For the next lemma, refer to the definition of the operator join, Definition 2.8.

PLANAR CONTRACTION LEMMA. Ler G, be a connected embedded graph. Let x
and y be two adjacent nodes of G, and let A be the set of edges between x and y.
Suppose G —x —y is connected. Let ¢, and o, be the cycles of m corresponding to x
and y, respectively. Then T is a planar embedding of G iff the following conditions are
satisfied:

* the darts of edges of A are consecutive subsequences t. and t, in o, and 7 ,,

e the order of darts of t. is the reverse of the order of the corresponding darts in

T, and

e the embedded graph G'. is planar, where G is obtained from G by deleting
all but one edge of A and contracting the remaining edge, identifying x and y to
form z.

Moreover, if the first two conditions are satisfied, the cycle a. associated with z in the
embedded graph G is ¢ joing,.

We postpone the proofs of the Uniquness Lemma and the Planar Contraction
Lemma until the end of this subsection.

DeFmNiTION 3.4. For a node-induced subgraph H, we call an edge e of G an
H-linking edge if exactly one endpoint of ¢ is in H. The endpoint not in H is called
the edge’s outside endpoint. Let link(H) be the set of H-linking edges.

DErFINITION 3.5. Let G be a connected graph. We say that a subgraph H of G is
bound in G if H is node-induced and connected, and G — H is connected. Given the
connected graph G and a subgraph H bound in G, obtain the graph G/H from G by
contracting the subgraph H to a node h, which we define by the following procedure:
choose a spanning tree T of H and contract the edges of 7. (Note that each con-
traction is proper.) At this point, H has been contracted to a single node 4 with
some self-loops. Next, delete all self-loops of 4. Let G/H denote the result. Note that
the edges incident to / in G/H are the H-linking edges. Also, note that G/H is
independent of the choice of spanning tree T. Moreover, G/H —h is connected
because G— H is connected. Hence by the Uniqueness Lemma, for any planar
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embedding 7 of G, there is a unique embedding n’ of G/H. We denote the resulting
embedded graph by G,/H.

For each planar embedding = of G, we obtain a cycle of link(H), namely the
cycle associated with 4 in the embedding of G,/H. We call this cycle the embedding
rotation of H in G,.. More generally, a cycle of link(H) is an embedding rotation of
H in the (unembedded) graph G if it is the embedding rotation of H in G, for some
planar embedding 7. In the planarity algorithm, we represent the set of all
embedding rotations of certain subgraphs H in G, thereby characterizing in part the
set of embeddings of G. For example, if G is not planar, there are no embedding
rotations of Hin G.

Formally, the cycles of embeddings are cycles of darts, not of edges. However,
here and in Subsection 3.2, we will at times ignore the distinction between darts and
edges, and treat a dart as the edge it corresponds to. Thus, for example, an edge e
appears in two cycles of an embedding—the cycles corresponding to the endpoints
of e.

LEMMA 3.2. Suppose G, is a planar embedded graph with a bound subgraph H.
Let G be an embedded minor of G, and let H' be the subgraph of G’ corresponding
to H. If H' is bound in G' and link(H') = link(H) then the embedding rotation of H'
in Gy is the embedding rotation of H in G .

Since every planar embedding 7 of G induces a planar embedding n’ of G, it
follows from the lemma that every embedding rotation of H in G is an embedding
rotation of H' in G'.

Proof of Lemma 3.2 (see Fig.9). Let U be the minor of G obtained by first con-
tracting 7/ to a node 4, and then contracting G — & to a node g. The embedding 7 of
G induces an embedding # of U. The above way of obtaining U, as an embedded
minor of G, shows that the cycle that 7 associates with 4 is the embedding rotation
of Hin G,. Another way to obtain U from G is to first obtain G’ from G and then
obtain U from G'. The resulting embedding of U is also #, by the Uniqueness
Lemma. This way of obtaining U, as an embedded minor of G shows that the cycle
associated with % is the embedding rotation of H' in G,.. This proves the lemma. |

LEMMA 3.3. Let G be a graph containing a bound subgraph H. Let G' = G/H be
the minor of G obtained by contracting H to a node h. Let G" be a minor of G con-

G
G G/H
U
FiG. 9. The graph U is a minor of both G" and G/H. Moreover, G’ and G/H are minors of G. Thus U
can be obtained as a minor of G in two different ways.
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taining H and all the H-linking edges. Let ©' be a planar embedding of G" associating
the cycle o with h. Then two conditions are equivalent.

1. There exists a planar embedding © of G such that G is an embedded minor
of G,.
2. The cycle ¢ is an embedding rotation of H in G".

Proof. (1)=(2) Suppose G, is an embedded minor of G,. Let n” be the
embedding of G” induced by the embedding = of G. Then by Lemma 3.2, the
embedding rotation of H in G- equals the embedding rotation of H in G, which
equals the embedding rotation of 4 in G., which is . This proves (2).

(2)=(1) Suppose ¢ is an embedding rotation of H in G", and let n" be the
corresponding planar embedding of G”. We obtain an embedding = of G from =’ by
replacing the cycle ¢ with the cycles " associates with nodes of H. Assume for a
contradiction that m is not a planar embedding, and let G, be a minimal non-planar
embedded minor of the embedded graph G.. Let x and y be any two adjacent
nodes of G, and let A be the set of edges between them. Since 7 is not a planar
embedding, it must violate one of the three conditions of the Planar Contraction
Lemma. By minimality of G, the third condition is not violated; hence either the
edges A are not consecutive in the cycles o, and ¢, associated with x and y, or they
are consecutive but o, | 4# (g, | A)*. But if x and y are both in H, then this same
violation holds for the planar embedded graph G... If x and y are not both in H,
then the edges 4 between them exist in G’, and the same violation holds in the
planar embedded graph G.. In either case, we have a contradiction. ||

The remainder of this subsection contains proofs of the Uniqueness Lemma and
the Planar Contraction Lemma. Understanding of these proofs is not vital for
understanding the planarity algorithm.

