LOGARITHMIC DEPTH CIRCUITS FOR ALGEBRAIC FUNCTIONS*

JOHN H. REIFY

Abstract. This paper describes circuits for computation of a large class of algebrajc functions on
polynomials, power series, and integers, for which, it has been a long standing open problem to compute
in depth less than Q(log n)*.

Algebraic circuits assume unit cost for elemental addition and multiplication. This paper describes
O(log n) depth algebraic circuits which given as input the coefficients of n degree polynomials (over an
appropriate ring), compute the product of n°W polynomials, the symmetric functions, as well as division
and interpolation of real polynomials. Also described are O(log n} depth algebraic circuits which are given
as input the first n coefficients of a power series (over an appropriate ring) compute the product of no®
power series, as well as division, reciprocal and reversion of real power series.

Furthermore this paper describes boolean circuits of depth O(log n(log log n)) which, given r-bit binary
numbers, compute the product of n numbers and integer division. As corollaries, we get boolean circuits
of the same depth for evaluating, within accuracy 27", polynomials, power series, and elementary functions
such as (fixed) powers, roots, exponentiations, logarithm, sine and cosine.

All these circuits have constant indegree, polynomial size, and may be uniformly constructed by a
deterministic Turing machine with space O(log n).
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1. Introduction. Much research is now done on parallel algorithms, although in
fact at this time most current computers contain only a single processor. However,
these computers do use parallel circuits to implement the most basic and often repeated
operations, such as the arithmetic operations: addition, subtraction, multiplication and
division. These operations are generally applied to integers with an n bit binary
representation, and to floating point reals with relative accuracy 27". Other frequently
used repeated operations, which certainly would merit special purpose circuits, are
the elementary functions such as sine, cosine, arctangent, exponentation, logarithm,
square roots, and fixed powers. For practical reasons we require circuits of constant
indegree which can be uniformly constructed within O(log n) deterministic space (and
thus deterministic polynomial time).

The depth of a circuit is the time for its parallel execution. What is the minimum
depth of boolean circuits for these arithmetic operations and elementary functions?

For integer addition, Ofman [62], Krapchenko [67] and Ladner and Fischer, [80]
give boolean circuits of depth O(log n) and size O(n). Subtraction circuits with the
same asymptotic depth and size can easily be gotten from these addition circuits. Also
Reif [83] has recently given linear size, constant indegree boolean circuits of depth
O(log log n) for addition and subtraction of random numbers with error probability
at most n”°,

For integer multiplication, Ofman [62] and Wallace [64] give boolean circuits of
depth O(log n), and Schénhage and Strassen [71] also achieve depth O(log n) with
simultaneous size O(n(log n) log log n).

The problem of computing division or the elementary functions in better then
depth Q(log n)? has been open for at least 17 years since S. Cook’s Ph.D. thesis (Cook
[66]) (also see Borodin and Munro [75], and Savage [76]). Wallace [64] first gave a
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division circuit with depth Q(log n)’. Subsequently, Anderson et al. [67] gave a division
circuit of the same depth which was implemented by them on the IBM/360 Model 91
Floating-Point Execution Unit. Knuth [81] and Aho, Hopcroft and Ullman [74]
described a division circuit attributed to Steve Cook of depth (logn)® and size
O(n log n log log n). The best known boolean circuit depth for the elementary functions
was ((log n)? (Brent [76], Kung [76]). Many of the above mentioned boolean circuits
of depth Q(log n)? for division and elementary functions use a second order Newton
iteration with Q(logn) steps, each requiring an n-bit integer multiplication with
Q(log n) depth. Alternatively, a reduction is often made to the problem of computing
the mth power of a n-bit integer modulo 2" +1 for m = O(n). This can be computed
by Q(log n) steps of repeated squaring, where each square computation requires
Q(log n) depth.

By new techniques we achieve depth less than (log n)°. An essential technique in
the construction of our circuits is the use of convolutions, which can be computed in
boolean depth O(log n) by the fast Fourier transforms. This technique was first
introduced by Schonhage and Strassen [71] for the multiplication of two integers. Our
innovation was to generalize the convolution technique to products of more than two
terms.

