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This paper is concerned with constructing, for each expression in a given program text, a
symbolic expression whose value is equal to the value of the text expression for all executions
of the program. A cover is a mapping from text expressions to such symbolic expressions.
Covers can be used for constant propagation, code motion, and a variety of other program
optimizations. Covers can also be used as an aid in symbolic program execution and for
finding loop invariants for program verification. We describe a direct (non-iterative) algorithm
for computing a cover. The cover computed by our algorithm is characterized as a minimum
of a certain fixed point equation, and is in general a better cover than might be computed by
iteration methods (which can compute fixed point covers which are not minimal). Our
algorithm is efficient and applicable to all flow graphs. A variant of our algorithm is
implemented by Kalman and Kortesoja (JEEE Trans. Software Eng. SE-6 (1980), 512-519) in

an optimizing compiler.

1. INTRODUCTION

We begin by formulating a global flow model for a computer program to which
we wish to apply various optimizations as in [H] and [MJ].

1.1. The Global Fiow Model

All intraprogram control flow is reduced to a digraph indicating which blocks of
assignment statements may be reached from which others (but giving no infor-
mation about the conditions under which such branches might occur). The control
flow graph F=(N, A,s) is a flow graph whose nodes are called blocks (to dis-
tinguish it from other graphs considered in our paper) and rooted at the szarz dis-

* A preliminary draft of this paper appeared as Symbolic evaluation and the global value graph, in
“Proceedings, 4th ACM Symposium on Principles of Programming Languages,” 1977.

T Supported by National Science Foundation Grant NSF-MCS79-21024 and by Office of Naval
Research Contract N00014-80-C-0647.

* Supported by National Science Foundation Grants NSF-MCS76-09375 and NSF-MCS80-05386.

280

Preprint of paper appearing in Journal of Computer and System
Sciences, Vol. 32, No. 3, June 1986, pp. 280-314.



SYMBOLIC ANALYSIS OF PROGRAMS 281

FiG. 1. A program’s control flow graph.

tinguished block se N. A control path is a path in F. Executions of the program
correspond to control paths beginning at the start blocks, although not every such
path in this graph need correspond to a possible execution of the program. (See
Fig. 1.)

The only statements in the programming language retained in the model are
assignment statements. An assignment statement is of the form X := &. The left-hand
side of the assignment is a program variable taken from the set {X, ¥, Z....}. The
right-hand side is an expression & built from program variables and fixed sets C of
constant symbols and 0 of function symbols.

Each node ne N contains a block of assignment statements. These blocks do not
contain conditional or branch statements; control information is specified by the
control flow graph as in [C]. A program variable occurring within only a single
block ne N is local to n. Let X be the set of program variables not local to any
block. For each program variable X € X and block ne N — {s} we introduce as in
[RT] the input variable X" to denote the value of X on entry to block n. We use the
symbol X*, considered to be a constant symbol, to denote the value of X on entry
to the program at the start block s.

Let EXP be the set of expressions built from input variables, C, 6. Thus, & e EXP
is a finite expression consisting of either a constant symbol ¢ € C, an input variable
X" representing the value of program variable X" on input to block n, or a k-adic
function symbol 6 e @ prefixed to a k-tuple of expressings in EXP. (Note: In the
standard terminology of mathematical logic, & is a term in a first order language; it
is an expression containing no predicates and built from function symbols, constant
symbols, and variables on input to particular blocks of assignment statements.)

For each Xe 2 and node ne N where X is assigned to, let the output expression
&(X, n) be an expression in EXP for the value of X on exit from block » in terms of
constants and input variables at block n. A fext expression t is an output expression
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or a subexpression of an output expression. Note that each text expression ¢ is a
substitution instance of an expression on the right-hand side of an assignment
statement of the program.

For example, let n be the block of code

X:=X-1,
Y:=Y+4,
Z:=XxY.

Then &(Z,n)=(X"—1)%(¥Y"+4) (or in the more proper prefix notation,
(*(=X"1)(+ Y"4))) is the text expression associated with the string of text “Xx*Y”
at the last assignment statement of ».

An interpretation for a program is an ordered pair (U, I). The universe U contains
(among other things) a distinct value I(c) for each constant symbol ce C. For each
k-adic function symbol 0 € @, there is a unique k-adic operator I(f) which is a par-
tial mapping from k-tuples in U* into U. We assume I(c,) # I(c,) for each distinct
¢, c;€ C (every value has at most one name). For example, a program is in the
arithmetic domain if it has the interpretation (Z, I;), where Z is the set of integers
and I, maps symbols +, —, *, / to the arithmetic operations addition, subtraction,
multiplication, and integer division.

An expression in EXP is put in reduced form by repeatedly substituting for each
subexpression of the form (6 ¢, --¢;) that contant symbol ¢ such that I(c)=
1(0)(I(cy),.... I(c})), until no further substitutions of this kind can be made. (Using
the techniques of Aho and Ullman [AU1] we would in linear time reduce each
block, so each text expression is a reduced expression. Note that this only results in
the detection of certain locally redundant expressions; we shall describe a method
for global detection of redundant expressions.)

A global flow system p is a quadruple (F, Z, U, I), where F is the control flow
graph, X is the set of program variables, and (U, ) is an interpretation. The next
definitions deal with a fixed global flow system p= (P, X, U, I).

1.2. Covers

The utility of the global flow model is that many program analysis and
improvement problems may be formulated as combinatorial problems on digraphs.
The fundamental program analysis problem of interest here is the discovery, for
each text expression ¢, of a symbolic expression & for the value of # which holds for
all executions of the program.

Let & be an expression in EXP and let p be a control path. We give a recursive
definition for VALUE(#, p), the expression for the value of & in the context of a
program execution on this control path p. VALUE(&, p) is defined formally as
follows:

(i) If p=(s) then VALUE(E, p) is the reduced expression derived from &.
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F1G. 2. A minimal fixed point of y covers &(Z, n) with the expression X"+Y™.

(ii) Otherwise, if p=p - (m, n) then VALUE(&, p) = VALUE(&”, p'), where &’
is the expression obtained from & by substituting the output expression &(X, m) for
each input variable X, and putting the result in reduced form.

We now define origin(&), where & € EXP, which intuitively is the earliest block at
which all the quantities referred to in & are defined. Let N(&)= {ne N|the input
variable X occurs in &}. If N(&) is empty then origin(&) is the block s and
otherwise origin(&) is the latest (i.e., furthest block from s) block in N(&) relative to
the dominator ordering (see Appendix I). The origin need not exist for arbitrary
expressions in EXP, but will be well defined in all the relevant cases (i.e., origin
exists for all text expressions and their covers). Note that if a text expression 7 con-
tains no input variables then origin(z) = s, and otherwise origin(z) is the block in N
where an assignment statement to a variable in N(&) is located.

An expression & € EXP covers a text expression ¢ if VALUE(z, p) = VALUE(é, p)
for every control path p from s to origin(z). Hence, if & covers ¢ then & correctly
represents the value of ¢ on every execution of program II. (See Fig. 2)

A cover is a mapping ¥ from text expressions to expressions in EXP in reduced
form such that for each text expression ¢, y(z) covers . Note that the origin of any
cover & of a text expression 7 is always well defined since the elements of N(&') will
form a chain relative to the dominator ordering.

LemMma 1. If' & € EXP covers text expression t then origin(&) dominates origin(t).

Proof (by contradiction). Suppose origin(#) does not dominate origin(¢). Then
& must contain an input variable X" such that » is not a dominator of origin(z).
Hence, there is an n-avoiding control path p from the start block s to origin(z) such
that VALUE(&, p) contains X" but VALUE(s, p) does not, so VALUE(&, p) #
VALUE(¢, p), contradicting the assumption that & covers 7. |

We now define a partial ordering of covers. For each pair of covers ¥, and v,
Yy <, iff origin(yr,(z)) dominates origin(y,(z)) for all text expressions 1.

We wish to compute a cover minimal with respect to this partial ordering. Unfor-
tunately, Appendix II shows this is an undecidable problem. It follows that we must
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look for heuristic methods for good, but not minimal covers. Subsection 1.4 defines
a class of covers which are fixed points of an iterative process. The minimal fixed
point cover is efficiently computed by our direct algorithm given in Section 2. The
next subsection describes applications of covers to program optimization.

1.3. Applications of Covers

We give below a number of program analysis problems and optimizations which
reduce to the problem of determining covers of text expressions. These examples
indicate that computing covers is of fundamental importance to program analysis.
[R1] and the paper of [RT] were the first to consider the problem of computing
covers. [KK ] have made practical application of our work in the implementation
of an optimizing computer for PASCAL.

(a) Constant propagation (or folding) is the substitution of the appropriate
constant symbols for text expressions covered by constants (see [Ki]). (Although
constant propagaton is useful in itself as a program optimization, it happens to be
only the first step of our procedure for computing covers.)