Let G, be a planar embedded graph, and let H be a bound subgraph. Define the
permutation other, of the darts of G by

other[d] if d is a dart of an edge of H

other,[d] = { i otherwise.

For a permutation n of the darts of G, define n”=n-other,. Note that
afl = (n*)° ¥ '

Define the exfaces of H in G, to be those cycles of 7/ that contain darts belong-
ing to nodes of H. Note that each exface of H contains only darts of edges of H and
H-linking edges. For example, if H consists of a single node v, then A has no edges.
Hence for any dart d contained in the node v, n”(d) = n(d), which is another dart
contained in v, so the only exface of H in G is the cycle of = corresponding to v.

LEMMA 34. (1) If e is not an edge of H, then deleting e from G, has the same
effect as removing its darts from n".
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(2) If e is an edge of H, then deleting e from G* has the same effect as remov-
ing its darts from n".

Proof. Let d be a dart of e¢ H. If m has the form n= ---(---d, d d, ---) then 7"
has the form n”= ...(---other,[d,] d d,-- -). Thus removing 4 from = leaves
w'=---(--dydy---), so (n')?=...(.--othery[d,] d,---). Applying this obser-
vation twice, once for each dart of e, proves (1). Since 77 = (z*)~#, (2) is the dual
version of (1). |

A consequence of (1) is that the exfaces of H in G,, with all edges of G— H
omitted (i.e., with their darts removed), are just the faces of H (with the induced
embedding). For example, an embedded tree has only one face, so it has only one
exface. The following lemma, which is a consequence of (2), is the principal purpose
of exfaces.

LEMMA 3.5. If T is a tree in G, and we contract the edges of T in G, one by
one, until T has become a single node t, the cycle corresponding to t in the resulting
embedded graph is the exface of T in G, with edges of T omitted.

The proof is by induction on the number of nodes of T, using (2) of Lemma 3.4.

The following lemma is a combinatorial analog of the Jordan Curve Theorem.

LEMMA 3.6. Suppose H is connected, and darts d,d’e G—H are in different
exfaces of H in G. Then every path between the node containing d® and the node
containing (d')® goes through a node of H.

Proof. The lemma is trivial if &’ = d*%, for then both the node containing d* and
the node containing (d')*® are nodes of H. Suppose F 1=(dd, d,---d,) and
Fy=(d"d{d;---d/) are two different exfaces of H in G, with edges of
G—H— {e, ¢'} omitted, where e and e’ are the edges associated with d and d’. Sup-
pose there is a path between J and 4’ avoiding H, and let d=b,, b,, .., b, = (d')R
be the corresponding sequence of darts; ie., 5% and b,, , are incident to the same
node v¢ H, for i=1, .., r— 1. Let G’ be the union of H and the edges corresponding
to by, ..., b,. Then (b,---b, d{---d] b®---bR d,...d,) is a face of G’. Thus the num-
ber of faces of G” is one fewer than the number of faces of H. But we added r edges
and r— 1 nodes to H to get G'. It follows that if H satisfies Euler’s formula, then G’
does not. This is a contraction, because G’ can be obtained from G by deletions,
which preserve planarity. ||

We can use Lemma 3.6 to prove the Planar Contraction Lemma.

Proof of Planar Contraction Lemma. (<) Suppose that the first two con-
ditions hold. Write 0, =(d, ---d, y) and 6, = (d®---dR y’), where d,, ..., d, are darts
of edges in A4, and y and y' are sequences of other darts. We then have faces
(df d;,,) for i=1, .., t—1. Deletion of all edges in 4 but one yields an embedded
graph G, in which these 7 — 1 faces have disappeared. Contraction of the remaining
edge e does not change the number of faces but does reduce by one the number of
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nodes and the number of edges. It follows that if the resulting graph G satisfies
Euler’s formula, then so does G,,.

Moreover, if we let H be the subgraph of G consisting of x, y, and the edge
e between them, then the exface of H in G, is o=(d, y’ d® y), where d, and
dR are the darts of e. Contracting the edge e is deleting e in the dual, which by
part (2) of Lemma 3.4 transforms ¢ into ¢’=(y"y), which is ¢,joing,. But
following contracting of e, H consists only of the node z. As observed before
Lemma 3.4, the exface of a single node is the cycle associated with that node. Thus
¢.=0 =0, joino,.

(=) Now suppose that « is a planar embedding of G. The third condition
holds because deletions and proper contractions preserve planarity. Let H be the
subgraph consisting of x, y, and the edges 4 between them. Let ' be the embedding
of H induced by the embedding = of G (i.e., H, is obtained from G be deleting all
edges of G — H).

If |A| =1, the first two conditions hold trivially. Suppose A= {e,, e,}. Then
H,. has two faces. Because G— H is connected, it follows from Lemma 3.6 that
one. of the two exfaces of H in G contains no darts of G— H, ie., is just a face
of H_, say ({e,,d,){e,, 6,)). It follows that n[{e;,1—0,)>]=<e,;,d,) and
n[{e,, 1 —8,>]=<e,, 6,). This proves the first two conditions of the lemma.

