

PARALLEL TREE CONTRACTIONS PART 2 1129

In $3, the tree of 3-connected components (as defined by Hopcroft and Tarjan
[16]) is constructed in O(1ogn) time on a PRAM. Previously, Ja’Ja’ and Simon [18]
gave an O(1og n) time PRAM algorithm for finding maximal subsets of vertices, which
are pairwise 3-connected; but they did not address the problem of finding the tree
of %connected components. In the case of %connected graphs, they constructed
the planar embedding in O(log2n) time on an Exclusive Read and Exclusive Write
(EREW) PRAM, but it is easy to see that their algorithm required only O(1ogn)
time, using the Concurrent Read and Concurrent Write (CRCW) model. They did
not construct embeddings of general planar graphs. In §3, an O(log2 n) time PRAM
algorithm is given that computes the explicit planar embedding of planar graphs even
if the graphs are not 3-connected.

Section 4 presents an O(log3n) time PRAM algorithm that computes a canon-
ical form for planar graphs. No polylogarithmic parallel algorithm for testing the
isomorphism of planar graphs previously existed.

Section 5 presents an NC reduction from the problem of computing canonical
forms of a general graph to the problem of canonical forms for 3-connected graphs.
This is an O(1ogn) time reduction using

Finally, $6 references extension and further applications of the parallel tree con-
traction technique that have been done since the original writing of this paper.

All our PRAM algorithms use only a polynomial number of processors. Effort
shall be taken to minimize the number of processors used. Most of these results can
also be expressed in terms of circuits with simultaneous depth: (logn)‘ and nk size,
for fixed constancs c and k.

processors on a PRAM.

2. Isomorphism and canonical labels for trees. Let T and T’ be two rooted
trees with roots r and r‘ and vertex sets V (T) and V(T’), respectively, where 1V(T)I =
n. T is isomorphic to T’ if there exists a bijective map from V (T) to V(T’) which
preserves the parent relation. A map L from trees to strings such that T is isomorphic
to T‘ if and only if L(T) = L(T ’) is called a canonical label. A subtree T’ of a rooted
tree T is said to be an induced subtree if there exists a vertex v of T such that the
vertices of T’ are v and all the descendants of v in T. This paper considers only the
induced subtrees. Thus, a subtree is assumed to be an induced subtree (note induced
subtrees are also termed maximal subtrees in the literature). Canonical labels for all
induced subtrees of a tree T is a map L from V (T) to finite strings such that for all
2, II: ’ E T the subtree rooted at x is isomorphic to the subtree rooted at x‘ if and only
if L(z) = L(s’). All results to follow will apply to unrooted trees as well.

Canonical labels for all induced subtrees can be used for code optimization. Here,
one merges all nodes with common labels producing an acyclic digraph. This process
is called common subexpression elimination. First , a randomized algorithm for tree
isomorphism is presented.

The height h(v) of a node v in a tree T is the maximum distance from v to any
of its leaves. That is, h(v) = 0 if v is a leaf; otherwise, if v has children, v1,. * , vk,
then h(v) = 1 + max{h(vi)ll 5 i 5 I c } . It is a straightforward exercise to see that
the height of all nodes in a tree with n nodes can be computed deterministically by
Parallel Tree Contraction (PTC) in O(1og n) time using n processors, or alternatively,
by using nl log n processors by the randomized version of Parallel !he Contraction,
as discussed in the first part of this paper [29].

A multivariate polynomial Qv is canonically associated with each vertex v of the
tree T. Let zl, 22,. . . be distinct independent variables. For each leaf 21, set Qv = 1.
For each internal node v of height h with children v1, . + . , vk, set Qv = n F = , (~ h - Qv,)

1130 G . L. MILLER AND J . H . REIF

using induction on the height h. Thus, the polynomial QT of the root r with height
h is a polynomial Q T (z ~ , . . . , zh) of degree less than or equal to n. QT is viewed as
a polynomial over a finite field F . Using the fact that polynomial factorization is
unique over F , Lemma 2.1 follows.

LEMMA 2.1. The subtrees rooted at v and v' are isomorphic if and only i f Qv =
Qvt over a field F .

To test if a polynomial Q(x1, . . . , zh) of degree less than or equal to n is identically
zero, an old idea, which goes back at least as far as Edmonds, is used [34]. The
polynomial is evaluated at a random point and checked to see if the value is nonzero.
In this section the following technical lemma is used which is similar to a lemma in

LEMMA 2.2. If F is a finite field of size p , p prime, such that p 2 na+'h, a 2 1,
a' is a random element of F k , and Q(xl , + . , xh) is a polynomial of degree less than
or equal to n which is not identically zero over F , then Prob[Q(ii) = 01 5 l/na.

Proof. We first show by induction on h (see [17]) that the polynomial Q has at
least (p - n)h points for which it is not zero. For the case h = 1, Q has at most
n roots out of a possible p elements. Thus, Q has at least p - n nonzero points.
Suppose the claim is true for all polynomials with h variables, and Q is polynomial
in at most h + 1 variables. In this case, Q can be written as a polynomial in the first
variable x with coefficients being polynomials in at most h variables. At least one of
the coefficients Q1 must be a polynomial which is not identically zero. Thus, there
are at least (p - n)h points for which Q1 is not zero. Now, for each one of these points
there are p - n values of x in F for which Q is not zero. Therefore, Q has at least
(p - n)h+l points for which it is not zero. Since a' is a random element of Fh , the
above can be written as a probability: Prob[Q(a' # O)] 2 (p - n) ' /ph = (1 - n/p)h.

Substituting nQ+lh 5 p for p yields Prob[Q(a') # 01 2 (1 - (l /nah))h. Since
(1 - (l /nah))h 2 (1 - l/na), the desired inequality, Prob[Q(a') = 01 5 l/na, is
obtained. 0

The tree isomorphism algorithm is described in procedure form (see Fig. 1). Two
different procedures have actually been given, depending on whether one implements
step (1) or step (1'). If step (1') is implemented, it must have access to a very
small table of at most O(1ogn) prime integers. This table of prime integers, PT,
needs to only contain one prime between 2t and 2t+1 for each t . The existence of
the primes is guaranteed by Bertrand's postulate (see [15]). As Theorem 2.3 will
show, isomorphism of trees of size less than or equal to n can be tested using a table
of O(1ogn) primes, each of value less than or equal to no('). This table can be
generated in random polynomial time. To generate the table of primes, we need an
estimate on the number of primes in an interval of size n to 2n (see I321 and a random
polynomial-time primality test, (351, [24]). However, if only step (1) is used, a uniform
algorithm in the usual sense is obtained. Our analysis of the uniform algorithm shows
only that the probability of error is less than i. On the other hand, the probability
of error using the table of primes is at most l/n. In step (4), the Asynchronous Tree
Contraction algorithm [29] is used, since the time to RAKE a node with k children
will be O(1og k).

THEOREM 2.3. Randomizedl Tree Isomorphism using step (1) tests tree noniso-
morphism in O(1og n) time using n/ log n processors with the probability of error less
than or equal to 1/2. If a table of primes is given, then the procedure works with a
probabilzty of error of at most l/na.

Proof. The case when a table PT of primes is used follows by a straightforward

~71.

t

PARALLEL TREE CONTRACTIONS PART 2 1131

Procedure Randomizedl Tree Isomorphism (One-sided)

(1) Pick a random integer m in the range (/ ~ n " + l) ~ L: rn 5 2(hn"+')2.
(1') Pick a prime m in the range hn"+' 5 m 5 2hna+l of the given list of

primes PT.
(2) For each node v of T or T ' , assign the polynomial Qv to v as

described above.
(3) Assign to each xi a random value between 1 and m.
(4) Evaluate QT and QT I using one of our dynamic expression evaluation

algorithms [29] and return w and w', respectively.
(5) If w # w', then output "not isomorphic,"

else output "isomorphic."

