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In $3, the tree of 3-connected components (as defined by Hopcroft and Tarjan 
[16]) is constructed in O(1ogn) time on a PRAM. Previously, Ja’Ja’ and Simon [18] 
gave an O(1og n) time PRAM algorithm for finding maximal subsets of vertices, which 
are pairwise 3-connected; but they did not address the problem of finding the tree 
of %connected components. In the case of %connected graphs, they constructed 
the planar embedding in O(log2n) time on an Exclusive Read and Exclusive Write 
(EREW) PRAM, but it is easy to see that their algorithm required only O(1ogn) 
time, using the Concurrent Read and Concurrent Write (CRCW) model. They did 
not construct embeddings of general planar graphs. In §3, an O(log2 n) time PRAM 
algorithm is given that computes the explicit planar embedding of planar graphs even 
if the graphs are not 3-connected. 

Section 4 presents an O(log3n) time PRAM algorithm that computes a canon- 
ical form for planar graphs. No polylogarithmic parallel algorithm for testing the 
isomorphism of planar graphs previously existed. 

Section 5 presents an NC reduction from the problem of computing canonical 
forms of a general graph to the problem of canonical forms for 3-connected graphs. 
This is an O(1ogn) time reduction using 

Finally, $6 references extension and further applications of the parallel tree con- 
traction technique that have been done since the original writing of this paper. 

All our PRAM algorithms use only a polynomial number of processors. Effort 
shall be taken to minimize the number of processors used. Most of these results can 
also be expressed in terms of circuits with simultaneous depth: (logn)‘ and nk size, 
for fixed constancs c and k. 

processors on a PRAM. 

2. Isomorphism and canonical labels for trees. Let T and T’ be two rooted 
trees with roots r and r‘ and vertex sets V ( T )  and V(T’), respectively, where 1V(T)I = 
n. T is isomorphic to T’ if there exists a bijective map from V ( T )  to V(T’)  which 
preserves the parent relation. A map L from trees to strings such that T is isomorphic 
to T‘ if and only if L(T)  = L(T ’) is called a canonical label. A subtree T’ of a rooted 
tree T is said to be an induced subtree if there exists a vertex v of T such that the 
vertices of T’ are v and all the descendants of v in T. This paper considers only the 
induced subtrees. Thus, a subtree is assumed to be an induced subtree (note induced 
subtrees are also termed maximal subtrees in the literature). Canonical labels for all 
induced subtrees of a tree T is a map L from V ( T )  to finite strings such that for all 
2, II: ’ E T the subtree rooted at x is isomorphic to the subtree rooted at x‘ if and only 
if L(z )  = L(s’). All results to follow will apply to unrooted trees as well. 

Canonical labels for all induced subtrees can be used for code optimization. Here, 
one merges all nodes with common labels producing an acyclic digraph. This process 
is called common subexpression elimination. First , a randomized algorithm for tree 
isomorphism is presented. 

The height h(v)  of a node v in a tree T is the maximum distance from v to any 
of its leaves. That is, h(v) = 0 if v is a leaf; otherwise, if v has children, v1,. * ,  vk, 
then h(v)  = 1 + max{h(vi)ll 5 i 5 I c } .  It is a straightforward exercise to see that 
the height of all nodes in a tree with n nodes can be computed deterministically by 
Parallel Tree Contraction (PTC) in O(1og n) time using n processors, or alternatively, 
by using nl log n processors by the randomized version of Parallel !he Contraction, 
as discussed in the first part of this paper [29]. 

A multivariate polynomial Qv is canonically associated with each vertex v of the 
tree T.  Let zl, 22,. . . be distinct independent variables. For each leaf 21, set Qv = 1. 
For each internal node v of height h with children v1, . + . , vk, set Qv = n F = , ( ~ h  - Qv,) 
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using induction on the height h. Thus, the polynomial QT of the root r with height 
h is a polynomial Q T ( z ~ ,  . . . , zh) of degree less than or equal to n. QT is viewed as 
a polynomial over a finite field F .  Using the fact that polynomial factorization is 
unique over F ,  Lemma 2.1 follows. 

LEMMA 2.1. The subtrees rooted at v and v' are isomorphic if and only i f  Qv = 
Qvt over a field F .  

To test if a polynomial Q(x1, . . . , zh) of degree less than or equal to n is identically 
zero, an old idea, which goes back at least as far as Edmonds, is used [34]. The 
polynomial is evaluated at a random point and checked to see if the value is nonzero. 
In this section the following technical lemma is used which is similar to a lemma in 

LEMMA 2.2. If F is a finite field of size p ,  p prime, such that p 2 na+'h, a 2 1, 
a' is a random element of F k ,  and Q(xl , + . , xh) is a polynomial of degree less than 
or equal to n which is not identically zero over F ,  then Prob[Q(ii) = 01 5 l/na. 