(b) More generally, a text expression ¢ located at block » is redundant if on
all paths from the start block to n another text expression ¢’ yields a computation
equivalent to that of 7. Thus ¢ may be replaced by a load operation from a tem-
porary address containing the result of some such equivalent previous computation
(see [C; CA; E; G; FKU; U]). Thus it would suffice that each such ¢ has the same
cover as 1.

(c) Code motion is the process of moving code as far as possible out of cycles
in the control flow graph (ie., out of program loops). The birth point of text
expression ¢ is the earliest block n in the control flow graph (relative to the partial
ordering of blocks by domination with the start block first), where the computation
of 7 is defined. Any block occurring between (relative to this domination ordering) n
and the original location of ¢ has a cover for 7 in terms of covers for the variables at
n. This best possible birth point for ¢ is the origin of the minimal covering
expression for . Hence, code motion is fundamentally related to the computation of
covers. The earliest such block, m, with the further property that the computation
of ¢ can induce no new errors at that block m, is called the safe point of t; the com-
putation of ¢ may safely be moved to any block between m and loc(7). The text
expression appropriate at the chosen block may not be lexically identical to ¢, but is
given by the cover of # in terms of the variables on input to that block. Preliminary
work on simple motions, primarily emphasizing safety, but not considering birth
points is given in [CA; G; E]. [R2] gives a complete formulation of code motions
considering birth points and safepoints, also considering the movement as far as
possible out of cycles, and gives an efficient algorithm for carrying out these code
motion optimizations.

(d) A cover for a variable in a program loop is a loop invariant (see [FU;
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W]. The discovery of loop invariants is often crucial for proving the correctness of
a program; see, for example, [U1; KM; HK].

(e) Symbolic execution of a program as described in [K2; CHT] and a
program transformation as described in [L; SHKN] generally requires a powerful
program simplifier. Domain specific simplifiers such as in [NO] may require the
solution of logical decision problems which require much time and space. The
covers give domain independent simplifications of program text, which can be com-
puted efficiently. A practical simplification system may use a combination of these
techniques.

1.4. A Computible Class of Covers

In Appendix IT we show that the problem of computing minimal covers over
arithmetic domains is undecidable. Here we consider a class of covers that can be
characterized by fixed point equations. These covers can be computed inefficiently
by an iterative algorithm (later in this paper we describe how to efficiently compute
them by our direct algorithm). To iteratively construct this class of covers, we
would first taken a pass through the program and construct a mapping ¥, from
text expressions to EXP; y, may not be a cover but has the property that for all
text expressions ¢,

VALUE(y(1), p) = VALUE(s, p)

for some (rather than all) control paths p from s to origin(¢). The algorithm would
then iteratively compare possible covering expressions of input variables at par-
ticular blocks to the corresponding output expressions of preceding blocks, and
propagate the results to predecessor blocks. More precisely, for any mapping v
from text expressions to EXP, let u(¥) be the mapping ' from text expressions to
EXP such that for each input variable X",

V(X)) =¢ - if & =y(&(X, m)) for all blocks m immediately preceding
n in the control flow graph F,
=X" otherwise,

and y’(¢) is the reduced expression derived from text expression ¢ after substituting
¥'(X™) for each input variable X™ occurring in ¢. This iterative algorithm then com-
putes p*(y,) for k=1, 2,..., until a fixed point of x is obtained. F ig. 2 gives an exam-
ple of a minimal fixed point cover. We shall show that the resulting fixed point y is
a cover; however, the simple example given in F ig. 3 shows that  is not necessarily
a minimal fixed point cover.

THeoREM 1. If § is a fixed point of u then Y is a cover.

Proof.  We must show VALUE(y(1), p)=VALUE(y, p) for all text expressions ¢
and control paths p from s to the block where 7 is located. Let p be the shortest
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FiG. 3. X™ the value of X on input to m, covers X", the value of X on input to n.

control path from s to a block n where there is located a text expression # such that
VALUE(Y (1), p) # VALUE(t, p).

Thus ¢ must contain an input variable X" such that
VALUE(y(X™"), p) # VALUE(X", p).

Clearly, W(X")# X". Let m be the next to last block in p, so p=p'-(m, n). By
definition of ¥, y(X™)=y(&(X, m)). Since yy(X™) contains no input variables at n,

VALUE(y(X™), p) = VALUE(y(X"), p')
= VALUE(/(&(X, m)), p')  since Y(X") =y(&(X, m)),
=VALUE(&(X, m), p") by the induction hypothesis,
=VALUE(X", p) by definition of VALUE. |}

In Appendix I1I, we show that x has a unique minimal fixed point y*. (See
Figs. 2 and 3 for examples of the minimal fixed point cover.) We then show how to
efficiently compute y*.

The overall plan of Section 2 is to introduce (in Sect. 2.1) a special class of graphs
called global value graphs which represent the flow of values (rather than control)
through the program. We define, for each global value graph GVG, a set I'gyg of
approximate covers associated with it. Appendix III shows I'gyg is in each case a
finite semilattice which thus has a unique minimal element min(/ gy ), and which is
efficiently calculated by the algorithm presented in Sections 2.2-2.5. As we show in
Appendix III, for a particular choice of GVG =GVG,, min(/ gyg.) is actually v*,
the minimal fixed point of the functional u, so our general algorithm does indeed
compute ¥,

1.5. Comparison with Previous Work

In order to compare our methods with others we must fix the relevant
parameters of the program and control flow graph. Let # and a be the cardinality of
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the node and edge sets, respectively, of the control flow graph. Let o be the number
of variables occurring within more than one block of the program (if we build into
the programming language a construct for the declaration of variables local to a
block, then the parameter o is the number of global variables). Let [ be length of the
program text, that is, the total number of subexpressions, assignments, and control
statements occurring in the program text. Previous authors have analyzed program
optimization algorithms primarily from the point of view of the control flow graph
parameters n and a, without taking into proper account the general case where / is
significantly longer than these parameters.

Kildall [Ki] presents an iterative algorithm for computing approximate solutions
to various expression optimization problems including constant detection. Since
Kildall’s algorithm requires that the value of each global variable be approximated
at each node, and since these values are propagated across each edge, it follows that
each iteration of Kildall’s algorithm takes Q(/+ o(n+ a)) elementary steps. Each
iteration of Kildall’s algorithm may result only in the change of only one program
variable value (out of ¢ program variables) at only a single block (out of n blocks).
A total of n iterations of Kildall’s algorithm for constant detection can thus be
required for convergence. Thus the total time in the worse case is at least
Q((I+a(n+a))n). (2(f(x)) is a function bounded from below by k- f(x) for some
constant k. See Knuth [Kn2].) No previous papers considered the more general
problem of computing covers of text expressions.

As described in Section 1.4 an iterative algorithm may also be used to compute a
certain class of covers, which we have characterized as fixed points of an update
functional ¥, mapping approximate covers to improved covers. Fong, Kam, and
Ullman [KFU] give a direct (noniterative) method for solving various expression
optimization problems such as constant detection. They do not consider the com-
putation of covers, but their method could be adapted to give covers. However,
these resulting covers would be weaker than our fixed point covers and their direct
algorithm is restricted to reducible flow graphs. The iterative algorithm requires
Q(In*) elementary steps and Fong, Kam, and Ullman’s algorithm requires
Q(lalog(a)) elementary steps. One source of inefficiency of both of these algorithms
is in the representation of the covers. Directed acyclic graphs (dags) are used to
represent expressions, but separate dags are needed at each node of the flow graph.
Since a dag representing a cover may be of size Q(/), the total space cost may be
Q(/n). Various operations on these dags, which are considered to be “extended”
steps by Fong, Kam, and Ullman [FKU], cost (/) elementary steps and cannot
be implemented by any fixed number of bit vector operations. In general, any
similar algorithm for computing a cover which attempts to pool information
separately at each node of the flow graph will have time cost of Q(la), since the
pools on every pair of adjacent nodes must be compared. Since /> n, such a time
cost may be unacceptable for practical applications.

Another problem with these previous methods is they do not necessarily compute
good covers. The iterative algorithm only computes a fixed point of ¥, but not
necessarily its minimal fixed point. Soms of the difficulties of computing covers is
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illustrated in Fig. 3. Note that X™ covers X", and this is discovered by our
algorithm since the minimal fixed point of X" is X™. In fact, our algorithm always
gives the minimal fixed point. While iterative algorithms might be modified to do
well for specific examples such as in Fig. 3, it remains an open question (open for at
least 6 years) whether some efficient iterative method can provably compute the
minimal fixed point cover. At any rate, this paper was the first in the literature
directly concerned with computing covers.