F IG . 1. A one-sided randomized tree isomorphism test.

calculation using the last lemma. In this case, the algorithm tests if the polynomial
Q = QT - QT, is identically zero or not. By the last lemma, the probability that a
random element is a zero of Q is at most l/n".

Suppose a random integer is used instead of picking a prime from a table. In this
case, the probability that the largest prime factor of a random integer m has size at
least fi is at least $ (see [20]). For Q to be zero at some point modulo m, it must
be zero modulo p . Thus, at least $ of the time, m will have a prime factor of size
at least hna+l, in which case steps (2)-(5) will be executed with an error of at most

Note that the main source of error is step (l), not steps (2)-(5). This fact is used
in the next algorithm. Next, the algorithm is modified into a zero-sided randomized
algorithm, i.e., one that never makes an error. The idea of the algorithm will be to
modify Procedure Randomizedl Dee Isomorphism so that it outputs a value €or each
subtree of T and TI. Assuming that these values are the correct labels for each subtree,
these values are used to find an isomorphism. Note that we can easily test whether or
not this map is an isomorphism. This modified procedure is called Randomized1 Label
Generation. More precisely, steps (4) and (5) are replaced with a step that evaluates
all subpolynomials.

This new algorithm will also canonically label the set of all induced subtrees of a
tree. But this does not give a canonical label for trees, since there is an exponential
number of trees and only a polynomial number of labels. This last problem will be
addressed later on in the paper.

The problem of testing the isomorphism of trees can be reduced to the problem
of canonically labeling all induced subtrees of a tree, as follows:

0 Viewing the two trees as subtrees of a larger tree.
0 Asking for the labeling of all its subtrees.
0 Checking whether or not the labels on the two roots of the subtrees are the

Thus, our attention is restricted to the problem of canonically labeling all induced
subtrees. The following lemma will be used here.

LEMMA 2.4. A map L is a canonical labeling of all induced subtrees of T .if and
only i f :

l/na. For a sufficiently large n the probability of error is at most 3. 0

same.

1. If v, v' are leaves, then L(v) = L(v');
2. L(v) = L(v ') i f and only i f { L (v l) , + - , L(vk)} = {L(v{) , . , L(vL)}, where

v1, . . . , Vk are the children of v and vi, . . . , v(k are the children of v'.

1132 G . L. MILLER AND J. H. REIF

Proof. The proof is a straightforward induction on the height of subtrees. One
must show that two subtrees are isomorphic if and only if they have the same labels.
Condition 1 states that subtrees of height 0 (leaves) are isomorphic, while condition
2 gives us the inductive step.

The labels generated by Procedure Randomized1 Label Generation clearly sat-
isfy condition 1. Note that if {L(vl),-.-,L(vk)} =
{L(vi),...,L(v6)}, then, clearly, L(w) = L(v’). Thus, one tests only that nodes
with the same label have the same set of labels on their children. One simply sorts
the nonleaf vertices by their label value obtaining ordered linked lists of vertices with
the same labels. It will suffice to check that consecutive vertices with the same label
have children that have the same set of labels. To test this latter condition for each
node, one must sort the labels of each node’s children. Next, only pairs of linked lists
are checked for equality. Thus, all subtrees can be canonically labeled in the cost of
two sorts of less than or equal to n numbers where each number is of the size O(1og n).
Both randomized and deterministic algorithms using O(1ogn) time and n processors
are known for sorting [2], [31], IS].

0

Only condition 2 remains.

Using this result yields the following theorem.
THEOREM 2.5. Tree isomorphism and common subexpression elimination can be

performed with a O-sided randomized algorithm in O(1ogn) time using n processors
with an error probability of l /n , given a table of O(1ogn) primes each of value less
than or equal to

Proof. The tree T to be labeled will have n associated polynomials, one €or each
subtree. Procedure Randomizedl Label Generation must be run with enough reliability
so that any two of the n polynomials will have distinct values if their subtrees are not
isomorphic. In the worst case, the difference of all pairs of polynomials must have a
nonzero value. This implies that Q = 3 can be picked so that the probability of any
one of the n2 polynomials being nonzero will be at most l/n3. In the case where a
random integer is picked; i.e., step (1) is executed, simply note that the probability
of error is at most $ and it comes only for the first step, not the others. Thus, the

The remainder of this section exhibits a fast deterministic algorithm for canonical
labelings of trees. Note that the randomized procedure developed in Theorem 2.5
does not produce canonical forms for trees. Canonical forms can be obtained by using
sorting. The idea is to assign canonical labels to the nodes inductively by height. The
leaves are labeled with zero. Suppose, inductively, that the children, v1, - - , vk, of w
have labels L(vl) , . . . , L(vk); then the label of w will be the concatenation of the sorted
list of labels L(v l) , - . , L (w k) , including a left and right parenthesis. By Lemma 2.4
this gives a canonical label for trees. This definition of the label for T seems hard
to implement in parallel since a label which takes a long time to compute may have
a small lexicographic value. This problem is solved by first sorting the children of a
node based on the time in which its label was computed and then sorting the children
on their label value.

The discussion begins with a simpler O(log2 n) time parallel algorithm. Here, the
children of a node are sorted when all but at most one child has its label. If this final
child exists, it is placed at the end of the list. A fixed place in the list is left for the
missing value. A node at an intermediate point of the algorithm which has one child
may be viewed as having a label with one free variable. The intended value of the
variable is the label of the child. Thus, if its child also has only one child and its label

otherwise, the error probability is at most $.

random integer case works with a probability of error of at most f. 0

PARALLEL TREE CONTRACTIONS PART 2 1133

has been computed up to a free variable, then the labels may be composed; i.e., apply
COMPRESS.

Since the labels may be as large as O(n) long, it is unreasonable to expect that
two labels can be compared by one processor in unit time. However, two characters
can certainly be compared in 0 (1) time by one processor. This implies the following
well-known lemma.

LEMMA 2.6. The comparison of two strings of length n can be performed in 0(1)
time using n processors.

Theorem 2.7 follows from the preceding lemma.
THEOREM 2.7. Canonical labelings for trees can be computed in O(log2n) time

using n processors.
To see that the above algorithm works in O(log2 n) time, simply note that each

RAKE takes at most O(1og n) time and that CONTRACT is applied at most O(1og n)
times by the results of [29]. The bound of n on the number of processors is obtained
as follows. Initially only the leaves have their labels, and the sum of their lengths is
at most n. The labels on internal nodes will be the concatenation of the leaf labels
below it plus separating symbols, say, left and right parentheses. Thus, the length of
the label of an internal node is linear in the number of nodes in its subtree. Since only
leaves are ever sorted by the algorithm, the sum of the length of the strings sorted in

Our O(1ogn) time algorithm is slightly more complicated. Our approach begins
by sorting labels at a node as soon as they arrive. That is, we first order the children of
a node based on the time each child’s label arrives. Among those children whose labels
arrived at the same time, we further order them by their label values. In general, this
labeling returns a different canonical form and label from the previous algorithms, but
it is also canonical, since the ordering of the tree is, up to isomorphism, independent
of how the tree is given.