Proof. We first show by induction on h (see [17]) that the polynomial Q has at 
least ( p  - n)h points for which it is not zero. For the case h = 1, Q has at  most 
n roots out of a possible p elements. Thus, Q has at least p - n nonzero points. 
Suppose the claim is true for all polynomials with h variables, and Q is polynomial 
in at most h + 1 variables. In this case, Q can be written as a polynomial in the first 
variable x with coefficients being polynomials in at most h variables. At least one of 
the coefficients Q1 must be a polynomial which is not identically zero. Thus, there 
are at least ( p  - n)h points for which Q1 is not zero. Now, for each one of these points 
there are p - n values of x in F for which Q is not zero. Therefore, Q has at least 
( p  - n)h+l points for which it is not zero. Since a' is a random element of Fh ,  the 
above can be written as a probability: Prob[Q(a' # O ) ]  2 ( p  - n) ' /ph = (1 - n/p)h. 

Substituting nQ+lh 5 p for p yields Prob[Q(a') # 01 2 (1 - ( l /nah))h.  Since 
(1 - ( l /nah))h  2 (1 - l/na), the desired inequality, Prob[Q(a') = 01 5 l/na, is 
obtained. 0 

The tree isomorphism algorithm is described in procedure form (see Fig. 1). Two 
different procedures have actually been given, depending on whether one implements 
step (1) or step (1'). If step (1') is implemented, it must have access to a very 
small table of at most O(1ogn) prime integers. This table of prime integers, PT,  
needs to only contain one prime between 2t and 2t+1 for each t .  The existence of 
the primes is guaranteed by Bertrand's postulate (see [15]). As Theorem 2.3 will 
show, isomorphism of trees of size less than or equal to n can be tested using a table 
of O(1ogn) primes, each of value less than or equal to no('). This table can be 
generated in random polynomial time. To generate the table of primes, we need an 
estimate on the number of primes in an interval of size n to 2n (see I321 and a random 
polynomial-time primality test, (351, [24]). However, if only step (1) is used, a uniform 
algorithm in the usual sense is obtained. Our analysis of the uniform algorithm shows 
only that the probability of error is less than i. On the other hand, the probability 
of error using the table of primes is at most l/n. In step (4), the Asynchronous Tree 
Contraction algorithm [29] is used, since the time to RAKE a node with k children 
will be O(1og k). 

THEOREM 2.3. Randomizedl Tree Isomorphism using step (1) tests tree noniso- 
morphism in O(1og n) time using n/  log n processors with the probability of error less 
than or equal to 1/2. If a table of primes is given, then the procedure works with a 
probabilzty of error of at most l/na. 

Proof. The case when a table PT of primes is used follows by a straightforward 

~71. 
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Procedure Randomizedl Tree Isomorphism (One-sided) 

(1) Pick a random integer m in the range ( / ~ n " + l ) ~  L: rn 5 2(hn"+')2. 
(1') Pick a prime m in the range hn"+' 5 m 5 2hna+l of the given list of 

primes PT. 
(2) For each node v of T or T ' ,  assign the polynomial Qv to v as 

described above. 
(3) Assign to each xi a random value between 1 and m. 
(4) Evaluate QT and QT I using one of our dynamic expression evaluation 

algorithms [29] and return w and w', respectively. 
(5) If w # w', then output "not isomorphic," 

else output "isomorphic." 

F IG .  1. A one-sided randomized tree isomorphism test. 

calculation using the last lemma. In this case, the algorithm tests if the polynomial 
Q = QT - QT, is identically zero or not. By the last lemma, the probability that a 
random element is a zero of Q is at most l/n". 

Suppose a random integer is used instead of picking a prime from a table. In this 
case, the probability that the largest prime factor of a random integer m has size at 
least fi is at least $ (see [20]). For Q to be zero at some point modulo m, it must 
be zero modulo p .  Thus, at least $ of the time, m will have a prime factor of size 
at least hna+l, in which case steps (2)-(5) will be executed with an error of at most 

Note that the main source of error is step (l), not steps (2)-(5). This fact is used 
in the next algorithm. Next, the algorithm is modified into a zero-sided randomized 
algorithm, i.e., one that never makes an error. The idea of the algorithm will be to 
modify Procedure Randomizedl Dee Isomorphism so that it outputs a value €or each 
subtree of T and TI. Assuming that these values are the correct labels for each subtree, 
these values are used to find an isomorphism. Note that we can easily test whether or 
not this map is an isomorphism. This modified procedure is called Randomized1 Label 
Generation. More precisely, steps (4) and (5) are replaced with a step that evaluates 
all subpolynomials. 

This new algorithm will also canonically label the set of all induced subtrees of a 
tree. But this does not give a canonical label for trees, since there is an exponential 
number of trees and only a polynomial number of labels. This last problem will be 
addressed later on in the paper. 

The problem of testing the isomorphism of trees can be reduced to the problem 
of canonically labeling all induced subtrees of a tree, as follows: 

0 Viewing the two trees as subtrees of a larger tree. 
0 Asking for the labeling of all its subtrees. 
0 Checking whether or not the labels on the two roots of the subtrees are the 

Thus, our attention is restricted to the problem of canonically labeling all induced 
subtrees. The following lemma will be used here. 

LEMMA 2.4. A map L is a canonical labeling of all induced subtrees of T .if and 
only i f :  

l/na. For a sufficiently large n the probability of error is at most 3. 0 

same. 