Finally, suppose A4 contains more than two edges. If all but two edges of 4 are
deleted from G_, the remaining two edges satisfy the first and second conditions in
the resulting graph, as we just proved. It follows that all the edges of 4 satisfy these
conditions in G,. |

We need one more lemma to prove the Uniqueness Lema.

LeMMA 3.7. Let H be a node-induced connected subgraph of G, and let A be a
subset of the H-linking edges. Suppose that for any two H-linking edges not in A,
there is a path connecting endpoints of the two edges that avoids H. For any spanning
tree T of H, let ®(T) be the exface of T in G, with edges of AU H omitted. Then
®(T) is always the same, independent of choice of T.

Proof. We first prove that &(T)=@(7') for any two spanning trees T
and T’ such that |[T—T'|=1. Let eeT—T', and let '€ T'—T. Then TU T’ =
Tu{e'} has a single cycle containing ¢ and e’. Hence TU T’ has two faces,
hence two exfaces in G. Let these two exfaces be (dad’ B) and (d®y (d')R 1), where
d is a dart of e, d' is a dart of ¢, and «, f, y, 4 are sequences of darts. Then the
exface of Tin Gis F=(da d' A d® y(d')® B) while the exface of T'in G is F'=
(d Bdy(d)RidRa)

The exfaces of H contain only H-linking edges and edges of H. We assume that
every pair of H-linking edges not in 4 are connected by a path avoiding H, so only
one exface of Tu T’ can contain darts not in A U H, by Lemma 3.6. Thus either
o, p or y, A contain only darts of A U H. Then the cycles F and F’ become identical
when edges of 4 u H are omitted. We have shown @(T')=®(T").

We now prove the lemma for any two different spanning trees T and T, by
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induction on |T—7'|. We proved the basis of the induction. Now suppose
|T—T'|>1. Choose ee T—T", and let ¢’ be an edge of T’ — T appearing in the
unique cycle in 7' Ue. Let T"=Tu {e} — {e'}. Then |T"—T'|=1and |T" - T| <
|T" =TI, so by the inductive hypothesis, &(T)=&(T") and &(T")=S(T). |

We restate and then prove the Uniqueness Lemma:

Suppose G is a connected planar embedded graph, and G' is a minor of G. Any
sequence S of deletions and proper contractions that yields G' when applied to G
yields the same embedding 7' of G' when applied to G, if the following condition is
satisfied.

connectivity condition. For any node v of G' resulting from the iden-
tification of at least two nodes of G, v is not an articulation point of G'.

Proof of the Uniqueness Lemma. Assume the connectivity condition is satisfied.
It is easy to see that the two operations deletion followed by contraction may be
swapped in a sequence S without affecting the resulting embedding, so we may
assume that all contractions happen before any deletion in each sequence S. The
order among the deletions clearly does not matter to the resulting embeddings;
moreover, since contractions are just deletions in the dual, the order among the
contractions also does not matter.

Let S, and S, be two sequences of proper contractions followed by deletions that
yield G’ when applied to G. Let C; be the set of edges contracted in S, and let D, be
the set of edges deleted in S, for i=1, 2.

Fix a node ve G', and let H(v) = {ue G: 3 dart de v nu}. Then the nodes of H(v)
are identified to form v in G, so the contracted edges C, contain a tree T, spanning
H(v) in G. (If H(v) consists of a single node, the T contains no edges.)

The set of edges 4;,=(C;u D;) n {edges incident to H(v)} consists of those edges
incident to H(v) that are not incident to v, so 4, =A,.

Let g, be the cycle that =, associates with v. Our goal is to show that ¢, = ¢,. By
Lemma 3.5, 0, is the exface of T in G, with edges of 4, omitted. If H(v) consists of
a single node u, the exface of 7, in G, is just the cycle 7 associates with u, so
o, =0,. Suppose therefore that H(v) consists of at least two nodes. Then by our
assumption that the connectivity condition holds, v is not an articulation point of
G', so for any two edges incident to v, there is a path in G’ connecting these edges
that avoids v. Hence for any two edges incident to H(v) and not in A,, there is a
path in G connecting these edges that avoids H(v). Then by Lemma 3.7, the exface
of T, in G, with edges of A, omitted is the same as the exface of T, with edges of
A, omitted. Thus ¢, =0,. |}

3.2. The Algorithm
Our main theorem is

THEOREM 3.1. A4 graph with n nodes and no multiple edges can be tested for
planarity in O(log” n) time using n processors. If the graph is planar, a combinatorial
representation of a planar embedding can be found within the same bounds.
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The basic strategy of our planarity-testing algorithm is to process the graph
“from the bottom up,” starting with embeddings of individual nodes and ending
with embeddings of the whole graph. A basic step in the algorithm is combining
embeddings of subgraphs to form an embedding of the larger subgraph. We cannot
merely choose a single embedding for each subgraph, for the chosen embeddings of
two subgraphs might be inconsistent, preventing the embeddings from being com-
bined. Instead, we use PQ-trees to represent the set of all embeddings of each sub-
graph. Once the planarity-testing algorithm succeeds, a “top-down” process can
obtain a combinatorial embedding of the graph from the PQ-trees just computed.