Ignoring for the moment the cost of collecting labels together so that they may
be sorted in parallel, the algorithm will take O(1ogk) steps to remove the k leaves of
a node. Thus we have an algorithm which removes the k leaves of a node in O(1ogk)
and, therefore, by the results of [29], it will run for only O(1ogn) time when run
asynchronously.

The labels that arrive at the same time must be coalesced so that they are “ready”
to be sorted. We cannot afford to coalesce the labels after they arrive, since the cost
to coalesce the labeled children may be a function of all the children of the node; thus,
the overall running time may grow faster than O(1ogn). We circumvent the problem of
coalescing the labels on-line by simply computing when the labels will arrive, without
sorting, followed by a second phase where we sort these “times” offline.

Recall that each nonleaf node has associated with it an array of storage locations,
one for each child. Each storage location is used for the label of the child and will
be used when its label has been computed. In the preprocessing phase, the storage
locations are rearranged by sorting the children by arrival times.

As mentioned above, the time when a given value will arrive in the preprocessing
phase is determined without actually computing the values. These times are then
used to sort the children of each node. Let c be an integer greater than or equal
to 4, such that deterministic parallel sorting of k 2 2 numbers can be performed in
f(k) = crlog kl + 2 + 6 time on a Concurrent Read and Concurrent Write (CRCW)
PRAM, where 6 is a constant yet to be determined. Since f (k) can be easily computed,
the parallel sorting algorithm can be slowed down so that it takes exactly f (k) time

any RAKE is at most O(n). Thus, we need only n processors. 0

1134 G. L. MILLER AND J. H. REIF

to sort a string of length k. Let the label-tzme of a node in a tree T be the time at
which the node gets its label when the hypothetical canonical labeling algorithm is
run on T . Next, the label-time for each node is computed.

Both RAKE and COMPRESS of the above algorithm assume the labels that need
to be sorted are consecutive. COMPRESS is a straightforward simulation, since each
COMPRESS step takes only unit time. The simulation of RAKE is more subtle. We
will now show how to determine when each node becomes either a leaf or a parent of
a single child. The label-time of a leaf is 1. If a node v is at no time the parent of
a single child, then the label-time of v is max{f(K,) + i}, where K, is the number
of children of v whose label-time is i. If, at some point, v becomes the parent of a
single child, then that time will be max{f(K,) + i}, where the maximum is over all
children except for the last child processed. Then label-time can be computed by
the simulation of COMPRESS. In either case, only the value max{f(K,) + i} need
be computed on or before time max{f(Ki) + i}. The value is actually computed by
time max(2rlog Ki) + i + 4) (see Lemma 2.8). First, the K,’s are computed, then the
max{f(K,) + i} is computed from the K,’s in unit time.

By the results from [29], the largest value of any label-time will be at most
O(1ogn). A vector of integers is initially associated with each storage location of
a nonleaf node 2r , and all entries are zero. If the label-time for the child of a node
arrives at time i, then 1 is added to position i of this vector, and the vector is marked to
indicate that its time is known. A marked vector can be combined with a neighboring
left or right vector, either marked or unmarked. The combination of the two vectors is
simply the vector sum, and this procedure is considered a COMPRESS-like operation
applied to consecutive vectors. If only one of the two vectors is marked, then the
combined vector is considered unmarked; otherwise, it is considered marked. We
assume that we have O(1ogn) processors per node.

We shall implement the above compress-like operation using a variant of Wyllie’s
algorithm for list-ranking 1401. We consider our list of vectors as a linked-list. As in
Wyllie’s algorithm, the last element points to nil. For booking reasons, add a new
pointer at the beginning of the list. The algorithm finishes when the new beginning
pointer points to nil. At each stage, a node may update its pointer if it is pointing
to a marked vertex that is not nil. When a node updates its pointer, it also adds the
value of the parent’s vector to itself. Therefore, this is a CREW algorithm.

A maximal consecutive sequence of marked vectors is called a run. Note that the
above procedure applied to a run will decrease the length of the run by at least i.
At some point, the sequence of vectors will be reduced to a single vector (the new
vector added to the beginning of the list) whose ith value is K,. In unit time, K,
is replaced with f (K ,) + i. Also, in unit time, the maximum of logn values can be
computed using O(log2 n) processors. We use a processor P for each pair of values.
The processor P will cancel the smaller of its two values. The remaining value is the
maximum. We will assume that the above two-unit time calculations are performed
in at most S machine steps.

It remains to show that the vector values K, are computed “on time.” That is, the
vector of values K, is computed by time max{f(K,) + i -6) 5 max{4[1ogKz) + i + 4 }
for each node. The problem is abstracted to the following conceptually easier problem:
a list of characters, each of which is initially the letter I for inactive, is presented;
i.e., the string I” is given. At time i, a subset of K, of the characters I change, to A .
Each A is now thought of as an active character. At each time step, a run o f t A’s is
replaced by a run of [t/2J A’s. This process is called ACTIVATE and COMPRESS.

PARALLEL TREE CONTRACTIONS PART 2 1135

LEMMA 2.8. The process ACTIVATE and COMPRESS Wall terminate in the
empty string by a time of at most max(2 log Ki + i + 2).

Proof. Suppose that K1, - . , Km is a sequence of activations where m equals the
maximum i such that Ki # 0. Further, let 1 = maxi2 log Ki + i), for i = 1 to m.
Note that 1 2 m 2 1.

Let Ai be the number of A’s in the string at time i after the ith list activation. At
time i, there are Ki A’s added to the string while COMPRESS reduces the number
of A’s by one-half. Thus, the contribution of the Ki As at time t 2 a is bounded by
Ki/2t-i. This gives the following inequality for t 2 m:

Using the fact that for all i, 2 log Ki + i 5 1 implies Ki 5 2(’-a)l2, we substitute this
inequality into (1), yielding

Since the right-hand side is a geometric series in l/& beginning with 1/& it follows
that A1 5 l/(& - 1) < 3. Since A decreases by at least 3 at each time step, and it
is integral, we get Al+2 = 0. Therefore, 1 + 2 = max(2 log Ki + i + 2); this proves the
lemma. 0

THEOREM 2.9. Canonical labelings for trees can be computed an O(1ogn) time,
using O (n log n) processors.

Proof. The algorithm consists of three majors steps, as summarized below:
1. Compute the label-time of each vertex.
2. Sort and order the children of each node up to their label-time value.
3. Compute the final ordering of the children by computing vertex labels using

Using Lemma 2.8, the label-time values for each node can be computed on or
before its label-time. The label-time of a node is not passed to its parent until the
actual time of the label-time value, thus preserving the invariant property that label-
time values arrive at the actual time of the label-time value. Therefore, step 1 takes
O(1ogn) time using O(1ogn) processors per node (nlogn in total).

In step 2, the children can be sorted at a node by their label-time values in
O(1ogn) time using n processors. Finally, in step 3, the labels can be computed by
sorting label values. As in Theorem 2.3, the timing analysis of Theorem 6.1 from
[29] can be applied to give an O{logn) time bound. Again, using the analysis from
the proof of Theorem 2.3 to step 2 of procedure Elandomized1 Tree Isomorphism, this
algorithm requires at most n processors to achieve the O(1ogn) time bound.

This motivates another generalization of Parallel Free Contraction which will be
used to compute the 3-connected components of a graph in O(1ogn) time, instead of
O(log2 n) time.

Consider Asynchronous Parallel Free Contraction, as defined in Part 1 [29], a p
plied to an ordered tree of unbounded degree, where the RAKE operation is restricted
to removing a constant proportion of consecutive leaves. In particular, assume that
RAKE replaces a run of length k by a run of length Lk/2) in unit time. Thus, COM-
PRESS acts on chains, and RAKE acts on runs. Recall from Part I that a chain in
a rooted tree is a sequence of vertices wl, . - . , wt such that w i + l is the only child of zli,

sorting.