The global value graphs used in this paper contain dags of program blocks as well
as the use-def edges of [Sc] to represent the global flow of values through the
program. The use of a global value graph leads to our efficient direct algorithm for
computing covers which works for all flow graphs. The method derives its efficiency
by representing the covers with a single dag, rather than a separate dag at each
node. The global value graph GVG, is of size O(oa+1), although the results of
[RT] may be used to build a global value graph which in many cases is of size
O(a+1) (see Sect. 3). In elementary operations the time cost of our algorithm for
the discovery of constants is linear in the size of GVG, and our algorithm for
finding the cover which is the minimal fixed point of ¥ requires time almost linear
in the size of the GVG. Thus our algorithm for symbolic evaluation takes worst
case time almost linear in oa+/(a+ ! in many cases), as compared to the iterative
algorithm which may require Q({n) steps. Recently, Reif and Tarjan [RT] give an
algorithm which computes simple covers (weaker than minimal fixed points of ¥)
in time almost linear in /+n+a This algorithm also uses a single dag for
representing the simple cover and works for all flow graphs.

1.6. Further Work

Reif, [R1] extends our algorithm to symbolic analysis of programs with records,
such as LISP and PASCAL programs. Wegman and Zadeck [WZ] recently gave a
very interesting extension of our constant propagation algorithm to utilize infor-
mation from conditional branches.

2. AN EFFICIENT ALGORITHM FOR COMPUTING A COVER

2.1. Dags and Global Value Graphs

A labeled dag D= (V, E, L) is a labeled, acyclic, oriented digraph with a node set
V, an edge list E giving the order of edges departing from nodes, and a labeling L
of the nodes in V. A rooted labeled dag (D, r) represents an expression & if & is the
parenthesized listing of the lables of the subgraph of D rooted at r in topological
order (see Appendix I for definition of such a topological ordering) from r to the
leaves and from left to right among immediate successors. When D is fixed, we
simply say r represents & if (D, r) so represents &. (See Fig. 4.)

The dag D is minimal if each node re V represents a distinct expression. Any
expression or set of expressions may be represented, with no redundancy, by a
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¢ (8

(*)

Fig. 4. (D, r) represents (5+ (5+X™)) (or more properly in prefix notation (+ 5(x5X"))), where D is
the above dag.

minimal dag D(n) to represent efficiently the set of text expressions located at block
n. We have assumed that each block is reduced, so each node in D(n) corresponds
to a unique text expression. [AU1] describe the use of dags for representing com-
putations within blocks. [Ki] and FKU] have applied dags to various global flow
problems.

We now come to the central definition. To model the flow of values through a
program, we introduce a class of labeled digraphs called global value graphs. These
are derived by combining the dags of all the blocks in N and adding a set of edges
called use-def edges (which pair nodes labeled with input variables to other nodes).
More precisely, a global value graph is a possibly cyclic, labeled, oriented digraph
GVG=(V, E, L) such that:

(1) The node set ¥ is the union of the node sets of the dags of N.

(2) Eis an edge list containing (a) the edge list of each D(n) and (b) a set of
pairs in ¥? (use-def edges) such that (i) the first node of each use-def edge is labeled
with an input variable and (ii) for each v € ¥ labeled with an input variable X", and
control path p from s to n, there is some use-def edge departing from v and entering
a node located at a block in p and distinct from n. (Specific use-def edge sets will be
used for various global value graphs considered in this paper.)

(3) L is a labeling of ¥ identical to the vertex labeling of each D(n).

Note that for each ve V, if v represents a constant symbol ¢ then v is labeled with
¢ and has no departing edges; if v represents a function application (6 ¢, --- ¢,) then
v is labeled with the k-adic function symbol 6 and u,,..., u, are the immediate suc-
cessors of v in GVG representing {,,..., t,, respectively; if v represents an input
variable X" then v is labeled with X™ and all the edges departing from v are use-def
edges. For each node ve V, let loc(v) be the block in N where the text expression
which v represents is located.

We assume here, as in Section 1, that the set of text expressions of each block
ne N includes all input variables at #. This may require adding dummy assignments
of the form X := X to satisfy this assumption. Let I'gy¢ be the set of mappings
from ¥ to EXP such that for all ve ¥V
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Control Flow Graph Global Value Graph

F1G. 5. The program’s global value graph GVG,.

(1) 1if L(v) is a constant symbol ¢ then (v)=¢, or

(2) if L(v) is a function symbol @ and v has immediate successors u,,..., u; (in
this order) then y/(v) is the reduced expression derived from (6y(u,) - Y(u,)), or

(3) if L(v) is an input variable then either (a) ¥(v)= L(v) or (b) W(v)=y(u)
for all use-def edges (v, u) departing from v.

Note that for any node v satisfying (2), y(v) is determining from the input
variables occurring in the text expression which v represents. Hence any Y € I'gyg 18
uniquely specified by the set of input variables satisfying case (3a). In Appendix III
we show that I'gyg is a finite semilattice, and hence has a minimal element.

Let GVGy, be the standard global value graph containing only the use-def edges.
{(v,u)|v represents input variable X" and u represents the output expression
&(X, m) for each program variable Xe X2 and edge (m, n)e A of the control flow
graph F.} (See Fig. 5.) Computing this set of use-def edges is easy, since the set of
text expressions of each block ne N includes all input variables at n. Note that
while there are in the worst case /n possible use-def edges, GVG, contains at most
lo use-def edges. (Sect. 3.1 defines a global value graph using a somewhat different
definition for use-def edges, which is even more efficient.) Let ¢* be the minimal
fixed point of u, the functional defined in Section 1.4. Appendix III shows * iden-
tical to be the minimal element of /'y applied to the standard global value graph
GVG,. (Also, in Sect.3 we define a global value graph GVG, with the same
property, but which often is of size linear in /+a.)

2.2. Detection of Constants

Let GVG=(V, E, L) be an arbitrary global value graph. Let y be a minimal
element of I'gys. We wish to compute a new labeling L’ of vertices in ¥ such that
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Global Value Graph

.‘" “
D(m) ¢
Control Flow Graph L7 i

FiG. 6. A simple example of constant propagation through the global value graph.

for each ve ¥, if Y(v) is a constant sign then L'(v) =c and otherwise L'(v)=L(v).
The new labelling can be discovered by propagating possible constants through
GVG, starting from nodes originally leveled with constants and then testing for
conflicts. This is an algorithm for constant propagation with time cost linear in the
size of the GVG. (See Fig. 6 for a simple example of constant propagation through
the GVG.)

Recall that a spanning tree of the control flow graph F=(N, 4, s) is a tree rooted
at s with node set N and edge set contained in 4. A preordering of a tree orders
fathers before sons. Let < be a preordering of some spanning tree of F. For each
ve V, let loc(v) be the node in N at which the text expression associated with V is
located. We construct an acyclic subgraph of GVG by deleting the set of use-def
edges E={(x, u)|loc(v) <loc(u)}. Observe that ( V,E—E) is acyclic. We shall
propagate constants in a topological order (see AppendixI for definition) of
(V, E~E), from leaves to roots. (See Fig. 6).

Our algorithm for computing the new labeling L' is given below. In our initial
constant propagation phase at the do loop at label L0 we ignore the fact that there
can be successors of v in GVG that do not precede v in the topological ordering of
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(V, E— E). However, we take these ignored edges into account in the later portion
of the algorithm following label L4, by resetting L'(v) to L(v) if v is discovered not
to be constant via these ignored edges.

ALGORITHM A,
Input: global value graphs GVG = (¥, E, L) and control flow graph F.
output: L',

begin
declare L' to be an array of length | V|;
Let < be a preordering of a spanning tree of F:
Q :=E :=the empty set { };
for all use-def edges (v, u) € E such that loc(v) < loc(u)
do add (v, u) to E od;
comment propagate constants;
LO: for each ve V' in topological order of (¥, E—E)
from leaves to roots do
if L(v) is a constant sign ¢ then L1: L'(v) :=c;
elseif L(v) is a k-adic function symbol 6,
Uy,.., 4, are the immediate successors of v in
GVG, and (0 L'(wy) -+ L'(u,)) reduces to a
constant ¢ then L2: L'(v) :=¢;
else if L(v) is an input variable and there
is a constant ¢ such that L'(u)=c
for all use-def edges (v, u)e E— E departing from v
then L3: L'(v) :=¢;
else add v to Q; L'(v) := L(v) fi;
fi;
fi;
od;
comment test for conflicts;
L4: for each ve V' labeled with an input variable do
if v has a departing use-def edge (v, u) € E such that
L'(v)# L'(u) then add v to Q fi;
till O =the empty set { } do
" delete some node v from Q;
if L'(v) is a constant then
L5: L'(v) := L(v);
add all immediate predecessors of v in GVG to 0:;
fi
od;
end.

LEMMA 2.1. If Yi(v) is a constant then L'(v) is set to Y(v) ar L1, L2, or L3.
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Proof (by induction on the topological order of (¥, E —E)).
Basis step. Suppose ve V is a leaf of (¥, E— E). Then L(v) is a constant sign
and so L'(v) is set to L(v)=(v) at L1.

Induction step. Suppose ve V is not a leaf of (V,E—E) and L'(u) has been set
to Y(u) for all u occurring before v in the topological order where V(u) is a con-
stant. Then v represents either a function application or an input variable.