Note that it is sufficient to achieve O(log? n) time using O(n) processors, for we
can then reduce the number of processors by a constant factor at the expense of a
constant factor increase in the time bound. Also, it follows from Euler’s formula
that if an n-node graph G with no multiple edges or self-loops has more than 3n
edges, it is not planar, and our planarity-testing algorithm may immediately reject
it. We assume therefore that G has m < 3n edges; the processor bound for our
algorithm will be O(m)= 0(n).

Note. In this section, we make use of the notation that identifies a set of nodes
with the subgraph induced by that set of nodes.

The first step of the algorithm is to find the biconnected components of the input
graph.

LemMA 3.8 [19]. A graph G on n nodes and m edges can be (edge) partitioned
into its biconnected components in O(log® n) time on n+m processors.®

By the following lemma, the planarity of each biconnected component may be
considered independently.

LEMMA 3.9 [22]. A graph G is planar iff its biconnected components are planar.
Moreover, the combinatorial representation of a planar embedding of G can be
immediately obtained from the combinatorial representations of planar embeddings of
its biconnected components.

We therefore assume for the remainder of this section that G is biconnected.

The second step is to find an st-numbering for G. An assignment of distinct
integers to the nodes of G is called an st-numbering’ if two adjacent nodes s and ¢
are the lowest and highest numbered, respectively, and every other node is adjacent
to both a lower numbered and a higher numbered node. Note that an sz-numbering

6 This algorithm works in O(logn) time on a concurrent-write model of parallel computation.
However, the algorithm may be run on a weaker model with exclusive-write at a O(log n) factor increase
in the time bound, using a simulation result of Vishkin [20] and the fact that small integer sorting may
be done in O(log n) time using » processors on this weaker model.

7 As originally defined, an st-numbering was an assignment of integers from 1 to n to the 7 nodes, but
we find it convenient to make this minor change.
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of G induces a direction on the edges of G—namely, an edge points toward its
higher numbered endpoint. Accordingly, we call an edge incident to v an incoming
edge if its other endpoint is numbered lower than v and an ourgoing edge if its other
endpoint is numbered higher than v. Let in(v) be the set of incoming edges
of v, and let out(v) be the set of outgoing edges. The important fact about an
st-numbering is that in the resulting directed acyclic graph, for every node v, there
is a directed path from s to ¢ through v.

LeMMA 3.10 [13]. G has an st-numbering iff G is biconnected and has at least
two nodes.

In [6], Even and Tarjan give a linear-time sequential algorithm for finding an
st-numbering. This algorithm does not seem parallelizable. Fortunately, Maon,
Schieber, and Vishkin have an efficient way to find an st-numbering in parallel,
based in part on the parallel ear-decomposition technique of Lovasz [14].

THrOREM 3.2 [15]. Given a biconnected graph G on n nodes and m edges, and an
edge {s, t}, an st-numbering can be found in O(log® n) time on m+ n processors.®

The remainder of our planarity algorithm may be viewed as a contraction
process on the st-numbered graph, taking place over a series of stages. We start
with the original st-numbered graph G® = G. In stage i + 1, we choose a collection
of bound subgraphs of the graph G in accordance with the sz-numbering. We con-
tract these subgraphs, and we update the sr-numbering, producing the graph G+,

We say a node v#s, 1 of G is joinable if v is adjacent to some node u #s, ¢ in
G. In each stage, we contract some of the edges connecting joinable nodes, reduc-
ing the number of joinable nodes. We stop after stage i if G contains no joinable
nodes; let .# be this last stage. Thus every node in G”) except s and ¢ is adjacent
only to s and 7.

For each node ve G and each j<i, we let H)(v) denote the subgraph of GV’
‘that was contacted over stages j+ 1, ... i to form v. We write H(v) for HO(v). If
ue HY)(v) for ve G, we let u® denote v.

Note that G is actually a multi-graph, not a graph. That is, G’ may have mul-
tiple edges with the same endpoints. The reason is that two nodes adjacent to a
common node # may have been identified to form a node v, in which case the node
v will have two edges to u.

We choose our bound subgraphs to contract at each stage so that

 Neither s nor ¢ is ever identified with any other node; ie., s’ =5 and )=
for all i.

* Only O(log n) stages are needed.

* The st-numbering is easy to update, following contraction of edges.

8 See Note 6.
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« For each node v #s, ¢ in G, the subgraph H(v) permits a PQ-tree represen-
tation of the set of its embeddings.

We first show how the subgraphs are chosen and show that our method of
choosing subgraphs has the first three properties. Then we describe the method for
representing the set of embeddings of a subgraph with a PQO-tree, and we show how
this representation is updated when edges are contracted. Finally, we show how to
obtain an embedding of the original graph G.

To ensure that only O(log n) stages are needed, we use a sequence of four stages,
called a phase, to reduce the number of joinable nodes by a factor of two. In par-
ticular, during a phase every joinable node is identified with some other joinable
node. Thus, if G is the graph immediately preceeding the beginning of a phase,
then for any joinable node v of G, |H"(v""**)| > 2. This shows that each phase
reduces the number of joinable nodes by a factor of two, so only [lognT]
phases = 4] log n'] stages are needed.

A phase has two parts, an s-rooted part and a t-rooted part, and each part con-
sists of two subparts, a main stage and a clean-up stage.