0

/

1136 G. L. MILLER AND J. H. REIF

for 1 5 i < t . If the tree is undirected, a chain will be a sequence of vertices vl, . . , ut
such that vi-1 and v2+1 are the only neighbors of zli, for 1 < i < t. It is crucial that
a vertex be processed under COMPRESS when it has one child that is not a leaf, or
possibly two children that are leaves, a leftmost and, possibly, a rightmost child; i.e.,
one or two runs of length 1. This procedure is called Parallel Tree Contraction with
RAKE restricted to runs.

THEOREM 2.10. Parallel n e e Contraction with RAKE restricted to runs requires
only O(1ogn) applications to reduce a tree to a single vertex.

3. Computing the 3-connected components. The main goal of this section
is to give a new parallel algorithm for decomposing a graph into a tree of %connected
components. To this end, we first discuss the decomposition of a graph into a tree of
2-connected components. We then discuss prior work on the decomposition of general
graphs into their tree of %connected components, including a definition of brides and
Hopcroft and Tarjan’s use of virtual edges. Finally, we give our definition of the 3-
connected components of a graph, and relate how to use Parallel Tree Contraction to
find these components.

Two vertices v and w in an undirected graph G = (V, E) are k-connected if there
exist k paths in G from v to w which are pairwise vertex disjoint, except at their
endpoints v and w. Thus, two vertices sharillg hedges are k-connected. The graph
G is k-connected if every pair of vertices is k-connected.

Before giving our algorithm, which decomposes a connected graph into its tree
of 3-connected components, we will discuss the decomposition of a connected graph
into its tree of 2-connected components. This decomposition consists of three types
of components. First, there are the proper 2-connected components. These are the
subgraphs induced by a maximal subset of vertices which are pairwise 2-connected.
Second, there are the articulation vertices or separating vertices. Finally, there are
separating edges. The vertices of the tree consisting of 2-connected components are the
components described above. An articulation vertex is adjacent to another component
if it is contained in the component. Recently, Tarjan and Vishkin 136) have shown how
to construct the 2-connected components of a graph in O(1ogn) time using a linear
number of processors on a PRAM. These components form a tree where a component
and a separating vertex are adjacent if the vertex is contained in the component.
However, the 3-connected components are more difficult to define and seem to require
a more sophisticated algorithm.

Hopcroft and Tarjan (161 give a precise algorithmic definition, which will be re-
viewed below, of the 3-connected components and show how any graph can be de-
composed uniquely into a tree of 3-connected components. In the same paper, they
also give a linear time algorithm for finding the tree of 3-connected components. Un-
fortunately, it is a highly sequential algorithm. A related distinct question is finding
the maximal subsets of vertices of size greater than or equal to 2 which are pairwise
3-connected. These subsets shall be called the 3-sets of G. Ja’Ja’ and Simon I181 give
an algorithm using O(1og n) time and processors for finding these 3-sets. There
is a unique 3-connected graph associated with each 3-set. The proof and construction
can be obtained by Lemma 3.1.

First, we will define the notion of a bridge. Let C C V. Two edges e and e’ of G
are C-equivalent if there exists a path from e to e‘ avoiding C. The induced graphs
on the equivalence classes of the C-equivalent edges are called the bridges of C. A
bridge is trivial if it consists of a single edge. A pair of vertices is a separating pair
if it has 3 or more bridges or 2 or more nontrivial bridges. A 3-connected separating

PARALLEL TREE CONTRACTIONS PART 2 1137

pair is a pair of vertices which is both 3-connected and a separating pair.
LEMMA 3.1. If C C V is a 3-set of G, then each bridge of C contains at most 2

vertices in C. If G is 2-connected, then the bridge contains exactly 2 vertices of C.
Proof. Suppose that some bridge B of C contains three vertices q , ~ , x 3 in C.

Let p be a simple path from 2 1 to 2 3 in B. Let pa be a simple path from 2 2 to a
single vertex, y of p , such that p2 - y is disjoint from p . Let p l , p 3 be the disjoint
simple subpaths of p from y to 2 1 , 2 3 , respectively. Then p l , p ~ , a 3 are disjoint paths
from y to distinct vertices X I , Z ~ , X ~ of C. It follows that y is bconnected to all the
elements of C. This contradicts the assumption that C is a (maximal) 3-set.

Throughout the discussion of the %connected components, we let G be the un-
derlying graph, which is assumed 2-connected. The tree of bconnected components
consists of a tree of graphs called components. Two components are adjacent if they
share an edge. These shared edges will not be edges from G, the original graph, but
rather, from new edges called virtual edges. There will be exactly two copies of each
virtual edge. Any vertex may appear in many components.

First, the graphs that will be the nodes in T will be described. The reader should
be cautioned that, counter to intuition, the components are not always 3-connected
graphs and separating pairs. The nodes of T are of three types: proper components,
cycles, and m-bonds. The m-bonds lie between the components (proper components
and cycles). They are precisely described below in Fig. 2, where the decomposition
of a graph into components is shown. Note that the virtual edges are indicated by
dotted lines.

0 A proper component C is a simple 3-connected graph. C can be defined in
terms of G as follows: the vertices of C consist of a 3-set S of size greater
than or equal to 4 (proper 3-set). Two vertices of C share an edge in C if they
shared one or more bridges in G. Note that C is simple; it has no multiple
edges. An edge from 2 to y of C will be an original edge from G if z and y
share exactly one trivial bridge; otherwise, the edge will be a virtual edge.

0 A cycle component C is a simple cycle. C can be defined in terms of G as
.follows: the vertices of C are a maximal subset of the vertices S , such that
the bridges of S in G form a simple cycle of size 3 or more, with possible
pairs in S containing multiple bridges. As in the case of proper components,
a unique trivial bridge e of S becomes an edge of C; otherwise, a virtual edge
is formed.

0 An m-bond component C is a graph on two vertices sharing two or more
edges. C can be defined in terms of G as follows: x and y are the vertices
of C if they are 3-connected and separating. There is one edge in C for each
bridge of {qy} in G. If the bridge is trivial, the original edge in C can
be used. Otherwise, a virtual edge is used. Note that 2-bonds have been
introduced between two proper components or a proper component and a
cycle component, which do not appear in the Hopcroft-Tarjan [16] definition.

We say a component is associated with another component if the two have a
nonempty intersection.

We will now describe a parallel method €or constructing the tree of components
from the above three types of components. Our idea is to apply Parallel Tree Con-
traction; chains are not compressed, but, rather, every other component is removed
from a chain. Since every other component on a path in the tree T is an m-bond, we
can remove every other component on a chain by eiiminating the proper and the cycle
components. Thus, proper and cycle components associated with either zero, one, or

0

1138 G. L. MILLER AND J. H. REIF

FIG. 2. The decomposition of a gmph into its lconnected components.

two other components are removed, as are m-bond components associated with either
zero or one other component. All these components are removed in unit time except
for the cycle components, which may take as much as O(1ogn) time; we will show
how to amortize the cost in such a way that the total time decomposition is still only
O(1ogn).

Using the work of Ja’Ja’ and Simon [lS] we compute the bsets and their bridges,
along with the separating pairs and their bridges, in O(1ogn) time using no(1) pro-
cessors. Note that they also determine which separating pairs are 3-connected.