Section 2 introduces the appropriate mathematical groundwork for the generalized
polynomial convolution techniques which we utilize. Also in §2 we give O(logn)
depth algebraic circuits for various polynomial and power series operations. These
algebraic circuits are interesting in the theoretical context of parallel algebraic computa-
tion, where arithmetic operations are assumed to be of unit cost.

The last part of this paper is concerned with the possibly more practical construc-
tion of boolean circuits, which originally motivated this work. In § 3 we give uniform
boolean circuits of nearly logarithmic depth for the problem computing the product
of n°®" integers modulo (2"+1). In an earlier version of this paper (Reif [83]) we
proved our boolean circuits had depth O(log n(loglog n)?). This draft includes an
improvement to our construction due to Beame, Cook, and Hoover [84a,b] which
reduces the depth by a factor of loglogn to O(log n(loglogn)) and gives simul-
taneously polynomial size. These results imply uniform boolean circuits of depth
O(log n(log log n)) for.the problems of division and computing elementary functions,
among others.

This also implies sequential space complexity upper bounds for these and related
problems. In particular, Borodin [77] proved that if a function f is computed in uniform
boolean circuit depth D(n) =log n, then f can be computed by a deterministic Turing
machine with space D(n). Thus for example, division, the elementary functions and
the first n bits of 7 can be computed by deterministic space O(log n(log log n)).

2. Circuits for polynomial and power series computations. Our basic techniques
are best understood first in the simpler context of polynomials and power series. In
fact, this context is interesting in itself. We might envision a special purpose computer
designed for algebraic computation. Its data are (coefficients of) polynomials and
power series. The arithmetic operations including division of polynomials and power
series are elementary operations of our “‘algebraic computer.” Also, frequently applied
operations are the composition of power series, revision of a power series, computation
of elementary functions applied to power series, and interpolation of polynomials. We
give in this section circuits of depth O(log n) for all these polynomial and power series
operations, where each gate of the circuits computes an addition, multiplication, or a
division of two elements of the domain.
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2.0. Circuit definitions. A circuit e, over a commutative ring # =(2, +,,0,1)

is an acyclic labeled digraph, with
(i) a list of N distinguished input nodes that have no entering edges;

(ii) constant nodes with indegree 0 and labeled with constants in 92,

(iii) internal nodes with indegree two and labelled with the symbols in {“+”, “-"'};

(iv) a list of N’ distinguished output nodes.

Given an assignment of the input nodes from domain %, the value of the circuit
at the output nodes is gotten by evaluation of the gates in topological order. The circuit
an thus defines a mapping from @™ to @"'. A circuit ay over a field is similarly
defined, except the internal nodes can also compute division. Since division may yield
an undefined value, a circuit over a field defines in general a partial mapping of inputs
to outputs.

Let ®[x] be the polynomials over commutative ring . Let %[[x]] be the power
series over Z.

Let f be a partial function of (the coefficients of) m polynomials p,(x), - - * , pm(x)
in #[x] of degree n—1. A circuit ay for f has N =mn inputs, namely the list of N
coefficients in & of the given polynomials. The output nodes of ay give the list of
coefficients of f(p,(x), -, Pm(x)). If on the other hand f is a function of m power
series pi(x), - - -, pm(x) in R[[x]] each with n given low order coefficients, then the
circuit ay for f also has N = nm inputs, and the outputs nodes of ax only give some
prescribed finite number of the coefficients of (the possibly infinite) power series
f(pl(x): T, pm(x))

The depth of circuit ay is the length of its longest path. A partial function f over
polynomials or power series in % has simultaneous depth O(D(N)) and size O(S(N))
if there exists an infinite family of circuits a,, - - -+, @, * - and constants ¢,, ¢;= 1 such
that YN =1, ay has depth not more than ¢,D(N) and size not more than ¢,S(N )
and given N input coefficients of the input polynomial or power series, ay computes
f within the prescribed number of coefficients.