1. If v, v' are leaves, then L(v)  = L(v'); 
2. L(v) = L(v ' )  i f  and only i f  { L ( v l ) ,  + - ,  L(vk)} = {L(v{ ) ,  . , L(vL)}, where 

v1, . . . , Vk are the children of v and vi, . . . , v(k are the children of v'. 
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Proof. The proof is a straightforward induction on the height of subtrees. One 
must show that two subtrees are isomorphic if and only if they have the same labels. 
Condition 1 states that subtrees of height 0 (leaves) are isomorphic, while condition 
2 gives us the inductive step. 

The labels generated by Procedure Randomized1 Label Generation clearly sat- 
isfy condition 1. Note that if {L(vl),-.-,L(vk)} = 
{L(vi),...,L(v6)}, then, clearly, L(w) = L(v’). Thus, one tests only that nodes 
with the same label have the same set of labels on their children. One simply sorts 
the nonleaf vertices by their label value obtaining ordered linked lists of vertices with 
the same labels. It will suffice to check that consecutive vertices with the same label 
have children that have the same set of labels. To test this latter condition for each 
node, one must sort the labels of each node’s children. Next, only pairs of linked lists 
are checked for equality. Thus, all subtrees can be canonically labeled in the cost of 
two sorts of less than or equal to n numbers where each number is of the size O(1og n). 
Both randomized and deterministic algorithms using O(1ogn) time and n processors 
are known for sorting [2], [31], IS]. 

0 

Only condition 2 remains. 

Using this result yields the following theorem. 
THEOREM 2.5. Tree isomorphism and common subexpression elimination can be 

performed with a O-sided randomized algorithm in O(1ogn) time using n processors 
with an error probability of l /n ,  given a table of O(1ogn) primes each of value less 
than or equal to 

Proof. The tree T to be labeled will have n associated polynomials, one €or each 
subtree. Procedure Randomizedl Label Generation must be run with enough reliability 
so that any two of the n polynomials will have distinct values if their subtrees are not 
isomorphic. In the worst case, the difference of all pairs of polynomials must have a 
nonzero value. This implies that Q = 3 can be picked so that the probability of any 
one of the n2 polynomials being nonzero will be at most l/n3. In the case where a 
random integer is picked; i.e., step (1) is executed, simply note that the probability 
of error is at most $ and it comes only for the first step, not the others. Thus, the 

The remainder of this section exhibits a fast deterministic algorithm for canonical 
labelings of trees. Note that the randomized procedure developed in Theorem 2.5 
does not produce canonical forms for trees. Canonical forms can be obtained by using 
sorting. The idea is to assign canonical labels to the nodes inductively by height. The 
leaves are labeled with zero. Suppose, inductively, that the children, v1, - - , vk, of w 
have labels L(vl) ,  . . . , L(vk); then the label of w will be the concatenation of the sorted 
list of labels L(v l ) ,  - .  , L ( w k ) ,  including a left and right parenthesis. By Lemma 2.4 
this gives a canonical label for trees. This definition of the label for T seems hard 
to implement in parallel since a label which takes a long time to compute may have 
a small lexicographic value. This problem is solved by first sorting the children of a 
node based on the time in which its label was computed and then sorting the children 
on their label value. 

The discussion begins with a simpler O(log2 n) time parallel algorithm. Here, the 
children of a node are sorted when all but at most one child has its label. If this final 
child exists, it is placed at the end of the list. A fixed place in the list is left for the 
missing value. A node at an intermediate point of the algorithm which has one child 
may be viewed as having a label with one free variable. The intended value of the 
variable is the label of the child. Thus, if its child also has only one child and its label 

otherwise, the error probability is at most $. 

random integer case works with a probability of error of at most f. 0 
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has been computed up to a free variable, then the labels may be composed; i.e., apply 
COMPRESS. 

Since the labels may be as large as O(n) long, it is unreasonable to expect that 
two labels can be compared by one processor in unit time. However, two characters 
can certainly be compared in 0 ( 1 )  time by one processor. This implies the following 
well-known lemma. 

LEMMA 2.6. The comparison of two strings of length n can be performed in 0(1) 
time using n processors. 

Theorem 2.7 follows from the preceding lemma. 
THEOREM 2.7. Canonical labelings for  trees can be computed in O(log2n) time 

using n processors. 
To see that the above algorithm works in O(log2 n) time, simply note that each 

RAKE takes at most O(1og n) time and that CONTRACT is applied at most O(1og n) 
times by the results of [29]. The bound of n on the number of processors is obtained 
as follows. Initially only the leaves have their labels, and the sum of their lengths is 
at most n. The labels on internal nodes will be the concatenation of the leaf labels 
below it plus separating symbols, say, left and right parentheses. Thus, the length of 
the label of an internal node is linear in the number of nodes in its subtree. Since only 
leaves are ever sorted by the algorithm, the sum of the length of the strings sorted in 

Our O(1ogn) time algorithm is slightly more complicated. Our approach begins 
by sorting labels at a node as soon as they arrive. That is, we first order the children of 
a node based on the time each child’s label arrives. Among those children whose labels 
arrived at the same time, we further order them by their label values. In general, this 
labeling returns a different canonical form and label from the previous algorithms, but 
it is also canonical, since the ordering of the tree is, up to isomorphism, independent 
of how the tree is given. 