Assume that G is stored in memory as an incidence matrix and that the following
information is maintained: a list of proper %sets; a list of %connected separating pairs;
a forest indicating which 3-connected separating pairs are contained in which proper
%sets; and, for each 3-connected separating pair {z, y}, a list of edges associated with
it, partitioned according to which bridge of {qy} they belong. An edge e from z to
y is free if x and y are not 3-connected. Note that the free edges will belong to the
cycle components. A list of free edges is also maintained.

Let T be the tree of components of G. As components are removed from G,
G will no longer be connected. Therefore, intuitively, G should be a collection of
2-connected graphs. But for technical reasons, the connected components of G may
not be 2-connected. This complication will be discussed when the COMPRESS part
of the algorithm is discussed.

The discussion will begin with RAKE. Here, one must determine when a compo-
nent becomes a leaf in T , at which time it is removed. Note that a component is a leaf
if and only if it contains zero or one nontrivial bridge. The case when a component
has exactly one nontrivial bridge will be discussed first. Note that a leaf component
is a bridge to its parent. Thus, removing a leaf component decreases the number
of nontrivial bridges by one. Suppose the component C is an m-bond with vertices
(2, y}. Using a concurrent write and the fact that we maintain for C a list of all its
bridges (and whether or not they are trivial), we are able, in unit time, to determine

PARALLEL TREE CONTRACTIONS PART 2 1139

that C is a leaf. To remove C from G, simply remove the trivial bridges of C from
G, leaving x and y in G and adding to G a new virtual edge from z to y. The data
structures are also updated as described above.

Suppose that C is a proper component. It is a leaf when it is associated with
at most one 3-connected separating pair. Thus, one can test, in unit time, whether
or not C is a leaf. If C is common to no %connected separating pairs, then simply
ignore C, and do nothing to G or C. However, C is removed from all the other data
structures. Suppose that C is common to one pair {z, y}. To remove C from G: (1)
remove all vertices in C except x and y, (2) remove all edges with both end points in
C except those between x and y, and (3) add a virtual edge in G from z to y.

To finish our discussion of RAKE, cycles will be considered. Suppose that C
is a cycle. Since the vertices on C are unknown, they will be computed “on the
fly.” Suppose further that (XI, - - , zk) are the vertices of a cycle component C in the
order in which they appear on the cycle. The component C is a leaf if (1) each pair
(x i , x i + l) for 1 5 i < k contains exactly one bridge and that bridge is trivial; and
(2) the pair (zk ,x l) contains at least a trivial bridge. In other words, there exists an
adjacent pair of vertices {z,y} with a nontrivial bridge that consists of a path. The
time required to remove each cycle component that is a leaf seems to require time
logarithmic in the length of the its path to detect. We will show how to amortize this
cost to achieve an overall time of O(1ogn). The edges (xi,xiS1) for 1 5 i < k form a
chain of free edges. Our idea is simply to “compress” these chains of free edges either
by the deterministic or by the randomized methods discussed in {29]. In general, any
chain can be compressed. Note that a chain of length two may be replaced by a chain
of length one, which was formally not free, but it shall be considered free anyway.
In this case, the cycle C has been “compressed” to a cycle of size two, a free edge
common to a 3-connected separating pair {z, y}, and a virtual edge from x to y.

Thus, RAKE for cycles consists of compressing chains and removing free edges
associated with a 3-connected virtual edge, and then replacing them with a new virtual
edge. Other than this timing analysis, we have described RAKE.

The COMPRESS operation is very similar to RAKE. Here, each proper and cycle
component associated with exactly two m-bonds is removed. Suppose that C is a
proper component associated with 3-connected separating pairs {z, y} and { z , w}. If
2, y, z, and 20 are distinct, then the construction is very similar to the RAKE case.
If, on the other hand, y = w, the situation is slightly more complicated, since simply
removing the edges of C will not separate G. To remove C from G: (1) remove all
vertices in C except x, y, z , and w; (2) remove all edges with both end points in C
except those between x and y or between z and w; and (3) add a virtual edge in G
from z to y and one from z to w.

Suppose C is as described above, except that it is a cycle component. C is
removed only when it is a four-cycle component for the case when x, y, z, and w are
distinct, or a three-cycle component for the case when y = w.

CONTRACT decomposes G into a tree T of 3-connected components after O(1og n)
applications. CONTRACT as defined (at least for the sake of analysis) can be viewed
as simply CONTRACTION on trees of unbounded degree where RAKE is performed
only by combining consecutive children. A case of CONTRACTION very similar to
this was analyzed in Theorem 2.10 and shown to require only O(1ogn) steps.

Thus, G can be decomposed into a tree of 3-connected graphs, simple cycles, and
m-bonds in O(1ogn) time using processors. This can be stated in the following
theorem.

1140 G. L. MILLER AND J. H. REIF

THEOREM 3.2. The tree of 3-connected components is constmetable an O(1ogn)
tame, using no(’) processors.

Note that decomposition has been described only where the graph is 2-connected.
In general, one must first decompose the graph into a tree of 2-connected components,
which will consist of isolated vertices and 2-connected graphs. Second, one must
further decompose a Zconnected graph into a tree of %connected components.

Ja’Ja’ and Simon [lS] tested whether or not a %connected graph is planar and,
if it is, it constructs its planar embedding. However, the construction of a planar
embedding for general planar graphs was an open question.

The next section shows how to construct the embedding of a planar graph given
the tree of 3-connected components, and how to construct the embedding of each
component by viewing it its a tree contraction problem. In this section, we will also
define what we mean by “oriented embedding,” and will show how to construct planar
embeddings that will be used in isomorphism testing.

4. Graph embeddings and some applications. We will use the following
combinatorid definition of an embedding, which is amenable to implementation on a
machine.

DEFINITION 4.1. Let G = (V, E) be an undirected graph. Two darts, (2, y) and
(y,~), are associated with each edge, e = {z,y}. The vertex x is the tail and y is
the head of the dart (2, y). The graph G is oriented by fixing a permutation 4 of the
darts which sends tails to tails and cyclically permutes darts with the same tail. Let
R be the permutation of the darts sending (z,y) to its reflection (y,x). A planar
embedding of G can be specified by an orientation of G. See {26], for example. In
Fig. 3 we give a small example.

FIG. 3. A graph with four vertices embedded in the plane. The permutation that determines the
orientation at the vertices w C#J = (18)(264)(397)(5 lo), d t t e n in cycle notation. The reflection
of the edges is R = (1 2)(34)(56)(78)(9 10) and face boundary written as a permutation is 6 =
(1 6 10 7)(28 3)(4 9 5).

This definition of a combinatorid embedding is similar to ones described in [lo]
and is sometimes called an Edmonds embedding; see also (261. The importance of
this definition of embedding is that it is both very simple to understand and easy
to represent on a machine. For example, the faces are given by the permutation
d* = 4 * R. The orbits of 6 are the faces of the embedding. Also note that a
permutation is stored as an array; thus, most operations on the permutation can be
performed in constant time using a linear number of processors.

.

PARALLEL TREE CONTRACTIONS PART 2 1141

Ja’Ja’ and Simon [18] give a parallel algorithm which constructs a planar embed-
ding of a triconnected planar graph as defined above (note that they call this planar
mesh embedding. They also construct a straight line embedding, which they call a
barycentric embedding, which we do not use).

Using Parallel Free Contraction proves the following theorem.
THEOREM 4.2. Given the planar embeddings of the 3-connected components of a

graph G, one can compute a planar embedding of G in O(log2 n) time, using O(lVl)
processors.