Case 1. Suppose L(v) is a k-adic function sign 0 and u,,..., u, are the immediate
successors of v in (V, E—E). If y(v) is a constant ¢ then by definition of I,
W(uy),..., Y(u,) are constants c, ..., ¢, respectively, and (6 ¢, - ¢,) reduces to ¢. By
the induction hypothesis L'(u,)...., L'(,) have been previously set to ¢,..., ¢, and so
L'(v) is set to y(v)=c at L2.

Case 2. Otherwise, L(v) is an input variable X™. If ¥(v) is a constant symbol ¢
then y(v)# X", so by definition of I'gyg, c= W(u) for all use-def edges (v, u)e E
departing from ». By the induction hypothesis, L'(x) has been set to c¢=(u) for
each use-def edge (v, u) e E— E. Now we must show v has some departing use-def
edge (v, u)e E—E. Let T be the spanning tree of F with preorder <. Consider the
path p in T from the start block s to n. By definition of GVG, there is a use-def edge
(v, u) such that loc(x) is distinct from » and is contained in p- Hence (v, u)e E— E
and L(v) is set to ¢ at L3. |

Let O be the value of Q just after L4. Then ve V is eventually added to Q and
L'(v) reset to L(v) iff some element of J is reachable in GVG from v. If ve V is
labeled by L’ with a constant at L4, then we show

LEMMA 2.2. W(v) is not a constant iff some element of Q is reachable in GVG
Sfrom v.

Proof. (If) Suppose ¥(v) is not a constant, but no element of 0 is reachable
from v. Then let Y be the mapping from ¥ to EXP such that for each u e V, yi(u) is
the reduced expression derived from y(u) after substituting y(w) for each input
variable represented by a node w (i.e., w is the unique node labeled with that input
variable) from which an element of Q is reachable. Then Yelgys but
origin(y(v)) = s < origin(y(v)), contradicting the assumption that y is the minimal
element of I'gyg.

(Only If) Suppose some element of { is reachable from v in GVG. Clearly if
ve Q, then y(v) is not a constant. Assume for some k > 0, if there is a path of length
less than k in GVG from some u € V to an element of 0, then Y(u) is not a constant
sign. Suppose there is a path (v=wq, w,,.., w,) of length k from v to w, €Q. If
k=1, then w, € 0, and otherwise if k> 1, then (w,,.., wy) is a path of length k — 1.
By the induction hypothesis, (w,) is not a constant. But (v, w,)€ E and by the
definition of I'gyg, Y(v) is not a constant. [

THEOREM 2.1.  Algorithm A is correct and has time cost linear in the size of the
GVG.
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Proof. The correctness of Algorithm A follows directly from Lemmas 2.1 and
22,

In addition we must show Algorithm A has time cost linear in | V| +|E|. The
initialization costs time linear in | V'|. The preordering < may be computed in time
linear in | N| + | 4| by the depth first search algorithm of [T1]. The time to process
each ve V at steps LO and L4 is O(1 + outdegree(v)). Step L5 can be reached at
most | V| times and the time cost to process each node v at step L5 is
O(1 + indegree(v)). Thus, the total time cost is linear in |v] + [ET].

In some cases, we may improve the power of Algorithm A for particular inter-
pretations by applying algebraic identities to reduce expressions in EXP more often
to constant symbols. For example, in the arithmetic domain we can modify
Algorithm A so that if node v is labeled by L with the multiplication symbol and a
successor of v in GVG is covered by 0, then at step L3 we may set L'(v) to the con-
stant 0.

From the new labeling L’ and GVG = (¥, E, L), we construct a reduced global
value graph GVG' = (V, E', L") with labeling L' and with edge set E’ derived from E
by deleting all edges departing from nodes labeled by L’ with constant symbols.
This corresponds to substituting constant symbols for constant text expressions in
the program. We assume throughout the next three sections that GVG is so
reduced.

2.3. A Partial Characterization of W, the Minimal Element of I'gvc

Let GVG=(V,E, L) be a reduced global value graph as constructed by
Algorithm A of the last section. Let s be the minimal element of I'gyg. Let ¥ be
the set of nodes in ¥ labeled with constant and function symbols. Observe that
I'ove characterized exactly the values of any such y over nodes in ¥ in terms of the
values of i over the nodes in V' — ¥, ie., in terms of the nodes labeled with input
variables. The following theorem characterizes  over V' — ¥ in terms of y over V.

We require first a few additional definitions. A use-def path is a path p in GVG
traversing only nodes linked by use-def edges. A use-def path is maximal if the last
node of p has no departing use-def edges. For any node ve V labeled with an input
variable, let H(V) be the set of nodes in ¥ lying at the end of a maximal use-def
path from v. Note that H(v) is a subset of V. Call two paths disjoint if they have
only their initial node in common.

TueoreM 2.2. If v is labeled with an input variable, then either
(a) Y(v)=y(u) for all ue H(v), or
(b) Y(v)=L(u), where u is the unique node such that
(i) u lies on all maximal use-def paths from v but

(ii) there are disjoint maximal use-def paths from u to nodes u,, u, € H(v)
such that y(u,) # Y (u,). (See Fig.7.)
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FiG. 7. Case (b) of Theorem 2.2: All maximal use-def paths from v contain « and p,, p, are disjoint
maximal use-def paths from u to «,, u € H(v).

Proof. Suppose y(v) is not an input variable, so there exists a maximal use-def
path p from v to some uy € H(v) such that y(v) = ¥(u;). Assume there exists another
maximal use-def path p’ from v to some u € H(v) such that y(v) # y(u,). Let z be
the first element of p’ such that ¥(z) # ¥(u,) and let z’ be the immediate predecessor
of z in p’, so Y(z')=y(v). Then by definition of T've, Y(v)=y(z')=L(z') is an
input variable. We use a proof by contradiction.

Suppose ¥(v) is an input variable, so Y(v)=L(u) for some ue V. For any
maximal use-def path p from v, let z be the first element of p such that y(z) # L(u)
and let z’ be the immediate predecessor of z in p. Then by definition of I GVG»
¥(z')=L(z')= L(u) so z’ =u is contained on p. Now suppose that there is a node
we V distinct from u and contained on all maximal use-def paths from w.

Consider any control path g from the start block s to block loc(u). By
Lemma 2.3, we can construct a maximal use-def path (u=wy,.,w,) such that
loc(w)),..., loc(w,) are distinct blocks in g. Hence, loc(w) properly dominates loc(u).

Let ' be the mapping from ¥ to EXP such that for all v'e ¥, Y'(v') is derived
from Y(v') by substituting L(w) for each input variable laeling a node from which
all maximal use-def paths contain w. Then ¥' € lgys. But origin(y'(v)) = loc(w)
properly dominates loc(u) = origin(y/(v)), contradicting our assumption that Vs
minimal over ['gy,.
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Theorem 2.2 suggests a procedure for calculating y, but there is an implicit cir-
cularity since the calculation (using Theorem 2.2) of y/(v) for ve ¥ — V requires the
determination (using the definition of I'gyvg) of ¥(u) for ue H(v); but since ue V,
the calculation of (u) may require the determination of y/(w) for some other
we V— V. The way out is by the rank decomposition discussed in the next section.
There will remain the problem of finding disjoint paths, which we consider in Sec-
tion 2.5. This allows us to apply Theorem 2.2 without circularity.

2.4. Rank Decomposition of a Reduced GVG

This section describes a decomposition of the nodes of a reduced GVG=
(V, E, L) into sets for which we may completely characterize the minimal € ['gyg.
This leads to an algorithm for the construction of .

Fong, Kam, and Ullman [FKU] describe the rank decomposition of a dag; this
provides a topological ordering of a dag from leaves to roots over which the dag
may be efficiently reduced. Here we generalize the rank decomposition to a possibly
cyclic GVG; this provides us a method of partitioning ¥V into sets of text
expressions over which i may have the same value; it also allows us to apply
Theorem 2.2 without circularity, characterizing completely the minimal V¥ € I'gyg.
In Section 2.5 we apply the rank decomposition to implement our direct method for
symbolic evaluation.

The rank of a node ve V is defmed (see Fig. 8)

rank(v)=0  if v is labeled with a constant symbol or an input variable at the
start block s.

=1+ MAX{rank(u)|(v, u) € E} for v labeled with a function symbol.
= MIN({rank(u)|ue H(v)} for v labeled with an input variable.

Global Value Graph

Control Flow Graph

s it

Fic. 8. Rank decomposition of a global value graph. The integer on the upper right-hand side of
each node is its rank.
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Observe that in the very simple case where the program contains only a single
block of code at the start block s, then GVG consists of the dag D(s). Hence the
rank of a node v e V'is one less than the length of a maximal path from v to a leaf of
the dag D(s).

LEMMA 2.3. Y(v)=y(v') implies rank(v) = rank(v').

Proof. The result follows easily from the assumption  is minimal cover of
I’y We will proceed by induction of rank of v using the definition of the GVG at
each stage of the induction.

Basis step.  Suppose v is of rank 0, so Y/(v) =y(v’) is a constant symbol or input
variable at the start block s. But since GVG is reduced, L(v')= L(v) and v’ is also
of rank 0.