Ignoring for the moment the cost of collecting labels together so that they may 
be sorted in parallel, the algorithm will take O(1ogk) steps to remove the k leaves of 
a node. Thus we have an algorithm which removes the k leaves of a node in O(1ogk) 
and, therefore, by the results of [29], it will run for only O(1ogn) time when run 
asynchronously. 

The labels that arrive at the same time must be coalesced so that they are “ready” 
to be sorted. We cannot afford to coalesce the labels after they arrive, since the cost 
to coalesce the labeled children may be a function of all the children of the node; thus, 
the overall running time may grow faster than O(1ogn). We circumvent the problem of 
coalescing the labels on-line by simply computing when the labels will arrive, without 
sorting, followed by a second phase where we sort these “times” offline. 

Recall that each nonleaf node has associated with it an array of storage locations, 
one for each child. Each storage location is used for the label of the child and will 
be used when its label has been computed. In the preprocessing phase, the storage 
locations are rearranged by sorting the children by arrival times. 

As mentioned above, the time when a given value will arrive in the preprocessing 
phase is determined without actually computing the values. These times are then 
used to sort the children of each node. Let c be an integer greater than or equal 
to 4, such that deterministic parallel sorting of k 2 2 numbers can be performed in 
f(k) = crlog kl + 2 + 6 time on a Concurrent Read and Concurrent Write (CRCW) 
PRAM, where 6 is a constant yet to be determined. Since f (k)  can be easily computed, 
the parallel sorting algorithm can be slowed down so that it takes exactly f ( k )  time 

any RAKE is at most O(n). Thus, we need only n processors. 0 
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to sort a string of length k. Let the label-tzme of a node in a tree T be the time at 
which the node gets its label when the hypothetical canonical labeling algorithm is 
run on T .  Next, the label-time for each node is computed. 

Both RAKE and COMPRESS of the above algorithm assume the labels that need 
to be sorted are consecutive. COMPRESS is a straightforward simulation, since each 
COMPRESS step takes only unit time. The simulation of RAKE is more subtle. We 
will now show how to determine when each node becomes either a leaf or a parent of 
a single child. The label-time of a leaf is 1. If a node v is at no time the parent of 
a single child, then the label-time of v is max{f(K,) + i}, where K, is the number 
of children of v whose label-time is i. If, at some point, v becomes the parent of a 
single child, then that time will be max{f(K,) + i}, where the maximum is over all 
children except for the last child processed. Then label-time can be computed by 
the simulation of COMPRESS. In either case, only the value max{f(K,) + i} need 
be computed on or before time max{f(Ki) + i}. The value is actually computed by 
time max(2rlog Ki) + i + 4) (see Lemma 2.8). First, the K,’s are computed, then the 
max{f(K,) + i} is computed from the K,’s in unit time. 

By the results from [29], the largest value of any label-time will be at most 
O(1ogn). A vector of integers is initially associated with each storage location of 
a nonleaf node 2r ,  and all entries are zero. If the label-time for the child of a node 
arrives at time i, then 1 is added to position i of this vector, and the vector is marked to 
indicate that its time is known. A marked vector can be combined with a neighboring 
left or right vector, either marked or unmarked. The combination of the two vectors is 
simply the vector sum, and this procedure is considered a COMPRESS-like operation 
applied to consecutive vectors. If only one of the two vectors is marked, then the 
combined vector is considered unmarked; otherwise, it is considered marked. We 
assume that we have O(1ogn) processors per node. 

We shall implement the above compress-like operation using a variant of Wyllie’s 
algorithm for list-ranking 1401. We consider our list of vectors as a linked-list. As in 
Wyllie’s algorithm, the last element points to nil. For booking reasons, add a new 
pointer at the beginning of the list. The algorithm finishes when the new beginning 
pointer points to nil. At each stage, a node may update its pointer if it is pointing 
to a marked vertex that is not nil. When a node updates its pointer, it also adds the 
value of the parent’s vector to itself. Therefore, this is a CREW algorithm. 

A maximal consecutive sequence of marked vectors is called a run. Note that the 
above procedure applied to a run will decrease the length of the run by at least i. 
At some point, the sequence of vectors will be reduced to a single vector (the new 
vector added to the beginning of the list) whose ith value is K,. In unit time, K,  
is replaced with f ( K , )  + i. Also, in unit time, the maximum of logn values can be 
computed using O(log2 n) processors. We use a processor P for each pair of values. 
The processor P will cancel the smaller of its two values. The remaining value is the 
maximum. We will assume that the above two-unit time calculations are performed 
in at most S machine steps. 

It remains to show that the vector values K, are computed “on time.” That is, the 
vector of values K, is computed by time max{f(K,) + i  -6) 5 max{4[1ogKz) + i + 4 }  
for each node. The problem is abstracted to the following conceptually easier problem: 
a list of characters, each of which is initially the letter I for inactive, is presented; 
i.e., the string I” is given. At time i, a subset of K, of the characters I change, to A .  
Each A is now thought of as an active character. At each time step, a run o f t  A’s is 
replaced by a run of [t/2J A’s. This process is called ACTIVATE and COMPRESS. 
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LEMMA 2.8. The process ACTIVATE and COMPRESS Wall terminate in the 
empty string by  a time of at most max(2 log Ki + i + 2). 