Let a,, a,, * - - be a family of circuits over ® = (%, +, -, 0, 1) where & is countable.
Fix some enumeration ¢, ¢,, - - - of the constants in 9. We assume each circuit oy is
encoded by a binary string where the binary representation of i is used to represent
each constant symbol c; labeling a node in ay. (Thus, for example, the Nth root of
unity, if it exists, might be represented by a binary string of length log N.) The circuit
family @,, - - -, @n, * - - is uniform in the sense of Borodin [77] if there exists a logarithmic
space deterministic Turing machine which given any N >0 in unary outputs for the
binary encoding of ay. All the circuits considered in this paper are uniform in this sense.

2.1. The discrete Fourier transform. Fix a commutative ring ® = (%, +,-,0,1). We
assume w is a principle Nth root of unity in # and that N has a multiplicative inverse.
(For example, ¢ /N is a principle Nth root of unity in the complex numbers.)
Given a vector a € @, the Discrete Fourier Transform is

DFTN (a) = Aa

where A;=w"” for 0= i j<N. Then A™" exists (Aho, Hopcroft and Ullman [74, p.
253]), where A;'=(1/N)w % The inverse Discrete Fourier Transform is DFTy
(a) = A™'a and obviously satisfies DFT' (DFTy (a)) = a. (Note: givena vectora€ 9",
where n< N, DFTy (a) we be defined to be DFTy(a™) where a” is the vector of
length N derived by concatenating @ with N —n zeros.) Cooley and Tukey [65] gave
the Fast Fourier Transform for which
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THEOREM 2.1. DFTy and DFTY over R have simultaneous depth O(log N) and
size O(N log N).

Note: the assumption of the nth root of unity is not really essential to our
techniques, since in general, our techniques will be applicable whenever a O(log n)
depth circuit exist for the Discrete Fourier Transform. For example, Theorem 2.1
obviously applies to the complex numbers, and since the field operations over complex
numbers can be simulated over the reals with only a factor of two depth increase,
Theorem 2.1 also applies to the reals.

2.2. Products of polynomials. Suppose we are given m vectors ;€ 9 " for i=
1, +, m. Each vector a;=(a, """, @ia-1)" gives the coefficients of a n—1 degree
polynomial A;(x)=Y/-o a,x’ in ®[x]. Let N = nm. We wish to compute the product
polynomial B(x) =¥ ;- bx*, where B(x) =[] ., Ai(x). (Note that we have b, =0 for
N-m+1sk=N-1)

In the special case m =2 and N =2n, the convolution vector b= (b, * * * , by
a,®a, gives the coefficients of B(x). By the Convolution Theorem:

a,®a,=DFT (DFTy (a;) - DFTy (a,)) where « denotes pairwise product.

)T

Hence the well-known result:

THEOREM 2.2. The product of two polynomials in ®[x] of degree n—1 has simul-
taneous depth O(log n) and size O(n log n).

In the case of general m =2, we wish to compute the coefficient vector

b=(b0’ Y, bN—l)T=a1®' ! '®am-

By repeated application of the Convolution Theorem we get

LEMMA 2.1, b= DFT;;I (DFTN (al) e DFTN (a,,,)).

First in parallel for i=1,--+,m compute f;=DFTy(a), where f=
(fior* * *» fin-1)". Next we compute in parallel for j=10, -, N—1 the elementary
products F; =[], f,;» Finally, we compute DFTR ((Fy, - - -, Fy-1)"). Since the com-
putation of DFTy, DFT and the required products F}, each have depth O(log.N),
we have:

THEOREM 2.3. The product of m polynomials in R[x] of degree n—1 has depth
O(log (nm)).

Note that in contrast, the naive method of repeated producting by Theorem 2.2
has depth (log(m)log(n)). Also note that since Theorem 2.1 applies to the real
polynomials so do Theorems 2.2 and 2.3.

2.3. Modular products of polynomials. Let B(x) =[1i., a:(x) be the product poly-
nomial considered in the previous section. Here we consider the computation of the
modular product D(x) =Y~ dx' where D(x)= B(x) mod (x"+1).