Inductive step. Suppose for some r > 0, rank(w) = rank(w’) for all w, w'e ¥ such
that rank(w) <r and ¥(w)=y(w'). Consider some v, v’ € ¥ such that rank(v)=r.

Casea. Suppose Y(v)=y(v') is the function application (4, ---&,). Then by
Theorem 2.2, Y(v)=y(u) for all ue H(v), and similarly, ¥(v')=y(u') for all
u'€ H(v'). Fix some u€ H(v) and «' € H(u'). By definition of I'gyg, L(u)=L(x')=0
and if wy,..., w; are the immediate successors of u and w7,..., w}, are the immediate
successors of ', then &=y /(w,)=y(w}) for i=1,.., k. By the induction hypothesis,
rank(w;) =rank(w;) for i=1,..., k. Hence,

rank(v) = rank(u)
=1+ MAX{rank(w,),..., rank(w,)}
=1+ MAX{rank(w\),..., rank(w}) }
=rank(u’)
=rank(v’).

Caseb. Suppose Y(v)=1y(v') is an input variable. By Theorem 22, y(v)=
¥(v')= L(u) and H(u)= H(v) for some u € V contained on all use-def paths from v
and v'. Hence, rank(v) =rank(v') =rank(u). ||

To compute the rank of all nodes in GVG we use a modified version of the depth
first search developed by Tarjan [T1]. Because the search proceeds backwards, we
require reverse adjacency lists to store edges in E. Note that the RANK(v) is used
in two different ways; first to store the number of successors of node v which have
not been visited, and later RANK (v) is set to rank(v). Let V,, ¥, be the nodes in V,

V of rank . We initially compute ¥, and on the 7'th execution of the main loop we
compute V,—V,and V, .

ALGORITHM B
Input: GVG=(V, E, L)
output: RANK
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begin
declare RANK :=an array of integers of length | V'|;
forall ve V do
RANK (v) := —outdegree(v) od;
r:=0;
Q' := {v| L(v) is a constant symbol };
until Q' = the empty set { } do '
0 :=0Q'; Q' :=the empty set { };
comment 0=V,;
L: until Q = the empty set { } do
delete v from Q;
for each immediate predecessor u of v do
if L(u) is a function symbol then
if RANK (u)= —1 then
comment ucV, ;
RANK(u) :=r+1;
add u to Q'
else RANK (1) := RANK (1) + 1 fi;
else if RANK(u) <0 then
comment ue V,—V,;
RANK (u) :=1;
add u to Q fi;
fi;
fi;
od;
ri=r+1;
od;
end.

THEOREM 2.3. Algorithm B is correct and has time cost linear in | V]|+|E]|.

Proof (by induction on r). Basis step. Initially, RANK(v) is set to — (outdegree of
v) for each ve V. So if L(v) is labeled with a constant symbol then RANK(v) is set
to 0. Also, Q is initially set to ¥, just before label L.

Inductive step. Suppose for some r>0, we have on entering the inner loop at
label L on the r'th time:

(1) 2=V,

(2) For each veV, RANK(v)=rank(v) if rank(v)<r or ve V,, and

RANK (v) = —(number of successors of v with rank >r) if rank(v)>r or

veV,—V,.
In the inner loop we add to Q exactly the nodes V,— V= {veV— ¥V |some

element of V, is reachable by a use-def path from v}. For each such ve V,—V,

added to Q, RANK(v) is set to r. Also, for each ve P, if rank(v)>r+1 then
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RANK(v) is incremented by 1 for each immediate successor of v of rank r; if
rank(v) =r + 1 then all immediate successors of v are of rank <r so RANK(v) is set
to r+1 and v is added to Q. Thus, (1) and (2) are satisfied entering the loop on the
r+1 time.

Now we show that Algorithm B may be implemented in linear time. For each
node ve V' we keep a list (the reverse adjacency list), giving all predecessors of v. To
process any ve Q' requires time O(1 +indegree(v)). Since each node is added to Q'
exactly once, the total time cost is linear in | V| + |E|. |

This suffices for the construction of y; y(v) for ve Vo, Vo—V,, V,, V,— V...
may be determined by alternately applying the definition of I'gyg and Theorem 2.2.

Using this method could be inefficient, since theorem 2.2 could be expensive to
apply and the representation of the values could grow rapidly in size. The first
problem is solved by reducing it to the problems of P-graph completion and
decomposition as described in Section 2.5. The second problem is solved by con-
structing a special labeled dag; the construction of this dag and the final algorithm
are given in Section 2.6.

2.5. P-Graph Completion and Decomposition

Let GVG=(V, E, L) be a reduced global value graph. This section presents an
efficient method for applying Theorem 2.2 to nodes in ¥, — V, (i.e., nodes of rank r
labeled with input variables). Now to compute i*, the minimal element of Tgyg, it
suffices to find the partitioning of ¥ such that y*(v) = y*(u) iff v, u are in the same
component of the partition. To represent such a partitioning, we distinguish one
node of each component of the partitioning to be the value source of all other nodes
of that block. We require that if ve ¥ — I (i, v is labeled with an input variable)
then y*(v)= L(v) iff v is a value source. Let V'* be the set of value sources and let
V'S be a mapping from nodes in V to their value sources. Hence the fixed points of
VS are the value sources and VS~ ![V*] is a partitioning of V. Note that, in
general, the definition of “value source” is not uniquely determined, so the
definition of ¥* and V'S depends on our particular choice of value sources. We shall
find value sources by reducing this problem to the problems of P-graph completion
and decomposition stated below.

Let G=(V¢, E;) be any directed graph and let S< ¥, be a set of vertices of G
such that for each vertex v e V; there is some vertex u € S from which v is reachable.
(S will be easy to construct in all applications.)

P-GrarH COMPLETION ProBLEM. Find

S§* =8u {ve Vg|there are at least two paths from distinct elements

of Sto v notcontaining any other element of S}.

This form of the problem is due to Karr [Ka], who shows that it is equivalent to
the original formulation due to Shapiro and Saint [SS]. (Actually, this form is
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slightly more general than Karr’s; Karr satisfies our restriction on S by stipulating
that there is a single r€ S from which every ve Vg is reachable.) Karr proves that
for each ve V;— S there is exactly one element we S+ from which v is reachable by
a path avoiding all other vertices of S+ (and his proof extends directly to our
slightly more general problem).

P-GrapH DECOMPOSITION PROBLEM. Given G and S*, find, for each ve Ve—3S,
the unique we S* from which v is reachable by a path avoiding all other vertices
of §*.

We first show the P-Graph completion and decomposition problems can be
solved efficiently. Shapiro and Saint give an O(| Vgl | Eg|) algorithm, while Karr
gives a more complex O(| V¢l log | V| + | Eg|) algorithm. Here we reduce these
problems to the computation of a certain dominator tree, for which there is an
almost linear time algorithm as noted in Section 2.2 (This construction was dis-
covered independently by Tarjan [T2].)

Let / be a new node not in ¥ and let G’ be the rooted directed graph

(Vou {h}, Egu {(h,v)|ve S} —{(u v)lue Vg, vESY, h).

Thus G’ is derived from G by adding a new root &, linking h to every node in S, and
removing the edges of G which lead to nodes in S. Let T be the dominator tree of
G

LEMMA 2.4. The members of S* are the sons of h in T.

Proof. Let ve S*. If ve S then A is a predecessor of v in G’ so h is the father of v
in T.If ve S* — S then by definition of S* there are disjoint paths p,, p, in G from
distinct elements of S to v not containing any other element of S. Clearly p, and p,
are also paths in G' since they contain no edge entering a member of S. Then (4, p,)
and (h, p,) are paths from A to v in G’ which have only their endpoints in common
(ie., the only node on the paths that dominates v is k) so v is a son of A in T.

(only if) Suppose v is a son of h in T. If A is a predecessor of v in G' then
ve S S*. Otherwise there are in G’ paths (h, p;) and (h, p;) from h to v which
have only their endpoints in common. Moreover, these paths contain no element of
S except for the first nodes of p;, p,, since no edge of G’ enters an element of S
except from k. Hence p,, p, are disjoint paths in G’ from distinct members of S to v
not containing any other element of S, and hence ve S™*.

TuEOREM 24. For each veVg—S, the unique node weS™ from which v is
reachable in G by a path avoiding vertices of S* — {w}, is the unique node which is a
son of h and ancestor of v in T.

Proof. Let w be that ancestor of v which is a son of hin T. By Lemma 2.4,
we S, and clearly v is reachable from w in G by a path avoiding S+ —{w}, since v
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is reachable from w in 7. Conversely, if v'is reachable from we S* in G by a path
avoiding S* — {w} then w is a son of 4 in T by Lemma 2.4, and w must be an
ancestor of v since otherwise » would be reachable from some other member of S*
by a path avoiding w.

