Solving Sparse Systems of Linear Equations
on the

Connection Machine

Charles E. Leiserson!'
Jill P. Mesirov!
Lena Nekludova!
Stephen M. Omohundro!
John Reif!?
Washington Taylor!

1Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts

2 Aiken Computation Laboratory
Harvard University
Cambridge, Massachusetts

SLaboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts

~ Abstract—The Connection Machine is a 65,536-processor com-
puter which was designed for artificial intelligence applications.
This paper shows that the machine is suitable for numerical com-
putations as well. We describe a program for solving sparse sys-
tems of linear equations based on parallel nested dissection which
has been implemented on the Connection Machine.

Summary

A commonly occurring problem in the physical sciences is to solve a system
Az = b of linear equations, where A is an n-by-n symmetric, positive-definite
matrix, and b is a vector of length n. If the matrix A is dense, then the
worst-case time required by most direct methods is ©(n®) on a sequential
machine. For many important applications, however, the matrix A is sparse,
and its adjacency graph is planar or nearly planar. For such problems, nested
dissection [3,7] can reduce the running time to O(n%?). Recently, Pan and
Reif [9] described a parallel nested-dissection algorithm that runs in O(log® n)
time, but the space requirement is ©(n%/2), which makes it infeasible for large

Approved for External Distribution
Thinking Machines Corporation



systems of equations. In this paper, we describe an implementation of their
algorithm that runs in O(,/n) time and uses O(nlogn) space for planar
graphs, but it can be applied more generally to any class of graphs that
has a good separator [8), although the performance bounds may vary. The
program has been implemented on the 65,536-processor Connection Machine
[4).

The parallel nested-dissection algorithm has three parts. First, we recur-
sively compute a decomposition tree for the adjacency graph of the matrix
A based on a separator theorem for that class of graphs. This step is quickly
performed in O(nlogn) time on a sequential machine. Second, we use the
Connection Machine to compute a Cholesky-like decomposition of the ma-
trix. Finally, we use the Connection Machine to solve the linear system for
a given righthand side b.

To implement the first step, we use a sequential computer to compute
the decomposition tree for the adjacency graph of the matrix A. If the
graph is planar, we use the separator property (8] to decompose the graph
into two subgraphs such that the number of common variables is O(\/n).
(Otherwise, we use bisection heuristics [2,5] to find a good separation.) We
then decompose each of these two subgraphs, and so on, until each subgraph
contains only a few variables. We thus obtain a decomposition tree of the
original graph, each node of which is a subgraph. The portion of the matrix
that corresponds to variables in a given node are stored in that node, and in
that form, the matrix is transferred to the Connection Machine.

The second phase of the algorithm runs on the Connection Machine. It
consists of computing a Cholesky-like decomposition of the matrix based on
the decomposition tree. In parallel, all leaf nodes perform a partial factor-
ization by Givens rotations [10, pp. 206] on their portions of the matrix. The
factorization is performed by a parallel systolic algorithm [1,6], and in addi-
tion, the matrices in all leaves are operated on simultaneously. The partially
factored matrices in each pair of siblings are then merged into the matrix
of their parent. We once again perform partial factorization on all matrices
at the parents’ level in parallel, and continue level by level until we reach
the root. This process produces a sparse representation of the Cholesky de-
composition with matrix elements distributed through the nodes of the tree.
Conceptually, each tree node contains portions of both the lower and upper
triangular matrices in the LU-decomposition.

In the final phase we solve the matrix system for a vector b. The vector is
distributed through the tree nodes so that the matrix variables in the nodes
correspond to the variables of the vector. On the way up the tree, we use
the pieces of b in a given node to solve the equation Ly = b by forward
substitution, and on the way down, we solve the equation Uz = y by back



substitution to obtain the solution for the original matrix equation.

This parallel nested-dissection algorithm is well suited for implementation
on the Connection Machine. The architecture of this machine currently
has 65,536 bit-serial processors interconnected by a routing network. All
processors receive the same instruction broadcast from a central controller,
but whether a processor executes the instruction depends on an internal
flag. The broadcast instruction can cause a processor to manipulate internal
data, or it can direct communication among the processors either by mailing
messages through a general-purpose routing network or by sending data to
a nearest neighbor via a grid-like NEWS (North-East-West-South) network.

Rather than cycling a small number of processors through all the prob-
lem elements as might be done on many multiprocessors, it is natural on
the Connection Machine to devote a separate processor to each problem ele-
ment. We take advantage of this simplicity of representation in the parallel
nested-dissection algorithm in two ways. First, we are able to use standard
systolic algorithms to perform the matrix computations in each node of the
decomposition tree. Second, all the computations at each level of the decom-
position tree can be performed simultaneously. We use the general-purpose
routing network to send data from one level of the tree to the next.

Another not-so-apparent advantage of the Connection Machine architec-
ture is the flexibility of the bit-seria] processors. As an example, we can use
the somewhat more numerically stable Givens rotations instead of Gaussian
elimination without pivoting. The times required by the two methods are
comparable because the square-root operation needed by the Givens method
is no more expensive than the other bit-serial floating-point operations.

The Connection Machine architecture is well suited to the development of
scientific computing software, even though it was originally conceived as an
Al machine. It offers an abstract model based on “data” parallelism rather
than “process” parallelism. In other words, the programmer is responsible
for planning the movement of data, but not for processor coordination. This
abstract model leads to straightforward implementations of efficient parallel
algorithms with predictable performance over a range of problem sizes.

References

[1] A.Bojanczyk, R. P. Brent, and H: T. Kung, N umerically stable solution
of dense systems of linear equations using mesh-connected processors,
Technical Report CMU-CS-81-119, Department of Computer Science,
Carnegie-Mellon University, January 1931.

[2] C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for



improving network partitions, Proceedings of 19th Design Automation
Conference, IEEE, (1982) pp. 175-181.

[3] J. A. George, Nested dissection of a regular finite element mesh, SIAM
J. Numer. Anal,, 10, (1973) pp. 345-363.

[4] W. Daniel Hillis, The Connection Machine, MIT Press, 1985.

[5] B. W. Kernighan and S.-Lin, An efficient heuristic procedure for parti-
tioning graphs, Bell System Technical Journal, 49, (1970) pp. 291-307

[6] A. H. Sameh and D. J. Kuck, On stable parallel linear system solvers,
J. ACM, 25(1) (1978) pp. 81-91.

(7] R.J. Lipton, D. J. Rose and R. E. Tarjan, Generalized nested dissection,
SIAM J. Numer. Anal., 16(2), (1979) pp. 346-358.

(8] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs,
SIAM J. Appl. Math., 36, (1979) pp. 177-199.

[9] V. Pan and J. Reif, Efficient parallel solutions of linear systems, Pro-
ceedings of the 17th Annual Symposium on Theory of Computing, ACM,
Providence, Rhode Island, May 1985, pp. 143-152.

[10] S. Pissanetzky, Sparse Matriz Technology, Academic Press, 1984,