Proof. Suppose that K1, - . , Km is a sequence of activations where m equals the 
maximum i such that Ki # 0. Further, let 1 = maxi2 log Ki + i), for i = 1 to m. 
Note that 1 2 m 2 1. 

Let Ai be the number of A’s in the string at time i after the ith list activation. At 
time i, there are Ki A’s added to the string while COMPRESS reduces the number 
of A’s by one-half. Thus, the contribution of the Ki As at time t 2 a is bounded by 
Ki/2t-i. This gives the following inequality for t 2 m: 

Using the fact that for all i, 2 log Ki + i 5 1 implies Ki 5 2(’-a)l2, we substitute this 
inequality into (1), yielding 

Since the right-hand side is a geometric series in l/& beginning with 1/& it follows 
that A1 5 l/(& - 1) < 3. Since A decreases by at least 3 at each time step, and it 
is integral, we get Al+2 = 0. Therefore, 1 + 2 = max(2 log Ki + i + 2); this proves the 
lemma. 0 

THEOREM 2.9. Canonical labelings for trees can be computed an O(1ogn) time, 
using O ( n  log n) processors. 

Proof. The algorithm consists of three majors steps, as summarized below: 
1. Compute the label-time of each vertex. 
2. Sort and order the children of each node up to their label-time value. 
3. Compute the final ordering of the children by computing vertex labels using 

Using Lemma 2.8, the label-time values for each node can be computed on or 
before its label-time. The label-time of a node is not passed to its parent until the 
actual time of the label-time value, thus preserving the invariant property that label- 
time values arrive at the actual time of the label-time value. Therefore, step 1 takes 
O(1ogn) time using O(1ogn) processors per node (nlogn in total). 

In step 2, the children can be sorted at a node by their label-time values in 
O(1ogn) time using n processors. Finally, in step 3, the labels can be computed by 
sorting label values. As in Theorem 2.3, the timing analysis of Theorem 6.1 from 
[29] can be applied to give an O{logn) time bound. Again, using the analysis from 
the proof of Theorem 2.3 to step 2 of procedure Elandomized1 Tree Isomorphism, this 
algorithm requires at most n processors to achieve the O(1ogn) time bound. 

This motivates another generalization of Parallel Free Contraction which will be 
used to compute the 3-connected components of a graph in O(1ogn) time, instead of 
O(log2 n) time. 

Consider Asynchronous Parallel Free Contraction, as defined in Part 1 [29], a p  
plied to an ordered tree of unbounded degree, where the RAKE operation is restricted 
to removing a constant proportion of consecutive leaves. In particular, assume that 
RAKE replaces a run of length k by a run of length Lk/2) in unit time. Thus, COM- 
PRESS acts on chains, and RAKE acts on runs. Recall from Part I that a chain in 
a rooted tree is a sequence of vertices wl, . - . , wt such that w i + l  is the only child of zli, 

sorting. 

0 

/ 
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for 1 5 i < t .  If the tree is undirected, a chain will be a sequence of vertices vl, . . , ut 
such that vi-1 and v2+1 are the only neighbors of zli, for 1 < i < t. It is crucial that 
a vertex be processed under COMPRESS when it has one child that is not a leaf, or 
possibly two children that are leaves, a leftmost and, possibly, a rightmost child; i.e., 
one or two runs of length 1. This procedure is called Parallel Tree Contraction with 
RAKE restricted to runs. 

THEOREM 2.10. Parallel n e e  Contraction with RAKE restricted to runs requires 
only O(1ogn) applications to reduce a tree to a single vertex. 

3. Computing the 3-connected components. The main goal of this section 
is to give a new parallel algorithm for decomposing a graph into a tree of %connected 
components. To this end, we first discuss the decomposition of a graph into a tree of 
2-connected components. We then discuss prior work on the decomposition of general 
graphs into their tree of %connected components, including a definition of brides and 
Hopcroft and Tarjan’s use of virtual edges. Finally, we give our definition of the 3- 
connected components of a graph, and relate how to use Parallel Tree Contraction to 
find these components. 

Two vertices v and w in an undirected graph G = (V, E )  are k-connected if there 
exist k paths in G from v to w which are pairwise vertex disjoint, except at their 
endpoints v and w. Thus, two vertices sharillg hedges are k-connected. The graph 
G is k-connected if every pair of vertices is k-connected. 

Before giving our algorithm, which decomposes a connected graph into its tree 
of 3-connected components, we will discuss the decomposition of a connected graph 
into its tree of 2-connected components. This decomposition consists of three types 
of components. First, there are the proper 2-connected components. These are the 
subgraphs induced by a maximal subset of vertices which are pairwise 2-connected. 
Second, there are the articulation vertices or separating vertices. Finally, there are 
separating edges. The vertices of the tree consisting of 2-connected components are the 
components described above. An articulation vertex is adjacent to another component 
if it is contained in the component. Recently, Tarjan and Vishkin 136) have shown how 
to construct the 2-connected components of a graph in O(1ogn) time using a linear 
number of processors on a PRAM. These components form a tree where a component 
and a separating vertex are adjacent if the vertex is contained in the component. 
However, the 3-connected components are more difficult to define and seem to require 
a more sophisticated algorithm. 