Proof. As described in Part 1 of this paper [29], Parallel Dee Contraction can be
run “backwards” in an expansion mode which is called Parallel Tree Expansion. Here
the 3-connectivity algorithm is run in the expansion mode. Thus, one initially starts
with a collection of isolated components. The embedding of the isolated graphs is
simply the embedding of the individual components. The inverse operation to both
RAKE and COMPRESS, in this case, is simply combining two embedded graphs, T
and T’, by identifying two copies of a virtual edge {x,y}. The order in which the
identification is performed is determined by Parallel Tree Contraction. Thus, the only
procedure that needs to be shown is how to obtain the embedding for the new graph.
Suppose embeddings of T and T‘ are both common to a virtual edge e = (2, y). Here,
the cyclic permutation of T at z is combined with the cyclic permutation of T‘ at z,
which is done by determining a face F of the embedding of T which contains both x
and y, and then determining a face F‘ of the embedding of T’ which contains both
x and y. The new cyclic order around z will begin by enumerating the darts of x
in T as they appear in the embedding of T, starting with the dart in F , and then
enumerating the darts of z in C as they appear in the embedding of T’, starting with
the dart in F’. At the same time, the cyclic permutations of T are combined at y,
and the cyclic permutations of T’ are combined at y in the same way (see Fig. 4).

To see that this construction can be performed in unit time we write out the
permutation explicitly. Since TI and T2 are disjoint graphs; we view them as having a
single embedding 4. Let 4* = 4 . R be its dual. It will suffice to show how to construct
the dual embedding for the identified graph. For simplicity we leave both copies
of the virtual edge in the graph and embed them as parallel edges. The parallel edges
can at a later time be removed. Let el be an arc in TI from z to y and e2 be an arc
in TZ from y to z. The dual embedding is as defined below:

.

if e = e l ,
if e = e2,
if 4*(e) = e l ,

$*(el) if +*(el = e2,
4* (e) otherwise.

0

This gives the following corollary.
COROLLARY 4.3. A planar embedding of a planar graph with n vertices is con-

structible in O(log2n) time, using processors.

4.1. Canonical forms of oriented graphs. Whitney I391 has shown that every
3-connected planar graph has exactly two planar embeddings: an embedding 4 and
its reflection 4-l. Ja’Ja’ and Simon [18] have shown that a planar embedding can
be constructed in O(log2n) time on a PRAM for a 3-connected planar graph. Any
isomorphism of a planar 3-connected graph must preserve its planar orientation up to
reflection. More formally, two oriented graphs, (G, 4) and (G’, 4’), are isomorphic if
there exists a bijective map f from the darts of G to the darts of G‘ which preserves

1142 G . L. MILLER AND J. H. REIF

FIG. 4. Combining the embeddings of two components to get a wmmon embedding.

both adjacency and orientation: R’f = f R and 4’f = j 4 . Using Whitney’s theorem,
two 3-connected planar graphs, G‘ and G, are isomorphic if and only if (G’,$’) is
isomorphic to (G,$) or (G,4-l).

Note that an isomorphism of one embedded graph onto another embedded graph
is determined by the image of a single dart. Given a sequence of k numbers, u =
(u1, - - , uk), and a dart e, there exists a unique path of length k, e = eo, , ek,
where ei = q5uZR(ei-l) for 1 5 i 5 k . Note that the length is the number of vertices
on the path, and no is the number of edges. Given a path of darts, a unique sequence
of integers can be constructed by choosing the minimum u, 2 0 such that ei =
q!JUzR(ei-l). Next, we will show how to compute canonical sequences that will be used
to compute the canonical forms for embedded graphs.

THEOREM 4.4. Canonical numbering for oriented graphs is computable in O(log n)
time, using processors.

A canonical form M (e) for each dart e can be constructed in (G, 4). One simply
picks the lexicographically least such form. For each dart, e’ # e, the lexicographically
least number sequence over the shortest paths from e to e‘ are found. Suppose that the
graph G has d darts. Consider a d x d matrix where each entry is a number sequence
or is blank. Here, the basic scalar operations will be Zedcogmphicully minimum and
concatenation, which replace the operations, + and x. Initially, one starts with
the matrix containing all paths of length two by storing a sequence of numbers of
length one. A matrix product over minimum and concatenation can be computed
in O(1) time using do(’) = processors by Lemma 2.8. Computing O(1ogn)
iterated powers of this matrix, up to the d power of the original matrix, yields the
lexicographically minimum of all shortest paths between all pairs of vertices. Thus, a
canonical matrix M (e) is obtained for each dart e in (G, 4). The minimum canonical
matrix M (e) (under lexicographical order) will be a canonical form for the embedded

Note that there is an isomorphism if and only if the matrices M (e) , as described
above, are equal. By also constructing the adjacent matrices for the reflection (G, 4- l)
and computing the minimum over the larger set of matrices, canonical forms for
embedded graphs have been constructed up to reflections. Using the additional fact

graph tGq5).

PARALLEL TREE CONTRACTIONS PART 2 1143

that one can compute a planar embedding for a 3-connected graph in O(log2n) time
on no(1) PRAM processors, the following theorem is derived from the above.

THEOREM 4.5. Canonical numbering of 3-connected planar graphs can be done
in O(log2 n) time using no(’) PRAM processors.

5. Reducing the problem of finding canonical forms of planar graphs
to the 3-connected case. In this section we give an O(1ogn) time reduction from
finding canonical forms for general graphs to that of finding canonical forms for 3-
connected graphs.

The term “computing canonical forms” means that an oracle accepts as input a 3-
connected graph with labels on its darts and vertices and returns an incidence matrix
unique up to isomorphism; i.e., it returns canonical linear ordering of the vertices.
We also assume that there is a list of new labels that can be added to the darts or
vertices.

By using the methods in the last section, one can find up to isomorphism a unique
decomposition of a graph into a tree of 3-connected components. In this section, the 3-
connected components are simply called “components.” Two components are related
if one identifies either (1) a virtual edge with orientation (a dart) in one with a virtual
edge with orientation in the other, or (2) a vertex in one with a vertex in the other. We
will discuss the case where the identifications are edges; i.e., the graph is 2-connected.
The general case is a straightforward generalization.

Recall that not all components in a tree of 3-connected components are 3-connect-
ed; in particular, they can be either a Sconnected graph, a simple cycle, an m-bond,
or an isolated vertex. Canonical forms for these latter graphs can easily be constructed
in O(1ogn) time.

LEMMA 5.1. The canonical form for labeled cycles and m-bonds can be constructed
in O(log n) time using no(’) processors.

A node of maximum height (at the center of the tree) in a tree of %connected
components can be found in O(1ogn) time by tree contraction, [29]. If the center of
the tree is an edge, simply introduce a 2-bond, which will become the center of the
tree, as a new component. Thus, without loss of generality, we may assume that the
tree is rooted at either a 3-connected component, a virtual edge, or a 2-bond.

Since the rooted tree of 3-connected components is unique up to isomorphism, the
vertices shall be ordered into blocks according to the component to which they belong.
The separating pair is in the same block with the parent component. The blocks are
ordered in postorder (see 1361). However, the children of a component must first be
ordered. As in our construction for canonical orderings for regular trees, children will
be first ordered at the time when labeled. The characteristic that distinguishes this
from a regular tree case is the fact that the children are coupled to their parent by an
edge and not a vertex. Thus, more information about the children must be passed to
the parent.