LEMMA 2.2. The coefficients of D(x) are d; =Zf’=_0’ (=1Ybyifori=0,--+,n—1.

Proof.

N-1 . m-1N-1 a
B(JC)= Z bjx’: X Z bm’-v—l‘xmni-l
j=0 r=0 i=0

m=1 .
= Z (_]-)erwr+ixl mOd (x"+1)
r=0
since (—1)"=x"" mod (x" +1).
We assume @ is a principal nth root of unity in & and n has a multiplicative
inverse. We also assume there exists an ¢ € @ such that y*=w and ¢"=—1. Let
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d;=(a;o, ¥a;y, "+, ¥" 'a;,_;)". The negatively wrapped convolution of a,, - - -, a,, is
d=(do, ydy, -, 9" "d, )",
LEMMA 2.3. d =DFT;! (DFT, (4,) - - - DFT, (4.,)).
Proof. For i=1,---,m let DFT, (&)= (g0, ", g,-,,,_l)T where
n—1 L
8ix= ‘Eo a; o™
i
for k=0,---,n—1. Let
&= ( I1 8’-‘.k) = : = ‘f’D‘“’k@j‘)( Hl a-‘.i.-) '
i=1 =j1, i=

himsn

Now let DFT, (d)=(eb, - -, e,_,)". Then for k=0,+--,n—1 we get

h=0
n—1 m-1

=Y Y ¢"0"(-1)b,+s by Lemma 2.2
h=0 r=0
n—1 m—1 W kh m

=Y L e (1) F I1 ay.
h=0 r=0 05}:,"‘._{',.._‘:" j=1

ar+h=3j;
But if we substitute h= (¥, j;) — nr into the above expansion, we get
¢hwkh(_1)r - ¢ﬁiwk(z‘i"

since " =(—1)" and »" = 1. Hence e, = ¢,

The above Lemmas 2.2, 2.3 and Theorem 2.1 imply:

THEOREM 2.4. The modular product (A,(x) - - - A,.(x)) mod (x"+1) of polynomials
Ax), "+, An(x) in R[x] of degree n — 1 has simultaneous depth O(log (nm)) and size
O(nm log (nm)). The modular power A(x)™ mod (x"+1) of a single polynomial A(x)
of degree n—1 has simultaneous depth O(log (nm)) and size O(n log (nm)).

2.4. Elementary functions of power series. An immediate consequence of Theorem
23 is

COROLLARY 2.1. The composition of two power series in R[[x]] has depth O(log n).

The elementary functions exp (x), log (x), sin (x), cos (x), arctan (x), and square
root (x), etc. all have known Taylor series expansions convergent over given intervals.
Thus by Corollary 2.1 we have

CorOLLARY 2.2. The elementary functions on R[[x]] have depth O(log n).

For some given x;, - - -, xx € 9" it is frequently useful in algebraic computations
to determine the polynomial [[;., (y—x)=X,(~1Ypy’ whose coefficients p,=
% <igenai Xiy © 1 Xy ATE the elementary symmetric functions. It was pointed out to us
by Les Valiant that Theorem 2.3 immediately implies

CoroLLARY 2.3. The elementary symmetric functions in R[[x]] have depth
O(log N).

2.5. Division, interpolation and reversion. Let A(z)=zf=_(} a;z' be a real power
series where a,= 1. The reciprocal of A(z) is the power series I(z)=Y;.,rz' such
that A(z) - I(z) =1. I(z) has the infinite series expansion

T Ai (1-A(2))"
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We wish to compute the first n coefficients of I(z). Since I(z)=
Y1, (1—A(2))'+ O(z"), we have by Theorem 2.3:

COROLLARY 2.4. The first n terms of the reciprocal of a real power series and the
division of two real power series can be computed in depth O(log n).

An alternative method using the lemma below results in a circuit of depth O(log n)
with smaller circuit size.