Hopcroft and Tarjan (161 give a precise algorithmic definition, which will be re- 
viewed below, of the 3-connected components and show how any graph can be de- 
composed uniquely into a tree of 3-connected components. In the same paper, they 
also give a linear time algorithm for finding the tree of 3-connected components. Un- 
fortunately, it is a highly sequential algorithm. A related distinct question is finding 
the maximal subsets of vertices of size greater than or equal to 2 which are pairwise 
3-connected. These subsets shall be called the 3-sets of G. Ja’Ja’ and Simon I181 give 
an algorithm using O(1og n) time and processors for finding these 3-sets. There 
is a unique 3-connected graph associated with each 3-set. The proof and construction 
can be obtained by Lemma 3.1. 

First, we will define the notion of a bridge. Let C C V. Two edges e and e’ of G 
are C-equivalent if there exists a path from e to e‘ avoiding C. The induced graphs 
on the equivalence classes of the C-equivalent edges are called the bridges of C. A 
bridge is trivial if it consists of a single edge. A pair of vertices is a separating pair 
if it has 3 or more bridges or 2 or more nontrivial bridges. A 3-connected separating 
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pair is a pair of vertices which is both 3-connected and a separating pair. 
LEMMA 3.1. If C C V is a 3-set of G, then each bridge of C contains at most 2 

vertices in C. If G is 2-connected, then the bridge contains exactly 2 vertices of C. 
Proof. Suppose that some bridge B of C contains three vertices q , ~ , x 3  in C. 

Let p be a simple path from 2 1  to 2 3  in B. Let pa be a simple path from 2 2  to a 
single vertex, y of p ,  such that p2 - y is disjoint from p .  Let p l , p 3  be the disjoint 
simple subpaths of p from y to 2 1 , 2 3 ,  respectively. Then p l  , p ~ ,  a 3  are disjoint paths 
from y to distinct vertices X I , Z ~ , X ~  of C. It follows that y is bconnected to all the 
elements of C. This contradicts the assumption that C is a (maximal) 3-set. 

Throughout the discussion of the %connected components, we let G be the un- 
derlying graph, which is assumed 2-connected. The tree of bconnected components 
consists of a tree of graphs called components. Two components are adjacent if they 
share an edge. These shared edges will not be edges from G, the original graph, but 
rather, from new edges called virtual edges. There will be exactly two copies of each 
virtual edge. Any vertex may appear in many components. 

First, the graphs that will be the nodes in T will be described. The reader should 
be cautioned that, counter to intuition, the components are not always 3-connected 
graphs and separating pairs. The nodes of T are of three types: proper components, 
cycles, and m-bonds. The m-bonds lie between the components (proper components 
and cycles). They are precisely described below in Fig. 2, where the decomposition 
of a graph into components is shown. Note that the virtual edges are indicated by 
dotted lines. 

0 A proper component C is a simple 3-connected graph. C can be defined in 
terms of G as follows: the vertices of C consist of a 3-set S of size greater 
than or equal to 4 (proper 3-set). Two vertices of C share an edge in C if they 
shared one or more bridges in G. Note that C is simple; it has no multiple 
edges. An edge from 2 to y of C will be an original edge from G if z and y 
share exactly one trivial bridge; otherwise, the edge will be a virtual edge. 

0 A cycle component C is a simple cycle. C can be defined in terms of G as 
.follows: the vertices of C are a maximal subset of the vertices S ,  such that 
the bridges of S in G form a simple cycle of size 3 or more, with possible 
pairs in S containing multiple bridges. As in the case of proper components, 
a unique trivial bridge e of S becomes an edge of C; otherwise, a virtual edge 
is formed. 

0 An m-bond component C is a graph on two vertices sharing two or more 
edges. C can be defined in terms of G as follows: x and y are the vertices 
of C if they are 3-connected and separating. There is one edge in C for each 
bridge of {qy} in G. If the bridge is trivial, the original edge in C can 
be used. Otherwise, a virtual edge is used. Note that 2-bonds have been 
introduced between two proper components or a proper component and a 
cycle component, which do not appear in the Hopcroft-Tarjan [16] definition. 

We say a component is associated with another component if the two have a 
nonempty intersection. 

We will now describe a parallel method €or constructing the tree of components 
from the above three types of components. Our idea is to apply Parallel Tree Con- 
traction; chains are not compressed, but, rather, every other component is removed 
from a chain. Since every other component on a path in the tree T is an m-bond, we 
can remove every other component on a chain by eiiminating the proper and the cycle 
components. Thus, proper and cycle components associated with either zero, one, or 

0 
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FIG. 2. The decomposition of a gmph into its lconnected components. 

two other components are removed, as are m-bond components associated with either 
zero or one other component. All these components are removed in unit time except 
for the cycle components, which may take as much as O(1ogn) time; we will show 
how to amortize the cost in such a way that the total time decomposition is still only 
O(1ogn). 

Using the work of Ja’Ja’ and Simon [lS] we compute the bsets and their bridges, 
along with the separating pairs and their bridges, in O(1ogn) time using no(1) pro- 
cessors. Note that they also determine which separating pairs are 3-connected. 