Let C be a component and e = (q y) be the virtual edge of C common to its
parent. The edge e is written as two darts d l and d2 (the reverse of d l) . If C is
a leaf and a proper component, then, by labeling either dl or d2 with a new label,
one gets two labels, L1 and L2, respectively, for C. Note that L1 = L2 if and only
if there is an automorphism sending d l to d2. Thus, RAKE is implemented in a
Straightforward way: (1) compute the labels L1 and Lz, (2) use the label of each leaf
C to label the corresponding darts in the parent of C, and (3) remove C. These labels
for C also give us the ordering of the vertices in C, excluding { q y } . If L1 > L2,
then use the ordering from L1; the case is similar if L2 > L1. On the other hand,

1144 G . L. MILLER AND J. H. REIF

if they are equal, then both orderings are the same, and it does not matter which
one is picked. This completes the discussion of RAKE. Note that this computation of
RAKE can be executed in unit time, given an oracle for generating the labels L1 and
La. COMPRESS will be discussed next.

Let C be a component of degree two where darts el and e2 are common to the
parent and darts dl and d2 are common to the only child. Using two new labels, L
and L’, assigning L to either el or e2, and assigning L’ to either dl or d2 yields four
labelings of C. Use the labeling with maximum value to determine the order of the
vertices in C, excluding the end vertices of e. As before, if two labels are equal, then
C has a symmetry; either order is the same up to isomorphism. This completes our
discussion of COMPRESS.

It is important to point out that we have not determined where, in the final
ordering, a given vertex was mapped, since finding this map was not required. This
lack of information occurred when one of several orderings for a given component was
arbitrarily picked in COMPRESS, and when the children of a component were simply
sorted by label. One can determine up to a permutation of order two the ordering of
components by using a tree expansion phase 1291.

To compute the image of each vertex in the new ordering, it will suffice to de-
termine the orientation induced on the virtual edges by the new ordering; i.e., is a
given virtual edge left alone or is it reflected in the new ordering? COMPRESS will
be discussed here (the case of RAKE is very similar). Let C be a component with
two virtual edges e and d. The possible symmetries consist of reflecting e and inde-
pendently reflecting d, the Klein 4 group &. The actual symmetries will be one of
five possible subgroups. Thus, the canonical orderings will be a coset of one of these
groups. There are thirteen such cosets, which can be determined by using a parallel
call to the oracle for proper components (by applying Theorem 4.4) or which can be
determined directly for cycles or m-bonds (by applying Lemma 5.1).

To implement COMPRESS, one need only compute the coset of canonical order-
ings for a consecutive pair of components from the coset of canonical orderings for
each component. Let C and C’ be two consecutive components of degree two with
virtiial edges, d, e, and f, respectively. Further, let A and B be the cosets of canonical
ordcrings of C and C’, respectively. Note that A acts on { d , e } and B acts on { e , f};
onc wants to return an appropriate coset acting on { d , f}. If the natural interscctiori
is not empty, it will be returned as the coset of the canonical ordering for C and C’.
It will be empty when A and B fix e in opposite orientations. In this case, the cosct
of the canonical orderings for C and C’ consists of a cross-product pair. On(. it& OII

d according to A and acts on f according to B. Thus, a method for roinpiitiiig tlici
coset of canonical orderings for the virtual edges of C U C’ has been prcscntcd which
uses O(1ogn) time and no(1) processors.

In summary, the CONTRACTION phase consists of the followiiig stcys:

determine the coset of canonical orderings on their virtiial ctlgcs.
1. Compute the canonical labels for all components with dcgrcc onc or two and

2. For leaves, pass the canonical label to the parent.
3. For chains, combine pairs of components as descrilwd al)ovc, coniputing both

canonical labels and cosets of canonical orderings.
Note that there will be missing cosets when we cxc~ciit.~~ c h i n contraction. After

the tree of components has been reduced to a single coniponcnt, we perform a tree
expansion phase as described in 1291 to compute the missing cosets from this further
information obtained. Each step can be executed in unit time and thus, by the analysis

PARALLEL TREE CONTRACTIONS PART 2 1145

in [29], the total time is O(1ogn).
We have just given an O(1ogn) time reduction from finding canonical forms for

general graphs to that of canonical forms for 3-connected components.
O(log2n) time, no(’) processor algorithms used for finding canonical forms for

%connected graphs have already been presented. This reduction implies an O(10g3 n)
time, no@) processor algorithm that can be used to compute canonical forms for all
planar graphs. We summarize our results as a theorem.

THEOREM 5.2. The problem “Computing canonical forms for a general graph”
is O(1og n) time wing no(1) processors ducible to the problem “computing canonical
forms for its 3-connected components.”

6. Conclusion. Since the original writing of this paper, many other applications
of ParaZZel T h Contraction have been found. Similarly, many extensions, improve-
ments, and simplifications of the work in this paper have been found. The basic
parallel tree contraction can now be done on an EREW PRAM in O(1og n) determin-
istic time using nllogn processors, 191, [Zl] , [13], [l]. All of these algorithms use the
fact that list-ranking can be performed optimally in deterministic time O(1ogn) on
an EREW PRAM, [3], 191. Very simple randomized algorithms for the list-ranking
problem are also known, [5]. Parallel k Contraction can be performed optimally by
a randomized algorithm on a parallel model that is more restrictive than an EREW
PRAM [4].

In this paper, we restricted our attention to maximal subtree isomorphism. The
more general problem for determining if one tree is a subtree of another was first
addressed by Matula [22], who gave a polynomial-time algorithm for the problem. A
randomized NC algorithm for this problem was given in [14] using the parallel tree
contraction technique.

PTC has also been used for efficient parallel evaluation of arithmetic circuits.
Prior to the parallel tree contraction technique, the best algorithms for the circuit
problem used divideand-conquer, [37]. Using PTC, one can evaluate circuits on-line
in the same time and size as [37] achieved off-line [28], [23].

PTC can be used to design efficient parallel algorithms for problems where the
tree is known only implicitly. Examples of such problems occur in the context-free
language parsing, constructing Huffman codes, and optimal binary search trees. See
I331 for an example of a divide-and-conquer algorithm for such problems and see [6]
for a PTC-based approach.

Other applications include: testing triconnectivity of a graph [27], 1111; testing
graph planarity [19]; finding separator for planar graphs [25], [12]; and finding algo-
rithms for reducible flow graphs “1.

This is not an exhaustive list, and we apologize for the works which we have
neglected to reference.

REFERENCES

[l] K. ABAHAMSON, N. DADOUN, D. K . KIRKPATRICK, AND T. PRZYTYCKA, A simple pamllel tree
wntmction algorithm (preliminary version), in Proc. 25th Annual Allerton Conference
on Communication, Control, and Computing, Monticello, IL, September/October 1987,
pp. 624-633.

{2] M. AJTAI, J. KOMLOS, AND E. SZEMEREDI, An O(n1og n) sorting network, in Proc. 15th
Annual Symposium on the Theory of Computing, 1983, pp. 1-9.

[3] R. J. ANDERSON AND G. L. MILLER, Determanistic p a d e l list mnking, in VLSI Algorithms
and Architectures: Third Aegean Workshop on Computing (AWOC 88), June/July 1988,

1146 G. L. MILLER AND J. H. REIF

Lecture Notes in Computer Science, 319, J. H. Reif, ed., Springer-Verlag, New York, pp. 81-
90.

[4] R. J. ANDERSON AND G. L. MILLER, o p t i d communication for pointer based algorithms, Tech.
Report CRI 88-14, Department of Computer Science, University of Southern California,
Los Angeles, CA, 1988.

151 - , A simple randomized parallel algorithm for list-mnking, Inform. Process. Lett., 33
(1990), pp. 269-273.