LEMMA 2.4. If

- [log(n+1)]-1 ;
Iz)=" L (1+(1-A(2))*)
then I1(z) - I(z) = 0(z"*"). 3 N

Proof. Let B(z)=1-A(z). Then A(z)I(z)=(1-B(z))I(z)=1-B(z)"=

1-(1-A(z))", where i=2M"8"*1 o
I(z)—-f(z)=M=O(Zﬁ)=0(2““). 0
A(z)

CoRroLLARY 2.5. Given real polynomials a(x), b(x) of degree at most n, we can
compute in depth Of(logn) the unique polynomials q(x), r(x) such that a(x)=
q(x)b(x)+r(x) and degree (r(x))<degree (b(x)).

Proof. (Also, see Knuth [81].) Let n, =degree (a(x)) and n,=degree (b(x)). The
computation is trivial unless n,= n,=1. Then

A(z)=Q(z)B(z)+z""""'R(z)

where

n, _1_ = l =M l
A(z)=z a(z), B(z)—z“zb(z), Q(z)=:z q(z)

Riz)= z"z'lr(l).
z

Thus to compute the coefficients of g(x), r(x) we compute the first n, — n,+ 1 coefficients
of A(z)/B(z)=Q(z)+o0(z™m™™""), then compute the power series A(z)—B(z)Q(z) =
zm™™*1R(z), and finally output the coefficients of Q(z), R(z). O

CoOROLLARY 2.6. Interpolation of a real polynomial has depth O(log n).

Proof. Suppose we are given real polynomials p;(x), - * -, p.(x) each of degree
n—1, and real polynomials g,(x), - - -, g,,(x) where degree (g:(x)) <degree (p;(x)) for
i=1,---,n Let P(x)=[].., pi(x). The Chinese Remainder Theorem states that there
is a unique polynomial Q(x) of degree less than that of P(x) such that Q(x)=
g:(x) mod p,(x) for i=1,- -, m, coprimality of the p; assumed.

The Lagrangian interpolation formula gives

and

Q)= ¥ a/(x)n(x)s(x) mod P(x)

where s;(x) = P(x)/p:(x) and r,(x) is the multiplicative inverse of s;(x) mod p;(x).
Theorem 2.2 and Corollary 2.5 imply that preconditioned Chinese remaindering,
with the ry(x), - -, rn(x) also given, has depth O(log n).
However, in the special case p;(x) =x—a; fori=1, - - -, m, where the q; are distinct
then each r;(x)=1/s;(x) can be computed in parallel by Theorem 3.3 and Corollary
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2.5 in depth O(log n). In this case the g;(x) = b, are constants, since they must have
degree less than the p;(x).

Further note that in this case Q(x) is the unique polynomial such that Q(a;) = b;
fori=1, -+, m. Thus we have proved Corollary 2.6. 0O

We now show that Theorem 2.3 and Corollary 2.4 imply:

CoroLLARY 2.7. The reversion of a real power series has depth O(log n).

Proof. Let A(x)=Y;.,ax' be a real power series where a,=0 and a,=1. The
reversion of A(x) is the power series R(z)=Y_, nz* where z=A(x) iff x=R(z).
Note that r,=0 and r, =1. For the kth coefficient, we first compute

1 = y
- Ax)* = Eo b1 X,

B(x)

and then apply Lagrange’s reversion formula (Lagrange, [1768]) 7, = b,_,/k for k=2.
Thus Theorem 3.3 implies Corollary 2.7. 0O

3. Integer computations.

3.0. Boolean circuits. We consider computations over integers given as n bit binary
numbers, and reals over [0, 1] given within accuracy 2~". Our computational model
in this section is the boolean circuit, defined as usual. The ith input node of a, takes
the ith bit of the encoding of the input integer or real. Each gate of a, computes a
boolean operation v, A, or 71. Each output node provides a bit of the encoding of the
computed integer or real. (In the case of reals with floating point representation, we
only provide the input and output bits up to some finite prescribed accuracy.)

3.1. The DFT over an integer ring. We assume n and o are positive powers of
two. Let p=w"?+1 and let Z,, be the ring of integers modulo p.