For the s-rooted part of a phase, we construct a spanning tree of G —{t}
rooted at s. By the definition of s-numbering, every node ve G'” other than s and ¢
is adjacent to some lower numbered node and to some higher numbered node. For
each such v, let its parent p(v) be the highest numbered neighbor of v whose num-
ber is less than that of v. We thereby define a “multi-tree,” a graph that would be a
tree if multiple edges were identified. The root of the multi-tree is 5. Using parallel
pointer-jumping, compute for each node v the distance from s to v in the multi-tree.
Call a node “even” or “odd,” according to whether this distance is even or odd. In
the main stage, we identify even nodes with their (necessarily odd) parents. In the
clean-up stage, we identify odd leaves with their (necessarily non-leaf) parents,
except for those leaves whose parent is s. In each case, we identify children with
parent and assign to the resulting node the parent’s number.

The t-rooted part of a phase is similar; the parent of v is chosen to be the lowest
numbered neighbor of v with a higher number than v. Analogous properties hold of
this part of the phase.

Note the following properties:

(a) There are no edges between children of the same parent.

(b) Edges are directed from parent to child during the s-rooted part and from
child to parent during the z-rooted part.

(c) Each node adjacent to some lower numbered node other than s is iden-
tified with another node during one of the two stages in the s-rooted part. Each
node adjacent to some higher numbered node other than ¢ is identified with another
node during one of the two stages in the 7-rooted part.

(d) Let f be the st-numbering function. For any ve GV, f(v" ") <f(v) if the
ith stage belongs to the s-rooted part and f(v"*") > f(v) if the ith stage belongs to
the t-rooted part.
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We will make use of properties (a) and (b) later when we show how to implement a
stage. Property (c) shows that in each phase the number of joinable nodes is halved.
Property (d) makes possible the following lemma.

LEMMA 3.11.  For any i, suppose that the numbering f of G\ is an st-numbering.
Then, the numbering f of GY* " is also an st-numbering.

Proof. Let v be any node of G+, Consider the case in which the ith stage
belongs to the s-rooted part of a phase. Suppose H"(v)= {v,, .., v;}, where we
assume without loss of generality that v, was a parent and the other nodes (if any)
were children. By the inductive hypothesis, v, has an incoming edge (u, v,) in G,
so there is an edge (#“*'),v) in GY*". We have f(u"*V)<f(u), f(u)<f(v,) by
definition of an incoming edge, so f(u“*V)<f(v,). Since f(v,)=f(v) by choice of
v,, we conclude that (x“*"), v) is an incoming edge of v. It remains to show that v
has an outgoing edge. But v, has an outgoing edge (v, w) in G”. There are two
cases. If w was identified with its parent p(w) in stage i, f(w'* D) =f(p(w)) > f(vs)
by choice of p(w). If w was not identified with its parent in stage 7, then f(w'*+ )=
F(w)>f(ve) 2/ (0. In either case, (vf+"), w'* ") is an outgoing edge of v’ =v. |

We now consider the representation of the set of embeddings of a subgraph. Fix a

node v#s, 1 in G, For j<i, let If‘}(v) be the graph obtained from H’(v) by
adding in the nodes s and ¢, the edge {s, ¢}, and the H'(v)-linking edges, identify-
ing the outside endpoints of all incoming (outgoing) edges with s (z). (Note that
this identification may cause some of the H(v)-linking edges to become multiple

B
edges.) It follows from the s-numbering of G that H)(v) is a minor of G'©. (See
Definition 3.3 for the definition of minor.)

Because v was formed by contraction of H'(v), H”(v) is connected. The sub-
e )
graph HYY(v)— H'” consists of the nodes s and ¢ and the edge between them, so it
e

is also connected. It follows that H'(v) is bound in H")(v). By similar reasoning
one can show that H(v) is also bound in G©®.

We call the embedding rotations of H(v) in H®(v) the arrangements of v. Note
that the arrangements of v are cycles of link(H(v))=link(v)=the set of edges
incident to v.

Note that by Lemma 3.2, we have

LemMa 3.12.  Any embedding rotation of H(v) in G'° is an arrangement of v.
From the Planar Contraction Lemma of Subsection 3.1, we may obtain

CorROLLARY 3.1. In any arrangement of v, the incoming edges in(v) are
consecutive (and hence the outgoing edges out(v) are consecutive).

We will use a PQ-tree T(v) to represent the set of arrangements of ». Recall from
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Subsection 2.1 that a PQ-tree T represents a set CYC(T) of cycles over its ground
set. Recall from Definition 2.4 that a subset A of the ground set of T is said to be
contiguous in T if T has either a node v such that 4 =leaves(v) or a consecutive
subsequence v,---v, of the children of a @-node such that 4= U4 leaves(y;). It
follows from Lemma 2.1 that if A is contiguous in 7, the elements of A form a con-
secutive subsequence in every cycle in CYC(T).

We say the PQ-tree T(v) over the ground set link(H(v)) is valid if

o CYC(T(v))=the set of arrangements of v, and
« in(v) and out(v) are contiguous in T(v).

If ve G, we can directly construct a valid PQ-tree T(v). For in this case
H(v)= {v}, so any cycle of the edges incident to v is an arrangement of v, provided
that the incoming edges are consecutive and the outgoing edges are consecutive. In
this case, therefore, we let T(v) be the tree (depicted in Fig. 10) whose root is a
O-node with two P-node children, v;, and v,,,, where the children of v;, are the
edges in(v) and the children of v,,, are the edges out(v).

At every stage i, we compute the PQ-trees for each new node ve G+ " in parallel
from the PQ-trees for the nodes H'”(v) identified to form v.