Assume that G is stored in memory as an incidence matrix and that the following 
information is maintained: a list of proper %sets; a list of %connected separating pairs; 
a forest indicating which 3-connected separating pairs are contained in which proper 
%sets; and, for each 3-connected separating pair {z, y}, a list of edges associated with 
it, partitioned according to which bridge of {qy} they belong. An edge e from z to 
y is free if x and y are not 3-connected. Note that the free edges will belong to the 
cycle components. A list of free edges is also maintained. 

Let T be the tree of components of G. As components are removed from G, 
G will no longer be connected. Therefore, intuitively, G should be a collection of 
2-connected graphs. But for technical reasons, the connected components of G may 
not be 2-connected. This complication will be discussed when the COMPRESS part 
of the algorithm is discussed. 

The discussion will begin with RAKE. Here, one must determine when a compo- 
nent becomes a leaf in T ,  at which time it is removed. Note that a component is a leaf 
if and only if it contains zero or one nontrivial bridge. The case when a component 
has exactly one nontrivial bridge will be discussed first. Note that a leaf component 
is a bridge to its parent. Thus, removing a leaf component decreases the number 
of nontrivial bridges by one. Suppose the component C is an m-bond with vertices 
(2, y}. Using a concurrent write and the fact that we maintain for C a list of all its 
bridges (and whether or not they are trivial), we are able, in unit time, to determine 
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that C is a leaf. To remove C from G, simply remove the trivial bridges of C from 
G, leaving x and y in G and adding to G a new virtual edge from z to y. The data 
structures are also updated as described above. 

Suppose that C is a proper component. It is a leaf when it is associated with 
at most one 3-connected separating pair. Thus, one can test, in unit time, whether 
or not C is a leaf. If C is common to no %connected separating pairs, then simply 
ignore C, and do nothing to G or C. However, C is removed from all the other data 
structures. Suppose that C is common to one pair {z, y}. To remove C from G: (1) 
remove all vertices in C except x and y, (2) remove all edges with both end points in 
C except those between x and y, and (3) add a virtual edge in G from z to y. 

To finish our discussion of RAKE, cycles will be considered. Suppose that C 
is a cycle. Since the vertices on C are unknown, they will be computed “on the 
fly.” Suppose further that (XI, - - , zk) are the vertices of a cycle component C in the 
order in which they appear on the cycle. The component C is a leaf if (1) each pair 
( x i , x i + l )  for 1 5 i < k contains exactly one bridge and that bridge is trivial; and 
(2) the pair ( zk ,x l )  contains at least a trivial bridge. In other words, there exists an 
adjacent pair of vertices {z,y} with a nontrivial bridge that consists of a path. The 
time required to remove each cycle component that is a leaf seems to require time 
logarithmic in the length of the its path to detect. We will show how to amortize this 
cost to achieve an overall time of O(1ogn). The edges (xi,xiS1) for 1 5 i < k form a 
chain of free edges. Our idea is simply to “compress” these chains of free edges either 
by the deterministic or by the randomized methods discussed in {29]. In general, any 
chain can be compressed. Note that a chain of length two may be replaced by a chain 
of length one, which was formally not free, but it shall be considered free anyway. 
In this case, the cycle C has been “compressed” to a cycle of size two, a free edge 
common to a 3-connected separating pair {z, y}, and a virtual edge from x to y. 

Thus, RAKE for cycles consists of compressing chains and removing free edges 
associated with a 3-connected virtual edge, and then replacing them with a new virtual 
edge. Other than this timing analysis, we have described RAKE. 

The COMPRESS operation is very similar to RAKE. Here, each proper and cycle 
component associated with exactly two m-bonds is removed. Suppose that C is a 
proper component associated with 3-connected separating pairs {z, y} and { z ,  w}. If 
2, y, z,  and 20 are distinct, then the construction is very similar to the RAKE case. 
If, on the other hand, y = w, the situation is slightly more complicated, since simply 
removing the edges of C will not separate G. To remove C from G: (1) remove all 
vertices in C except x, y, z ,  and w; (2) remove all edges with both end points in C 
except those between x and y or between z and w; and (3) add a virtual edge in G 
from z to y and one from z to w. 

Suppose C is as described above, except that it is a cycle component. C is 
removed only when it is a four-cycle component for the case when x, y, z,  and w are 
distinct, or a three-cycle component for the case when y = w. 

CONTRACT decomposes G into a tree T of 3-connected components after O(1og n) 
applications. CONTRACT as defined (at least for the sake of analysis) can be viewed 
as simply CONTRACTION on trees of unbounded degree where RAKE is performed 
only by combining consecutive children. A case of CONTRACTION very similar to 
this was analyzed in Theorem 2.10 and shown to require only O(1ogn) steps. 

Thus, G can be decomposed into a tree of 3-connected graphs, simple cycles, and 
m-bonds in O(1ogn) time using processors. This can be stated in the following 
theorem. 
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THEOREM 3.2. The tree of 3-connected components is constmetable an O(1ogn) 
tame, using no(’) processors. 

Note that decomposition has been described only where the graph is 2-connected. 
In general, one must first decompose the graph into a tree of 2-connected components, 
which will consist of isolated vertices and 2-connected graphs. Second, one must 
further decompose a Zconnected graph into a tree of %connected components. 

Ja’Ja’ and Simon [lS] tested whether or not a %connected graph is planar and, 
if it is, it constructs its planar embedding. However, the construction of a planar 
embedding for general planar graphs was an open question. 