ProrosITION 3.1. In Z,, w is a principal nth root of unity and n has a multiplicative
inverse modulo p.

Proposition 3.1 implies that DFT, and DFT,"' are well defined.

The fast Fourier transform computation of Cooley and Tukey [65] yields an
arithmetic circuit a, of depth O(log n) and size O(n log n) computing DFT, whose
elements require:

(i) addition of two [log (p)]-bit integers.

(ii) multiplication of a [log (p)]-bit integer by a power of w.

We wish to expand «, into a boolean circuit. Since w is a power of two, the
multiplications can be implemented by the appropriate bit shifts (i.e., the gate connec-
tions are shifted by the appropriate amount). The additions can be implemented by
Carry-Save Add circuitry of Ofman [62] and Wallace [64] (also see Savage [76])
yielding a boolean circuit of depth O(log (n log p)) and size O(n log p log (n log p)).
Thus we have

TueoreM 3.1. DFT, and DFT,' over the ring Z » have simultaneous boolean depth
O(log (nlog p)) = O(log n) and size O(n log p log (n log p)).

3.2. Products of integers. Schonhage, Strassen [71] have shown:

THEOREM 3.2. The product of two N-bit integers has simultaneous boolean depth
O(log N) and size O(N log N loglog N).

We now prove that for N a power of two, the modulo 2™ + 1 product of m integers,
each of N-bits has boolean depth O(log (Nm) log log N). (Note that the naive method
of repeated squaring by Theorem 3.2 results in a boolean circuit of depth
Q(log (m) log N).) We begin with a key lemma which reduces the number of bits of
the integers to be produced.
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LEMMA 3.1. (DFT reduction). For N a power of two, mN sufficiently large, and
any m< N'/? the product modulo (2" +1) of m integers each N bits long can be computed
in O(log mN) additional boolean depth and (mN)°"") additional gates after computing
n=0(mN)"? products modulo (2" +1) each of m integers each n bits long. O

Proof. Let a,,-**,a, be a list of N-bit numbers. We wish to compute b=
17, a;mod (2" +1).

(1) Since N =2 for some integer u, we can block each N-bit g; into n (n a power
of 2) chunks @, * * *, @;n—1 of h=N/n bits each so that

n-—1
a;=3 ai,jzhj
i=0

where 0= a;; <2" Define the associated polynomial
n—1 .
Ax)= Y ax’
j=0

and observe a, = A;(2").
(2) We intend to take DFT, with @ =4, ¢ =2 and p=w"/*+1=2"+1. Associate
with each a; a coefficient vector d; defined by

&= (ai, Yay, , ¥" @)
(3) Compute in parallel
DFT, (8} =&=(8i0" * *» Bin1) -
(4) Compute product
e = f[] g:x mod p.
(5) Compute i
DFT;" (€0, " *» €a-1)") = 6= (o, by, - -+, 4" 7'by)”

to obtain the coefficients of the product polynomial
n-1 .
B(x)= _20 bx’
i

where by Lemma 2.3, b= B(2").

(6) Evaluate B(2") to get b.
Since ¢ is a power of two, we can easily extract each b; from z,!r""bj by bit shifting.
By Theorem 3.1, the DFT,, and DFT,' computations have depth O(log n). Thus all
of these computations have depth O(log N +log h+log n) = O(log mN') except poss-
ibly computing the ¢, modular product in step (4). Note that we can use the identity
2"x=(2"+1-x) mod 2" +1 to simplify the computation of e, to the product of at
most m numbers, each of n bits. Thus the depth D(m, N) of the resulting circuit satisfies

D(m, N)=D(m, r.)+ O(log mN).