If a null tree arises as T(v) for some node v, it follows that there are no
arrangements of v, ie., no embedding rotations of H(v) in H(v), hence no
embedding rotations of H(v) in G by Lemma 3.2. But then G’ is not planar. We
therefore halt the algorithm when a null tree arises.

Assume, on the other hand, that the contraction process continues until there are
no joinable nodes remaining in G'*’; every node of G'”) other than s and ¢ is
adjacent only to s and r. Let vy, .., v, be these nodes. Since they are not joinable,
there are no edges between them, so no edges between the corresponding
H(v,), .., H(vg). For j= 1, ..k, if T(v;) is not T, then there is a planar
embedding 7, of H(v;). Using the fact ([16]) that a graph G is planar iff its tricon-
nected components are, it follows that G® is planar, for s and ¢ form a separation
pair whose blocks are H(v,), .., H(v;).

el ep 4 ev
incoming edges outgoing edges

Fig. 10. The PQ-tree T(v) representing the set of arrangements of a node ve G\
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To obtain an algorithm that works in O(log’ n) time using O(n) processors
(where n=number of nodes in G'?), it suffices to prove the following lemma.

LEMMA 3.13. For each stage i+1 (i=0, 1, ..., & — 1), for each node ve G/*V, g4
valid PQ-tree T(v) representing the set of arrangements of v, can be computed from
valid PQ-trees {T(v;): v;e H”(v)} in O(log n(v)) time using n(v) processors, where
n(v)=3, <jsk |1ink(vj)l'

When 7(v) is computed in parallel for each ve GU*"), the resulting processor
bound is ¥, gu+y n(v), which is easily seen to be <2 (number of edges in G'®).
Since we assumed that the number of edges is < 3n, the overall processor bound is
O(n).

For the time bound, certainly n(v)<n for every node ve GY*+"Y, hence by
Lemma 3.13, each stage can be computed in O(log?n) time. There are O(logn)
stages, for a total of O(log® n) time.

We first prove Lemma 3.13, and then show how the algorithm may be improved
to work in O(log® n) time using n processors, proving Theorem 3.1.

Suppose that H”(v) = {u,, uy, ..., uz }, where uo=p(u;) for j=1,.., k. We first

consider embeddings of ﬁ“\’(u). Assume that stage i belongs to the s-rooted part of
a phase so that the parent u, is lower numbered than its children. (See Fig. 11.) Let
A =in(u,). For j=1, .., k, let E;cin(u;) be the non-empty set of edges between u;
and uy, let F;=out(y;), and let B;=in(u;)—E;. Let D=out(uy)— U, << E;.

<N
In H(v), the outside endpoint of each edge in D and in each F, is ¢, and the out-
side endpoint of each edge in 4 and in each B; is s. Note that
in(v)=A U (Ui<;<x B;) and out(v)=D U (U, <j<k F))-

We first make an assumption.

ASSUMPTION 3.1. If B, is non-empty, there is a path between u, and t avoiding s
and u;.

CLAamM.  Assumption 3.1 can be made without loss of generality.

Proof. Suppose B; is not empty. If k>1 then u, has a neighbor u,#u,.
Moreover, u, is adjacent to ¢, satisfying Assumption 2. In the case k=1, we can
exchange the roles of u, and u; and exchange the roles of s and 7 for the proof of
Lemma 3.13. Following this exchange, the new u, is adjacent to the new ¢. ||

N
A planar embedding of H)(v) is shown in Fig. 11. We next establish that every

embedding of g‘}(u) resembles that depicted in Fig. 11. Recall from Definition 2.6
that a cycle o of elements of S satisfies a proper subset 4 c § if the elements of 4
form a consecutive subsequence t of ¢, and in this case ¢| A denotes the
subsequence .
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N
FiG.11. An embedding of H")(v).

Lemma 3.14. Let o; be a cycle of link(w;) for j=0, ...k, There is a planar
TN

embedding . of H”(v) associating the cycle o; with u; for each j=0, ..,k iff the
following conditions hold:
(i) Forj=1, ..k, o; satisfies B,, E;, and F;.
(ii) o, satisfies E,, .., E,, DUE, U --- UE,, and A.
(iii) Forj=1,..k ao| E;=(q;| E)~.
(iv) The cycle a =a join ---join a, of link(v) satisfies in(v) and out(v).

Moreover, if T is such a planar embedding, then the cycle o is the embedding rotation
TN
of H(v) in H"(v) determined by the embedding m.

Proof. (=) Assume there is a planar embedding n of ﬁv) associating the
cycle o; with u; (Vj). Applying the Planar Contraction Lemma with x=u; (j#0)
and y =1t shows that g; satisfies F;. Applying it with x=s and y=u, shows g,
satisfies in(uy) = 4. Applying it with x =u, and y = u; (j #0) shows o, and g, satisfy

AN
E;and o, | E;=(0;| E;)". Applying it to the contracted graph H"(v)/{t, u,, ..., u, }
with x=u, and y =1t shows that o, satisfies out(u;,)=DUE,u --- U E,. Finally,
suppose B; is not empty. By Assumption 3.1, there is a path between u, and ¢
avoiding s and u;. Hence we can apply the Planar Contraction Lemma with x =s
and y =u; to show that g, satisfies B;.

Using k applications of the last statement of the Planar Contraction Lemma, one
. N
can show that ¢ is the embedding rotation of H”'(v) in H"(v) determined by the

embedding 7. This means that when we contract the subgraph {u,, ..., u,} of the
AN

embedded graph (H'(v)),, the cycle associated with the resulting node v is o.
Applying the Planar Contraction Lemma to this contracted graph with x=s and
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y=v shows that ¢ satisfies in(v); applying it with x=v and y=1 shows that ¢
satisfies out(v).