Now we establish the relation of these problems to the problem of finding V*
and VS as stated above. Fix some V* and VS by choosing one node of GVG for
each value of i on V consistent with our definition of value sources. For each rank
r,let G.=(V,, E,), where ¥, is the set of all nodes of rank r of a reduced GVG as
defined in Section 2.4 and E, is the edge set derived from E by

(1) deleting all edges except use-def edges between nodes of rank r,

(2) for those remaining use-def edges (v,u) entering ue V,, substituting
instead the edge (v, V'S(u)),

(3) finally reversing all edges.

Note that any edge of GVG departing from a member of V, enters a node of
rank <r—1. Let S, be the set of all value sources of ¥, plus all nodes of rank
labeled with input variables which have a departing use-def edge entering a node of
rank greater than r. Note that for each node v of G,, there is a node in S, from
which v is reachable in G,. Finally, let S be defined from S, as in the statement of
the P-graph completion problem.

LEMMA 2.5. The members of S are the value sources of rank r.
Proof. Suppose veS7.

Case 1. By definition, all elements of {VS(v)|ve I;',} are value sources. Hence
we need only consider the case where v is a node of rank r labled with an input
variable which has a departing use-def edge (v, z) entering a node z of rank greater
than r. Since v is of rank r, v must also have a departing use-def edge (v, ) leading
to a node of rank r. By Lemma 2.3, /(z) #(u), so by the definition of I'gye,
Y(v)=L(v) and v is a value source.

Case 2. Suppose there are in G, disjoint paths (x,, x;,..., x;) and (yy, Yo, ¥i)
in G, from distinct x,, y, €S, to v. By construction of G,, there exist distinct %,,
V1€ H(v) such that VS(x,)=x,, VS(7,)=y,, and (x,, X,) and ( y,, 7,) are use-def
edges, and 50 py, = (v=X;, X;_(,..., X2, X;) and p, = (V= Yy, Vi_ s V2, ;) are dis-
joint paths. Now suppose v is not a value source. Applying Theorem 2.2, there is a
value source u (distinct from v) such that y(v)=y/(u)= L(u). Since p, and p, are
disjoint they cannot both contain u. Suppose, without loss of generality, that p,
avoids u. Then all maximal use-def paths from ¥, contain u. Also, by definition of
§,, X;=x, and there is a use-def edge (v, z) such that z is not of rank r. Since any
maximal use-def path from z must contain u, rank(z)=rank(u) implying that u is
not of rank r. But, by hypothesis, all maximal use-def paths from v contain u, so
rank(v) =rank(x). This implies that v is not of rank r, contradicting our
assumptions. [
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By Karr’s proof [K] of the uniqueness of the P-graph decomposition of G, on
S,, we have

THEOREM 2.5. For all nodes ve V of rank r and labeled with an input variable,
vs(v) is the unique value source contained on all use-def paths in G, from elements of
S, to v.

Thus the problem of computing VS reduces to the problem of decomposing the
reduced global value graph by rank and then constructing dominator trees. The for-
mer can be done in linear time by Algorithm B of Section 2.4, the latter in almost
linear time by [LT].

2.6. Our Algorithm for Symbolic Program Analysis

In this section we pull together the various pieces developed in Sections 2.1-2.5 to
give a unified presentation of our algorithm computing a minimal fixed point case.
Instead of using the GVG directly to represent yr*, as suggested in the beginning of
Section 2.5, we more economically represent y* by a dag D* derived from GVG by
collapsing nodes into their value sources; more precisely D* = (V'*, E*, L*), where

V* = {VS(v)|ve V} = the set of value sources,
E*={(VS(v), VS(u))|(v,u)e E  and L(v) is a function symbol }
L* is the restriction of L to V*,

Recall from Section 2.1 that rooted dags may be used to represent expressions in
EXP.

LEMMA 2.6. For each node ve V, (D*, VS(v)) represents Y(v).
Proof. Note that by definition of VS, for each veV

Y*(VS(v)) =y*(v)
for each ve V, so we need only show for ve V'*
(D*, v) represents s *(v).

We proceed by induction on a topological ordering of D*, from leaves to roots.
Basis step. If v is a leaf of D*, then (D*,v) represents the constant symbol

L(v)=y(v).

Induction step. Suppose v is in the interior of D* and (D*, u) represents W *(u) for
all children u of v. Thus v must be labeled in L with a functon symbol 6 and have
immediate SUCCESSOTS Uy ,..., #> in GVG, Then VS(u,),..., V'S(uy) are the children of v
in D* and for i=1,.,k by the induction hypothesis (D*, V'S(;)) represents
Y*(VS(u;))=¥(u,). Thus (D*v) represents (8y*(uy) ~y*(ux))=y*(v) by
definition of I'gyg. 1
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Our algorith.n is given below. As in Section 2.4, we compute §* and V'S in the
order of the rank of nodes in V. The array COLOR is used to discover nodes with
the same ¢*.

ArcoriTeM C

input: GVG=(V, E, L)
output: VS and D* = (V*, E*, L*).
begin
initialize:
declare 'S, COLOR to be arrays of length | V|;
procedure COLLAPSE(S, u):
for all ve S do
VS(v) :=u;
if u # v then
for each edge (w, v) entering v do substitute (w, u) od;
for each edge (v, w) departing from v do substitute (u, w) od;
delete v from the vertex set; fi;
od;

Compute new labeling L of V' by Algorithm A
and reduce GVG as described in Section 2.2;
Compute rank of nodes in ¥ by Algorithm B of Section 2.3;

for r:=0 to {MAX rank(v)|ve V'} do
Let V,, I;’, be the nodes in ¥, V of rank r;
for all ve V. do
if =0 then COLOR(v) :=L'(v)
else COLOR(v) := {L(v), u,,..., 4 » Where
Uy,..., 4y are the current immediate successors of v; fi; od;
radix sort nodes in ¥, by their COLOR,;
for each maximal set S < ¥, containing nodes with the same COLOR do
choose some ue S;
comment u is made a value source;
COLLAPSE(S, u);
od;
Let 4 be some node not in V,:
E, =S8, :=the empty set { };
for all ve V, do add VS(v) to S,; od;
for all ve V,— V, do
for each node u which is currently an immediate successor of v do
if u is of rank r then add (u, v) to E,;
else add « to S,; fi; od;
Let T, be the dominator tree of G,=(V,u {h}, E,u {(h,v)|veS,}, h);
for all sons u of 4 in T, do
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comment by Theorem 2.4 and Lemma 2.5, u is a value source;
COLLAPSE ({the descendents of u in T}, u);
delete all edges departing from u;
od;
od;

Let ¥*, E* be the node set and edge list derived from ¥, E by the above collapses;
for all ve V* do L*(v) :=L'(v);
end.

THEOREM 2.6. Algorithm C is correct and can be implemented in almost linear
time.

Proof. The correctness of Algorithm C follows directly from Theorems 2.4, 2.5
and Lemmas 2.5, 2.6.

In addition, we must show that Algorithm C can be implemented in almost linear
time. The storage cost of GVG is linear in |V|+|E|. The initialization of
Algorithm C costs time linear in | N|+[A4]. Algorithms A and B cost linear time by
Theorems 2.1 and 2.3, respectively. The time cost of the r'th execution of the main
loop, exclusive of the computation of T, is linear in | V,| + | E,|, plus the sum of
the outdegree of all ve V,— V,. (Here we assume that elements in the range of L'
are representable in a fixed number of machine words and that the number of
argument-places of function signs is bounded by a fixed constant, so a radix sort
can be used to partition ¥, by COLOR.) The computation of the dominator tree T,
requires by [LT] time cost almost linear in |V, + | E,|. Thus, the total time cost is
almost linear in |V|+ | E|. |

This completes the presentation of our algorithm for computing a minimal fixed
point case ¥*.

3. FURTHER WORK

3.1. Improving the Efficiency of Our Algorithm for Symbolic Program Analysis

The primary goal of this paper was to construct the minimal fixed point y* of
the functional x. Actually, u was defined relative to a program derived from the
original program by adding a dummy assignment of the form X := X at every block
where program variable X € Z is not assigned. This does not change the semantics
of the program but requires the addition of O(|2|[N|) text expressions whose
covers we are not actually concerned with. In practice we need the covers given by
¥* only over the domain of the text expressions of the original program.

The algorithms of Section 2 allow us to construct, for any global value graph
GVG, the unique minimal element of I'gy in space linear in the size of GVG and
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time almost linear in the size of GVG. Section 2.1 defines the standard global value
graph GVG, which has size O(|2|| 4|+ /) and with the property that y* is the
minimal element of /'gyg,- We describe here how we may construct a global value
graph GVG, of size O(d | 4| + ), where d is a parameter of the program which is
often of order 1 for block-structured programs but may grow to | Z'|. The construc-
tion of GVG, can be done by a preprocessing stage of [RT] costing a number of
bit vector steps almost linear in |A|+/ Thus this preprocessing stage offers no
theoretical advantage but in practice may often lead to a global value graph of size
linear in the program and flow graph. The construction of GVG™* can be done by a
preprocessing stage of [RT] costing a number of bit vector steps almost linear in
| A| + L. Appendix III shows GVG, has the property that the minimal element of
I'Gyg, is the minimal fixed point of the functional ¥ defined in Section 2.4. In con-
trast to the iterative method, which for a large class of programs has storage cost
Q(I|N|) and time cost 2(/ | N|?), our direct method has storage cost linear in the
size of GVG, and time cost almost linear in the size of GVG,.