The reduction is correct if n is a power of two and furthermore the coefficients
of B(x) are small, that is if |b;| < p/2. Applying Proposition 3.2, we can ensure |b,| <2"™!
by having N =16, m= N"? and choosing n to be the largest power of 2 less than
16 (mN)"?. O

ProprosITION 3.2. For each j=0, -+, n—1, the magnitude of the coefficients of
B(x) is given by |b;| < 22m(h*1+loen),
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Proof. Let f(i) be the maximum magnitude of any coefficient of a polynomial
resulting from a product of 2' of the A;(x) polynomials taken mod (x" +1). Clearly
flo)y=2" andf(!) =2nf(i—1)*fori>0. The general solution of the recurrence S,+l cS?

is S§;=c*'S3. Setting So=2" and c=2m we have f(i)=(2n)* “1y2h
h2i+2i- l+(2'+1)logn. Hence,

1 [log m -l) = gZmhtD)=1+(2m=1)logn < n2m(h+1+log n) ~

The key idea of the Theorem 3.3 is that when m> N'/%, the a; are grouped into
blocks of size <m and the product circuit is applied to these smaller blocks, thus
reducing m relative to N. When m = N'/® our DFT reduction of Lemma 3.1 is applied
to decrease N relative to m. In our original construction (Reif [83]) we required
O(log log N) applications of Lemma 3.1 to accomplish this decrease of N. Beame,
Cook, and Hoover [84a] suggested an improvement which requires only a constant
number of applications of our DFT reduction to appropriately reduce N. We give this
improved version below, with their kind permission.

THEOREM 3.3. For N a power of two, the product of m N-bit integers mod 2V +1
has boolean depth O(log (m) log log N +1log (N)) and size (mN)°W,

Proof. Given a list of N-bit integers a,,* ‘', a, we compute the product
T1i., @ mod (2" +1). Let the boolean depth and size required to compute this product
be D(m, N) and S(m, N) respectively. Let t(x) be the largest power of two less than
x. Using this notation, Lemma 3.1 leads to the following recurrences

(i) D(m, N)= D(m, t((mN)**))+ O(log mN),
S(m, N);.(mN)JfSS(m, t((mN)**)+(mN)°W,

(Note: slightly tighter recurrences can be obtained from Lemma 3.1, but this does
not significantly affect the asymptotic analysis.)

Reduction of m: When m> N'/® group the m input integers into blocks of size at
most [N'/®] and compute the products for each block. Then compute the product of
all the [m/ N'/®] blocks. To avoid worrying about the ceiling function in describing
the number of integers in each of these products, first perform a single multiplication
of two integers mod 2™ +1 to reduce this number by one. Thus,

(ii) D(m, N)= D(N'8, N)+D(N”8, )+O(log mN),

S(m,N)é[ -|S(N”8 N)+S( T )+(mN)°“’-

Ni/’S

Continuing this process recursively results in an N'/*-ary tree of multiplication nodes;

so the desired product may be computed using sub-circuits which compute products
of only N'® integers. This tree has depth of at most [8log m/log N and certainly
has fewer than m nodes. It follows that

(i) D(m, N)= [Si‘g’g ’”_l D(NY, N)+ O(log mN),

S(m, N)=mS(NY¢, N)+(mN)°®,

It is now possible to consider the problem for m = N'/%. The solution for arbitrary m
clearly follows from this solution via a single application of reduction (ii). The method
of attack is to use reductions (i) and (ii) alternatively to reduce the problem to a
smaller one of the same type.
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Reduction of N: Apply the DFT reduction (i) twice and then reduction (ii). Thus
(iv) D(NY® N)=D(NY® t(N'?)+ O(log N)
=2D((NV}Y® t(N'?)+ O(log N)
and
S(NV® N)= N*S(NYE, t(N'?))+ N°W
éNs'IZS((NUZ)”s t(Nl/'Z))_'_NO(l).
So for sufficiently large N and some fixed ¢, d
(v) D(N'3 N)=2D((NV*)Y8 t(NY*)+clog N,
S(N”S, N) = N3/ZS((NI/2)I,’8, t(N"'Z))+ Nd.
The original problem of size N has been reduced to problems of size N 2 These
reductions must be applied =log log N times until the problems are of constant size.
Analysing (v) carefully by expanding out terms, we get
(vi) D(NY® N)=clog N+2clog N'?+2*clog N'/*+- - -
4 oloslosN o 10 NZTHEY

S(N”S, N)é N4 +N3,’2+d+ N3/2+3/2(l/2)+d+ .