(<) Suppose conditions (i), (ii), (iii), and (iv) are satisfied. Define the
embedding 7 as follows: m associates o; with u; (¥f), and associates (e (o | in(v))%)
with s and (e (o | out(v))®) with ¢, where e is the edge between s and 1. We use
induction on k to show that = is a planar embedding.

First suppose k = 1. The first two conditions of the Planar Contraction Lemma
with x=u, and y=u, follow from (i), (i), and (iii). We must verify the third

b

condition. Starting from the embedded graph (H’(v)),, contract the subgraph
{49, u;} to form v. By the last statement in the Planar Contraction Lemma, the
cycle associated with v is o. It is then easy to verify that the resulting embedding,
consisting of g, (e (¢ | in(v))®), and (e (o | out(v))®) is a planar embedding. Thus
the third conditions of the Planar Contraction Lemma is verified, so the embedding
7 is planar.

Next, suppose k> 1. Write 6= (o 8, & 0, &, --- 0, & O, 1), where « is an order-
ing of 4, ¢; is an ordering of E; (renumbering u,, ..., u; if necessary), and d; is an
ordering of the subset D;c D (writing D as the disjoint union of D, .., D, ,).
Write o, = (¢f B, ¢,), where B, is an ordering of B, and ¢, is an ordering of F,.
Then ¢ = ¢, join - - - join g, has the form (x &, B, ¢, J,---). Now 4 and B, are sub-
sets of in(v), and ¢ satisfies in(v), so either « and §, must be adjacent, and hence D,
is empty, or else B, is empty.

Let oy=0qjoing,=(x 6, B, ¢, d,&,---). Let H, be the embedded graph

N

obtained from (H'(v)), by contracting the subgraph {u, u,} to form u}. It follows
from the last statement of the Planar Contraction Lemma that o} is the cycle =’
associates with u,. The incoming edges of u, are 4 U B, and the outgoing edges are
DUF,VE,u --- UE,. From the fact that either D, or B, is empty, it follows that
o, satisfies the incoming edges of u, and the outgoing edges of uj,. We may
therefore use the inductive hypothesis to show that z’ is a planar embedding. We
have satisfied the third condition of the Planar Contraction Lemma applied with
Xx=1uqy and y =u,; the first and second follow from (i), (ii), and (iii). Hence = is a
planar embedding.

~ N
Every planar embedding of H(v) induces a planar embedding of H”(v), namely,
that obtained by contracting the disjoint subgraphs H(u,) to u; for j=0,..k A

given planar embedding 7 of H"(v) is induced by some planar embedding of H(v)
iff for j=0, ..., k, the cycle o; of = associated with the node u; is an arrangement of
u;. (This follows from Lemma 3.3 of Subsection 3.1.) We conclude that the
arrangements of v are those cycles arising as o, join---join ,, where o, is an
arrangement of u; for j=0,..,%k and conditions (i), (i), (iii), and (iv) of
Lemma 3.14 are satisfied.

We make a second assumption:
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ASSUMPTION 3.2. The sets B,, ..., B,_, are empty.

CLAIM. Assumption can be made without loss of generality.
Proof. By the st-numbering, each F; is non-empty. Suppose more than two B/’s
AN

are non-empty, say B,, B,, B;. Then in H')(v), the nodes s, 7, and u, are all
adjacent to the nodes u,, u,, us. Thus the Kuratowski subgraph K ; is a subgraph

of H(v), proving that H®(v) is not planar and hence that G'* is not planar, by
Kuratowski’s theorem (see [2]). In this case, we terminate the algorithm.
Otherwise, by renumbering the nodes u,, .., u,, we can ensure Assumption 3.2. [i

We break up the process of computing a valid PQ-tree T(v) into the following
three steps:

Pl Process each T(u;) to get a PQ-tree T'(u;) such that CYC(T'(u;)) =
{6;€ CYC(T(u,)): o, satisfies (i) and (ii) of Lemma 3.14}.
To make the next step possible, ensure that for j=1,.., k, the set
link(u;) — E; is contiguous in T"(u;).

P2 Let T'(v) be the join of T'(uy) with T"(uy), ... T"'(uy).

P3 Process T'(v) to get a PQ-tree T(v) such that

CYC(T(v))= {oc e CYC(T'(v)): o satisfies in(v) and out(v)}

and in fact in(v) and out(v) are contiguous in T{(v).

A procedure for carrying out step P2 is described in Subsection 2.5. It remains to
fill out further details in steps P1 and P3.

First suppose je {1,..,k} and B;= . In this case, E;=in(x,;) and F;= out(u,).
We assumed that T(u,) is valid, hence every cycle in CYC(T(x;)) satisfies E; and F,
and, moreover, E; and link(x;) — E; = F; are contiguous in 7(x,). Hence for such a j,
we merely let T'(u;) = T(u;) for step P1.

Next, suppose j is 1 or k, and B, is non-empty. Note that because 7(u,) is valid,
the two sets F;=out(x;) and E;u B;=in(u;) are contiguous in T(x;). Calling upon
Lemma 2.3, we reduce T(u;) with respect to E; and B; using MREDUCE. Next we
carry out ROTATE(E,, B;, F;) to ensure that B;u F;=link(x;) — E; is contiguous.
(See Lemma 2.2). We let T'(u;) be the resulting PQO-tree.