A path is m-avoiding if the path does not contain node m. Consider blocks m, n in
the control flow graph such that m dominates n. A program variable Xe X' is
definition-free between m and n, if (1) m=n or (2) m properly dominates » and X is
not assigned a value on any m-avoiding control path from an immediate successor
of m to an immediate predecessor of n (otherwise X is defined between m and n).
We define a function W from text expressions which are input variables to blocks of
the control flow graph. For each input variable X", W(X™)=m, where m is the first
block on the dominator chain of the control flow graph from the start block s to n
such that X is definition-free between m and n. An algorithm in [RT] computes W
in a number of bit vector steps almost linear in |N| + L

It will be convenient to assume that for each text expression which is an input
variable X" such that W(X™)=n, X is assigned a value at each block m immediately
preceding n. We must add O(d|N|) dummy assignments to accomplish this; 4 is
often constant for block structured programs but may grow to |2|. Let GVG, =
(V, E, L) be the standard global value graph defined in Section 2.1. Let E, be the set
of pairs of vertices (, v) € ¥ such that

(1) v is labeled with an input vriable X™
(2) ¢ represents an output expression &(X, m)

(3) either (a) W(X")=r and m is an immediate predecessor of » in F, or (b)
W(X")=m properly dominates n.

Note that E, contains O(d| 4| + ) edges. Let Eyp be the use-def edges of GVG,.
Let GVG, be the global value graph with vertices V, labeling L, and use-def edges
EUE,—Eyp. Let d=|E,|/|A| and observe that d<|Z|. Then |E,|=0(d|A4])
and so GVG, is of size O(|E,|+)=0(d | 4| +1).

Appendix Il proves I'gyg, has a minimal fixed point which contains in its
domain the minimal fixed point cover ¥*. Thus our algorithm given in Section 2
can be used to construct ¥* in time almost linear in the size of GVG,.
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3.2. Improved Covers for Restricted Domains

We show in Appendix I that there is no finite algorithm for computing minimal
covers in the arithmetic domains. However, the minimal fixed point covers com-
puted by our algorithm in Section 2 can be improved by use of domain-specific
identities.

In [R1] our methods for computing covers are extended to programs which
operate on records in a language such as PASCAL or LISP 1.0. There we use the
domain specific fact that selections (such as car or cdr is LISP) on structures yield
subcomponents for which we can derive covering expressions.

APPENDIX [

Graph Theoretic Notions

A digraph G = (V, E) consists of a set V' of elements called nodes and a set E of
ordered pairs of nodes called edges. The edge (u, v) departs from u and enters v. We
say u is an immediate predecessor of v and v is an immediate successor of u. The out-
degree of a node v is the number of immediate successors of v and the indegree is
the number of immediate predecessors of v.

A path from u to w in G is a sequence of nodes p = (u=v;, v,,.., v, = W), Where
(v;, v;,,) € E for all i, 1 <i<k. The length of the path p is k — 1. The path p may be
built by composing subpaths

P= (vls'"s Ui) ' (Ur',"" vk)'

The path p is a cycle if u=w. A strongly connected component of G is a maximal
set of nodes such that each pair in the set is contained in a common cycle.

A node u is reachable from a node v if either u=1v or there is a path from u to v.

We shall require various sorts of special digraphs. A rooted digraph (V, E, r) is a
triple such that (¥, E) is a digraph and r is a distinguished node in V, the root. A
flow graph is a rooted digraph such that the root r has no predecessors and every
node is reachable from r. A diagraph is labeled if it is augmented with a mapping
whose domain is the vertex set. An oriented digraph is digraph augmented with an
ordering of the edges departing from each node. We shall allow any given edge of
an oriented graph to appear more than once in the edge list.

A digraph G is acyclic if G contains no cycles, cyclic or otherwise. Let G be
acyclic. If u is reachable from v, u is a descendant of v and v is an ancestor of u
(these relations are proper if u# v). Nodes with no proper ancestors are called roots
and nodes with no proper descendants are leaves. Immediate successors are called
sons. Any total ordering consistent with either the descendant or the ancestor
relation is a topological ordering of G. :

A flow graph T is a tree if every node v other than the root has a unique
immediate predecessor, the father of v. A topological ordering of a tree is a preor-
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Fig. A.1. A flow graph and its dominator tree.

dering if it proceeds from the root to the leaves and is a postordering if it begins at
the leaves and ends at the root. A spanning tree of a rooted digraph G=(V, E, r) is
a tree with node set V, an edge set contained in E, and a root r.

Let G=(V, E, r) be a flow graph. A node u dominates a node v if every path from
the root to v includes u (u properly dominates v if in addition, u#v). It is easily
shown that there is a unique tree, T, called the dominator tree of G, such that u
dominates v in G iff u is an ancestor-of v in T;. The father of a node in the
dominator tree is the immediate dominator of that node. (See Fig. Al for an exam-
ple of a dominator tree.)

All of the above properties of digraphs may be computed very efficiently. An
algorithm has linear time cost if the algorithm runs in time O(n) on input of
length n and has almost linear time cost if the algorithm runs in time O(nax(n, n)),
where « is the extremely show growing function of [T3] (« is related to a functional
inverse of Ackermann’s function). Using adjacency lists, a digraph G = (¥, E) may
be represented in space O(| V| + | E|). Knuth [Knl] gives a linear time algorithm
for computing a topological ordering of an acyclic digraph. Lengauer and Tarjan
[LT] present linear time algorithms for computing the strongly connected com-
ponents of a diagraph and a spanning tree and an almost linear time algorithm for
computing the dominator tree of a flow graph.

AprpenDIx 11

Undecidability of Various Code Improvements

The Introduction listed a number of code improvements which are related to the
problem of determining minimal covers of text expressions. Here we show that even
constant propagation, the most fundamental of these improvements, is recursively
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; Z::on/(1+o(x1.x2,---,xk)E)J

Fic. A2. The control flow graph F.

undecidable for programs evaluated within the arithmetic domain. This rules out
the possibility of finding minimal covers even in simple domains. Previously, Kam
and Ullman [KU2] have shown related global flow problems to be undecidable in
an abstract, nonarithmetic domain.

TueorEM Al. In the arithmetic domain, it is an undecidable problem to discover
if a text expression is covered by a constant symbol.

Proof. The method of proof will be to reduce this problem to that of the dis-
covery of text expressions covered by constant symbols within the arithmetic
domain (Z, I,).

Let {Xo, X1, X2, Xic} be a set of variables, where k > 5. Matijasevic [M] has
shown that the problem of determining if a polynomial Q(Xy, X,s X, ) has a root
in the natural numbers (Hilbert’s 10th problem) is recursively unsolvable.

Consider the flow graph F, of Fig. A2. Let ¢ be the text expression
LX4/(1+ Q(X{,.... X{)*) located at block f. We show ¢ is covered by a constant
symbol iff Q has no root in the natural numbers.

For any control path p from the start block s to the final block / and for
i=0,1,.,k let X,(p)=I(VALUE(X, f, p)) =the value of X, just on entry to f
relative to p. Also, let X(p)= (X1(p). X, .(p)). Observe that for any k-tuple of
natural numbers z, there is a control path p from s to f such that z= X(p).

(if) Suppose Q has no root in the natural numbers. Then for each control path p
from s to f, Q(X(p)s- Xi(p)) #0, sO VALUE(, p)=0. Thus, ¢ is covered by the
constant 0.
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(only if) Suppose Q has a root z in the natural numbers. Then it is possible to
find execution paths p and g from s to f such that z=X(p) and X(p)=0. Hence
VALUE(t, p) =0 and VALUE(s, gq)=1, so t is not covered by a constant sym-
bol.

COROLLARY A.l. In the arithmetic domain, the following global flow problems are
undecidable: discovery of minimal covers, birth and safe points of code motion, redun-
dant text expressions, and loop invariants.

Proof. It is easy to show that the problem of discovery of constant text
expressions recursively reduces to each of these problems. Add the edge (f, n,) to
the control flow graph F of Fig.4, so ¢ is contained as a cycle of F. Then by
Theorem 4, Q has no root in the natural numbers iff # is covered by 0

iff s is the birth point of #;
iff s is the safe point of #;
iff ¢ is redundant on entry to f;

iff # is a constant loop invariant.

Thus, the problem of discovery of whether text expression 7 is covered by a con-
stant reduces to each of the above global flow problems. (Note that the problem of
safety of code motion is also hard for other reasons; if we add the text expression
t' = 1/Q(xy f.., Xi f) to block f then Q has no root in the natural numbers iff ¢’
is safe at f.)