3/243/2(1/2)+---+3/2(2" o8 leeN )+ 4
+ N3/2F3/20/2) %4312 ) i

where the last term in each expression is the cost of the depth log N in constant size
problems. These last terms are bounded by O(log n) and N 3*d respectively. Summing
the loglog N terms in each expression of (vi) we get

(vii) D(NV® N)=(c+1)log N loglog N,
| S(N"*, N)= N*** loglog N,
Substituting (vii) into (iii), we get
(viii) D(m, N)= O(log (m) loglog N +log mN),
S(m, N)=(mN)°Y,
and the theorem is proven. 0

3.3. Multiprecision evaluation of polynomials and power series. Let p(x) be a real
polynomial or a real power series with n—1 given rational coefficients of magnitude
<2". We wish to evaluate p(x) at a floating point real x, within accuracy o(27").
Theorem 3.3 implies

COROLLARY 3.1. The evaluation of p(x) at a given x, to accuracy 0(2™") has boolean
depth O(log n(log log n)) and size n®".

The elementary functions exp (x), log (x), sin(x), cos(x), arctan (x), square
root (x), etc. have Taylor series expansions convergent within accuracy o(27") over
fixed intervals.

CoROLLARY 3.2. The evaluation of an elementary function over a fixed interval with
a Taylor series expansion convergent to accuracy 0(2™") has boolean depth O(log n(log-
log n)) and size n°",

COROLLARY 3.3. The elementary symmetric functions (see § 2.4) over the reals have
boolean depth O(log n(log log n)) and size n®".
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3.4. Reciprocals and division of integers. Let a be an integer within bounds 2" ' =
a<2". Then a has a binary representation Y|, a,;2' where a,_,= 1. The reciprocal of
ais 27"V, where r= Zzo r;2”". We wish to compute the first n bits ry, * - -, r,_;. For
this, we can use the product form of Anderson et al. [67] and Savage [76, p. 256].

LEmmMmA 3.3. If

[log(n+1)—1] 7
F= I (1+(1-2""a)?)
i=0
then |[r—r|=0(27").

By Theorem 3.3 and the above lemma,

CoROLLARY 3.4. The reciprocal can be computed within accuracy 0(2™") by a boolean
circuit of depth O(log n(log log n)) and size n°".

CoRrOLLARY 3.5. Given integers a, b with binary respresentation containing n bits,
we can compute in boolean depth O(log n(log log n)) the division quotient q and remainder
r integers such that a=gb+r and 0=r<».

Further work and open problems. A subsequent paper of Beame, Cook, and Hoover
[84b] gives O(log n) depth boolean circuits for taking the product of n integers and
integer division. These circuits are nonuniform, in the sense of Borodin [77] since their
construction requires more than logarithmic space.

It remains an open problem to find a uniform circuit of O(log n) depth for integer
division. ;

Also, the circuit depth complexity of the following problems remain open: given
integers a, b, p such that 0<a, b<p<2”,

(1) compute a® mod p;

(2) compute the greatest common divisor of a and b;

(3) compute the multiplicative inverse of a, for a relatively prime to p.

The obvious circuits for these problems have Q(nlogn) depth. If we use our
improved techniques for integer products described in this paper, this depth bound is
reduced by a factor of O((loglog n)/log n).

NC circuits (see Cook [81]) are uniform boolean circuits of constant degree, n
size and (log n)°" depth. RNC circuits are NC circuits with, in addition, a source of
truly random bits. We conjecture that no RNC circuits exist for the above problems
(1)-(3). Reif and Tygar [84] show that this conjecture for problem (3) would have an
interesting surprising consequence, namely an efficient method for parallel pseudo
random number generation. In particular, they give for any £ > 0and c=1 a NC circuit
of depth O(log n loglog n) for generating n° pseudo random bits from only n* truly
random bits. They show these pseudo random bits cannot be distinguished from truly
random bits by any RNC circuit, assuming there is no RNC circuit for problem (3)
for infinitely many n.

o(1)
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