Now we consider the PQO-tree T(u,). Note that because T(u,) is valid, in(uy) = 4
and out(uy)=D U E, U --- U E, are contiguous in T(u,). Calling upon Lemma 2.3,
we use MREDUCE to reduce T(u,) with respect to E, .., E, S out(u,), letting
T'(u,) be the reduced tree. Because of the validity of T(u,), every ordering in
CYC(T'(uy)) already satisfies A.

Having processed each PQ-tree T(u;) to obtain a PQ-tree T'(u;), we now com-
pute the join of T"'(uy) with T'(u,), .., T'(u,), obtaining a PQ-tree T"(v).

Step P3 remains. By (1) of Lemma 228, B,uB,wDUF U --- UF; is con-
tiguous in T'(v). If B, and B, are empty, we are done, for then it follows that
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in(v) =4 and out(v)=D U F, U --- U F, are contiguous in T"(v). Therefore, assume
without loss of generality that B, is non-empty. Calling upon Lemma 2.3, we
use MREDUCE to reduce 7'(v) with respect to out(v). By Lemma 2.1, out(v) is
now contiguous in 7'(v). Also, since B, U F, was contiguous in T"(x,), the same
set is contiguous in T'(v) by (2) of Lemma 2.28. Since out(v) contains F,, it
follows by Corollary 2.1 that B, uUout(v) is contiguous in 7”(v). Carry out
ROTATE(4, B,, B, U out(v)) to make 4 U B, contiguous. Then if B, is nonempty,
carry out ROTATE(4 v B,, By, out(v)) to make A U B, U B, contiguous. Let the
resulting PQ-tree be T(v).

Steps P1 and P3 can be computed in O(log n(v)) time. Step P2, however, takes
time O(log® n(v)). This is sufficient to prove Lemma 3.13.

We have shown how the planarity algorithm may be carried out in O(log® n)
time using O(n) processors. To improve the time bound to O(log>n) time, we
reduce the time for step P2 from O(log? n(v)) time to O(log n(v)), by computing a
“provisional” join (described in Subsection 2.5) that is correct unless the correct
result is the null PQ-tree. This permits us to quickly proceed to step P3 and then to
the next stage. We need not wait for the join to be verified, because if a join fails the
verification, it means that v has no arrangements, so H(v) is not planar and hence
G'® is not planar. We delay the verification of all the joins until after the last stage
is completed. The processor bound for verification of the join of step P2 is propor-
tional to the number /= |E, U --- U E,| of common elements. These are elements of
link(u,) and link(x;) (for j=1, .., k) not appearing in link(v). Since each edge of
G occurs at most once as a common element in a join, the total number of
processors required to verify all joins simultaneously is proportional to the number
of edges. The time is O(log*(number of common elements)) = O(log® r). Thus the
time for all verifications merely adds O(log®n) time to the total time for the
planarity-testing algorithm.

Finally, we sketch the method for obtaining a combinatorial embedding of each
H(v), assuming the planarity-testing algorithm successfully terminated. That
algorithm consisted of a sequence of .# = O(log n) stages; in each stage subgraphs
were contracted to single nodes. In carrying out this process, we defined a contrac-
tion forest with trees rooted at the nodes of G*), where the children of a node
ue G'*1 are the nodes H")(v). The trees are all of height <.# + 1= 0(log n). For
each node re G ™), we have a cycle cycfr(7(r)) of the H(r)-linking edges that is
consistent with some embedding of G'*). We first show how to choose cycles o, and
o, of the edges incident to s and ¢ respectively, such that ¢,, g,, and the ¢,’s are all
consistent with some embedding of G®. Then we show how to find such an
embedding by processing each tree of the contraction forest from the root down.

Say the nodes of G“**" are w,,..,w,, and g, .., 0, are the corresponding
cycles. The incoming edges of w; form a consecutive subsequence A, of ¢,, and
the outgoing edges form a consecutive subsequence 1, of o, Let ¢,=
cyc(AgAL_;---Afe) and o, =cyc(A;* 137 .- A;Re), where e is the edge between s and
t. It follows from the Planar Contraction Lemma that all the cycles are consistent
with an embedding of G©.
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Next we find cycles for all the nodes of G'” other than s and ¢, thereby defining
an embedding of G'°. We do this in .# stages, by processing each tree of the con-
traction forest in parallel, starting at its root » and ending at its leaves, which are
nodes of G'©. Say we are at height i+ 1 in the contraction tree rooted at a node
re G+, Assume inductively that there is some planar embedding of G'” such
that o, is the corresponding embedding rotation of H(v), and we are given ¢, for
each node v at height i+1 (ie., each ve GY*") in the tree. We operate on each
such v in parallel. Suppose H")(v)= {uy, ..., u;} as in Fig. 11 and in Lemma 3.14
and the preceeding text. To carry out the induction step, we must find o, .., 0%
such that ¢,=0,join g, join---join ., such that (i), (ii), (iii), and (iv) of
Lemma 3.14 are satisfied, and such that ¢, is an arrangement of u;, for i=0, 1, .., k.
In a sense, we wish to “invert” the join operation. A procedure for doing this is
sketched in Lemma 2.27 of Subsection 2.5. Using this procedure, we can descend a
single level of the contraction forest in O(log n) time using n processors. The forest
has O(log n) levels, so after O(log® n) time, we end up with cycles for each node
ve G other than s and 1.
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