[6] M. ATALLAH, R. KOSARAJU, L. LARMORE, G. L. MILLER, AND S.-H. TENG, Constructing trees
in parallel, in Proc. 1989 ACM Symposium on Parallel Algorithms and Architectures, Santa
Fe, NM, June 1989, pp. 421431.

[7] I. BAR-ON AND u. VISHKIN, Optimal parallel genemtion of a computation tree form, ACM
Trans. Programming Languages and Systems, 7 {1985), pp. 348-357.

[8] R. COLE, Parallel merge sort, in Proc. 27th IEEE Symposium on Foundations of Computer
Science, Toronto, Ontario, Canada, October 1987, pp. 511-516.

191 R. COLE AND u. VISHKIN, Optimal p a d k l algorithms for expression tree evaluation and list
mnking, in VLSI Algorithms and Architectures: Third Aegean Workshop on Computing
(AWOC 88), June/July 1988, Lecture Notes in Computer Science, 319, J. H. Reif, ed.,
Springer-Verlag, New York, 1988, pp. 91-100.

[lo] J. EDMONDS, A wmbinatorial representation for polyhedral surfaces, Amer. Math. SOC., 7
(1960), p. 646.

[ll] D. FUSSELL, V. RAMACHANDRAN, AND R. THUFUMELLA, Finding triconnected components by lo-
cal replacement, in Proc. Internat. Conference on Automata, Languages and Programming,
1989, Springer-Verlag, pp. 379-393.

[12] H. GAZIT AND G. L. MILLER, A parallel algorithm for finding a sepamtor in planar graphs,
in 28th IEEE Annual Symposium on Foundations of Computer Science, Los Angel-, CA,
October 1987, pp. 238-248.

[13] H. GAZIT, G. L. MILLER, AND S.-H. TENG, Optimd tree contraction in an E m W model, in
Concurrent Computations: Algorithms, Architecture and Technology, S. K. Tewksbury,
B. W. Dickinson, and S. C. Schwartz, eds., Plenum Press, New York, 1988, pp. 139-156.

[14] P. B. GIBBONS, R. M. KARP, G. L. MILLER, AND D. SOROKER, Subtree isomorphism is in mn-
dom NC, in VLSI Algorithms and Architectures: Third Aegean Workshop on Computing,
(AWOC 88), June/July 1988, Lecture Notes in Computer Science, 319, J. H. Reif, ed.,
Springer-Verlag, New York, 1988, pp. 43-52.

[15] G. H. HARDY AND E. M. WRIGHT, An Introduction to the Theory of Numbers, Fourth Edition,
Oxford University Press, Oxford, U.K., 1959.

[16] J. E. HOPCROFT AND R. E. TARJAN, Dividing a graph into triwnnected components, SIAM J.
Comput., 2 (1973), pp. 135-158.

[17] 0. H. IBARRA AND S. MORAN, Probabilistic algorithms for deciding equivalence of stmight-line
pmgmms, 3. Assoc. Comput. Mach., 30 (1983), pp. 217-228.

1181 J . JA'JA' AND J. SIMON, Parallel algorithms in graph theory: Planarity testing, SIAM J. Com-

1191 P. KLEIN AND J. -IF, An efficient parallel algorithm for planarity, J. Comput. System sci.,
(1988), pp. 190-246.

[20] D. E. KNUTH AND L. TRABB PARDO, Anaqsis of a simple factorization algorithm, Theoret.
Comput. Sci., 3 (1976), pp. 321-348.

[21] s. R. KOSARAJU AND A. L. DELCHER, Optimal parallel evaluation of tree-structured wmputa-
tion by ranking (extended abstract), in VLSI Algorithms and Architectures: Third Aegean
Workshop on Computing (AWOC 88), June/July 1988, Lecture Notes in Computer Science,
319, J. H. Reif, ed., Springer-Verlag, New York, pp. 101-110.

[22] D. W. MATULA, Subtree isomorphism in O(n5I2), Ann. Discrete Math., 2 (1978), pp. 91-106.
[23] E. W. MAYR, The dynamic tree expression problem, in Concurrent Computations: Algorithms,

Architecture and Technology, S. K. Tewksbury, B. W. Dickinson, and S. C. Schwartz, eds.,
1988, Plenum Press, New York, pp. 157-180.

(241 G. L. MILLER, Riemann's hypothesis and tests for primality, J. Comput. System Sci., 13 (1976),
pp. 300-317.

1251 - , Finding small simple cycle separators for 2-connected planar graphs, J. Comput. System
Sci., 32 (1986), pp. 265-279.

P61 - , An additivity theorem for the genus of a graph, J. Combin. Theory, Ser. B, 43 (1987),

[27] G. L. MILLER AND V. RAMACHANDRAN, A new gmph triconnectivity dgordhm and

put., 11 (1982), pp. 314-328.

pp. 2547.

leldzution (extended abstract), in Proc. 19th Annual ACM Symposium on Theow of Conb
puting, New York, May 1987.

PARALLEL TREE CONTRACTIONS PAR!T 2 1147

[28] G . L. MILLER, v . RAMACHANDRAN, AND E. KALTOFEN, Eficient pamllel evaluation of stmight-
line code and arithmetic circuits, SIAM J. Comput., 17 (1988), pp. 687-695.

(291 G . L. MILLER AND J. H. REIF, Pamlkl tree wntmction Part 1 : findcrmentals, in Randomness
and Computation, Vol. 5, S. Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 47-72.

1301 V. RAMACHANDRAN, Fast pamllel algorithms for reducible flow gmphs, in Concurrent Compu-
tations: Algorithms, Architecture and Technology, S. K. Tewksbury, B. W. Dickinson, and
S. C. Schwmtz, eds., Plenum Press, New York, 1988, pp. 117-138.

I311 J. H. REIF AND L. G . VALIANT, A logarithmic t ime sort for lineor size networks, in Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, Boston, 1983, pp. 10-16.

[32] J. B. RoSSER AND L. SCHOENFIELD, Appmximate form& for some functions of prime num-
bers, Illiiois J. Math., 6 (1962), pp. 64-94.

[33] W. L. RUZZO, On uniform circuit wmplezity, J. Comput. System Sci., 22 (1981), pp. 365-383.
(341 J. T. SCHWARTZ, Fast probabilistic algorithms for venjication o f p o l y o m i d identities, J. Assoc.

Comput. Mach., 27 (1980), pp. 701-717.
[35] R. SOLOVAY AND V. STFLASSEN, A fast Monte-Carlo test for primality, SIAM J. Comput., 6

(1977), pp. 84-85.
(361 R . E. TARJAN AND U. VISHKIN, Finding biwnnected wmponents and computing tree func-

tions in logarithmic pamlkl time, in Proceedings of the 25th Annual IEEE Symposium on
Foundations of Computer Science, FL, 1984, pp. 12-22.

1371 L. G . VALIANT, s. SKYUM, s. BERKOWITZ, AND c. RACKOFF, Fast p u d l e l computation of
polynomials w i n g few processors, SIAM J. Comput., 12 (1983), pp. 641-644.

[38] U. VISHKIN, Randomized speed-ups in pamllel computation, in Proc. 16th Annual ACM S y m p
sium on Theory of Computing, Washington D.C., April 1984, Association for Computing
Machinery, pp. 230-239.

I391 H. WHITNEY, A set of topological invariants for gmphs, American J. Math., 55 (1937), pp. 321-
335.

(401 J. C. WYLLIE, The wmplezity ofparallel wmputations, Ph.D. thesis, Department of Computer
Science, Cornell University, Ithaca, NY, 1981.