AppeENDIX 111

Fixed Points of I'gyg
We define a partial mapping min: EXP? — EXP such that for all &, 6" € EXP,

Eminé' =& if origin(&) properly dominates origin(¢&’’)
=& if origin(&’) properly dominates origin(&)

or if origin(&) = origin(&") and
(i) if #=& then & min §'=&6=4&", or
(ii) if & is a constant symbol and &’ is a function application, then & min
&' =& min § =6, or
(iii) if & &' are function applications (6 & - &), (8 & &), respectively,
and & = & min &is defined for i=1,..., k then & min &' = (0&, - - &), and otherwise,
& min &’ is undefined.

We extend min to the partial mapping from pairs of elements of I'gve to I'ava
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defined thus: for ¥, Y’ € I'gyg, if for all ve V, Y(v) min y'(v) = ¥(v) is defined then
¥ min §' = and otherwise Y min Y is undefined.

Let GVG be as an arbitrary global value graph. We show that I'gye is a semilat-
tice. We require two technical lemmas:

LEMMA Al. For any ve V labeled with an input variable and any control path p
from the start block s to loc(v), there is a maximal use-def path q from v such that all
the nodes in q have distinct loc values in p.

Proof. We consider (¢) to be a trivial use-def path. Suppose we have constructed
a use-def path (v =u,..., u;) such that loc(u,), loc(; _ ), loc(u,) are distinct blocks
occurring in this order in p. If u; is not labeled with an input variable (and thus has
no departing value edges) then (t=u,,.., %) is a maximal use-def path. Otherwise,
let p, be the subpath of p from s to the first occurrence of block loc(y;) and let
(u;, u;,) be a use-def edge such that loc(u; ., ;) occurs strictly before loc(u;) in p.
Then (t=1u,,..., u;, U;4,) is a use-def path and loc(u;, ;) is distinct from blocks
loc(u; ),.-.., loc(u;). The result thus follows from induction on the length of p. |

t
LEMMA A2. For any Y€ I'gyg and ve V, origin(y(v)) dominates loc(v).

Proof (by contradiction). Suppose for some v € V, origin(y(v)) does not dominate
loc(v). Hence, there must be an input variable X™ occurring in /(v) such that n does
not dominate loc(v), and so there is an n-avoiding path p from the start block s to
loc(v). Also, there must exist some u€ V' labeled with an input variable and also
located at block n, such that y(u)=X". By LemmaA.l, we can construct a
maximal use-def path (u=u,..., u;) such that loc(u,),... loc(u,,) are distinct blocks
in p. Let j be the maximal integer <k such that y(u;)= - =¥ (u). If L(;) is an
input variable, then y(u,)=L(y)=X", so loc(u;))=n is contained in p, con-
tradicting the assumption that p contains n. Otherwise, if L(w;) is not an input
variable then neither is ¥(v)=v(u,;), a contradiction with the assumption that

Yw)=x" 1

THEOREM A2. ['gvg is a semilattice.

Proof. Tt is sufficient to show min is well defined over I'gyg. We proceed by
induction. Suppose for ¥, y'€ I'gyc and some & in the domain of ¥, Y(u) min
¥'(u) is defined for all u € ¥ such that y(u) is a proper subexpression of &. Consider
some text expression v such that y(v)=46. By Lemma 2.2, both origin(y(v)) and
origin(y'(v)) are contained on all control paths from the start block s to loc(v), so
we may assume without loss of generality that origin(y(v)) dominates origin(y'(v)).
Observe that y(v) min §/'(v) = y(v) if origin(y(v)) properly dominates origin(y'(v))
so we further assume that origin(y(v)) = origin(y/'(v)).

Case 1. If L(v) is a constant symbol c¢ then Yp()=y'(v)=c so Y(v)=
min Y'(v) =c.
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Case 2. Suppose L(v) is a function symbol # and v has immediate successors
Uy,.., U. By the induction hypothesis &'=y(u;) min y'(u;) is defined for i=1,..., k.
Hence 1/(v) min y'(v) is the reduced expression derived from (6 &7 --- &%)

Case 3. Otherwise, suppose L(v) is an input variable. Let p be a control path
from the start block s to loc(v). By Lemma 2.1, we can construct a maximal use-def
path (v =u,,..., u;) such that for i=1,..., k each loc(x,) is contained in p. Let j be the
maximal integer such hat y(u,) = -+ = (u)).

Case 3a. If Y'(v)=U(u)= " =y(u;) #Y'(u;,,) for some i, 1 <i<}j, then by
the definition of I'gyg, Y(v)=v¥'(u;)=L(x;). Hence origin({'(v))=n;#n;=
origin(y(v)), contradicting our assumption that origin(y'(v)) = origin(y(v)).

Case 3b. Otherwise, suppose ¥'(v)=y'(u;)="""=y’'(u;) so we have y(v)=
Y(u;) and ¥'(v) =y'(u;). Applying Cases 1 and 2, y(v) min Y'(v) =y (u;) min ' (u;) is
defined if L(x;) is either a constant symbol or function symbol, so we assume L(u;)
is an input variable. Since j is maximal, Y(v) =y(u;) = L(u,). If ¥'(v) = ' (u;) = L(w;)
then (v) min y'(v) = L(u;). Otherwise, suppose ¥'(;)# L(u,). For each use-def
edge (u;,v'), by the definition of I'gyg, ¥'(¥)=y'(v') and by Lemma 2.2,
origin(i'(v")) dominates loc(v'). Hence origin(y'(v)) = origin(y'(x;)) is distinct from
origin(y(v)), contradicting our assumption that origin(y’'(v)) = origin(y(v)). 1

Theorem A.2 immediately implies that

COROLLARY A.2. ['gyg has an unique minimal element min(f'gyg).

Let GVG, be the standard global value graph defined in Section 2.1. We have
shown that I'gyg, is a finite semilattice and hence has a minimal element. We now
show that this minimal element is the unique minimal fixed point of u as defined in
Section 1.4.

THEOREM A.3. *, the minimal fixed point of u, is identical to the unique minimal
element of I'gyg,-

Proof. Observe that any fixed point of u is an element of I'gvg,: ABy
Corollary 2.1, I'gyg, has a unique minimal element ¥ =min(I"gyg,). Suppose ¥ is
not a fixed point of u. Observe that since Y € F'ye,» for each input variable X", if
Y(X")# X" then () )(X")=y/(X"). Hence there is an input variable X" such that
Y(X™) = X" but P(J)(X") =&, where & =&(J(X, m)) for all blocks m immediately
preceding block 7 in the control flow graph F. A

: We are going to construct a mapping V¥ € I'gvg, distinct from y such that y < .
This will contradict our assumption that y is the minimal element of I'gyg,. For
each text expression ¢, let y(¢) be derived from (1) by substituting & for each
occurrence of X", and then reducing the resulting expression. We now show

W'e I'gyg,. Consider any input variable Y.
Case a. Suppose J(¥™)=Y".If ¥Y" # X" then y(¥™) = Y. Otherwise, if ¥" =
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(X, n) then for each block m immediately preceding block n'=n, Y(¥Y")=
¥(&(Y, m))= &, and since X" is not contained in &, Y(Y")=y(&(Y,m))=6.

i Ca,se b. If (Y")# Y™ then for each block m immediately preceding n' in F,
Y(Y™)=y(E(Y, m)), so Y(Y™)=y(&(Y, m)). Thus y € I'gyg,- For each block m
immediately preceding n in F, & =y(X")=y/(&(X, m)), so

origin(y(X™) = origin(y(£(X, m))) dominates loc(&(X, m)), by Lemma A.2

=m,

and hence origin(y(X™)) properly dominates origin(y(X™)). This implies that W is
not the minimal element of I'gyg,, a contradiction. [}

Let GVG, be the global value graph defined in Section 3.1. Let ¢* be the
minimal fixed point of I'yg,. By Theorem A.3, y* is the minimal fixed point of
I'gve, As in Section 3.1, we assume that for each text expression which is input
variable X” such that X is not assigned at block n, then X is assigned to at each
block immediately preceding #. Thus ¢ * and y* have the same domain.

THEOREM A4. Y™ =y*

Proof. Clearly y* € I'gyg,. Suppose, however that y * #y*. Then since y* is
the unique minimal fixed point of I'gvg, there is some v such that origin(y*(v))
properly dominates origin(y * (v)). Choose v so that Y * (v) has minimal rank and
origin(y *(v)) is also minimal with respect to domination ordering. Now v is cer-
tainly not a constant. If v is of the form (g sorry 1) then Y¥(u,) # Y™ (1)) for some i,
such that rank(s,) <rank(v), a contradiction with the assumption that v has
minimal rank. Otherwise, suppose v is an input variable X™. Since origin(y * (v)) is
also minimal, we can assume that y *(v) =v. Then X cannot be definition-free from
origin(y*(v)) to n, and there must be use-def edges (v, u,), (v,u,) such that
W+ (uy) # ¢ " (uy). But this implies also that y*(v) =v, a contradiction. [
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