The next section shows how to construct the embedding of a planar graph given 
the tree of 3-connected components, and how to construct the embedding of each 
component by viewing it its a tree contraction problem. In this section, we will also 
define what we mean by “oriented embedding,” and will show how to construct planar 
embeddings that will be used in isomorphism testing. 

4. Graph embeddings and some applications. We will use the following 
combinatorid definition of an embedding, which is amenable to implementation on a 
machine. 

DEFINITION 4.1. Let G = (V, E )  be an undirected graph. Two darts, (2, y) and 
(y,~), are associated with each edge, e = {z,y}. The vertex x is the tail and y is 
the head of the dart (2, y). The graph G is oriented by fixing a permutation 4 of the 
darts which sends tails to tails and cyclically permutes darts with the same tail. Let 
R be the permutation of the darts sending (z,y) to its reflection (y,x). A planar 
embedding of G can be specified by an orientation of G. See {26], for example. In 
Fig. 3 we give a small example. 

FIG. 3. A graph with four vertices embedded in the plane. The permutation that determines the 
orientation at the vertices w C#J = (18)(264)(397)(5 lo), d t t e n  in cycle notation. The reflection 
of the edges is R = (1 2)(34)(56)(78)(9 10) and face boundary written as a permutation is 6 = 
(1 6 10 7)(28 3)(4 9 5). 

This definition of a combinatorid embedding is similar to ones described in [lo] 
and is sometimes called an Edmonds embedding; see also (261. The importance of 
this definition of embedding is that it is both very simple to understand and easy 
to represent on a machine. For example, the faces are given by the permutation 
d* = 4 * R. The orbits of 6 are the faces of the embedding. Also note that a 
permutation is stored as an array; thus, most operations on the permutation can be 
performed in constant time using a linear number of processors. 
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Ja’Ja’ and Simon [18] give a parallel algorithm which constructs a planar embed- 
ding of a triconnected planar graph as defined above (note that they call this planar 
mesh embedding. They also construct a straight line embedding, which they call a 
barycentric embedding, which we do not use). 

Using Parallel Free Contraction proves the following theorem. 
THEOREM 4.2. Given the planar embeddings of the 3-connected components of a 

graph G, one can compute a planar embedding of G in O(log2 n) time, using O(lVl) 
processors. 

Proof. As described in Part 1 of this paper [29], Parallel Dee Contraction can be 
run “backwards” in an expansion mode which is called Parallel Tree Expansion. Here 
the 3-connectivity algorithm is run in the expansion mode. Thus, one initially starts 
with a collection of isolated components. The embedding of the isolated graphs is 
simply the embedding of the individual components. The inverse operation to both 
RAKE and COMPRESS, in this case, is simply combining two embedded graphs, T 
and T’, by identifying two copies of a virtual edge {x,y}. The order in which the 
identification is performed is determined by Parallel Tree Contraction. Thus, the only 
procedure that needs to be shown is how to obtain the embedding for the new graph. 
Suppose embeddings of T and T‘ are both common to a virtual edge e = (2, y). Here, 
the cyclic permutation of T at z is combined with the cyclic permutation of T‘ at z, 
which is done by determining a face F of the embedding of T which contains both x 
and y, and then determining a face F‘ of the embedding of T’ which contains both 
x and y. The new cyclic order around z will begin by enumerating the darts of x 
in T as they appear in the embedding of T, starting with the dart in F ,  and then 
enumerating the darts of z in C as they appear in the embedding of T’, starting with 
the dart in F’. At the same time, the cyclic permutations of T are combined at y, 
and the cyclic permutations of T’ are combined at y in the same way (see Fig. 4). 

To see that this construction can be performed in unit time we write out the 
permutation explicitly. Since TI and T2 are disjoint graphs; we view them as having a 
single embedding 4. Let 4* = 4 . R  be its dual. It will suffice to show how to construct 
the dual embedding for the identified graph. For simplicity we leave both copies 
of the virtual edge in the graph and embed them as parallel edges. The parallel edges 
can at a later time be removed. Let el be an arc in TI from z to y and e2 be an arc 
in TZ from y to z. The dual embedding is as defined below: 

. 

if e = e l ,  
if e = e2, 
if 4*(e)  = e l ,  

$*(el)  if +*(el = e2, 
4* ( e )  otherwise. 

0 

This gives the following corollary. 
COROLLARY 4.3. A planar embedding of a planar graph with n vertices is con- 

structible in O(log2n) time, using processors. 

4.1. Canonical forms of oriented graphs. Whitney I391 has shown that every 
3-connected planar graph has exactly two planar embeddings: an embedding 4 and 
its reflection 4-l. Ja’Ja’ and Simon [18] have shown that a planar embedding can 
be constructed in O(log2n) time on a PRAM for a 3-connected planar graph. Any 
isomorphism of a planar 3-connected graph must preserve its planar orientation up to 
reflection. More formally, two oriented graphs, (G, 4) and (G’, 4’), are isomorphic if 
there exists a bijective map f from the darts of G to the darts of G‘ which preserves 



1142 G .  L. MILLER AND J.  H. REIF 

FIG. 4. Combining the embeddings of two components to get a wmmon embedding. 

both adjacency and orientation: R’f = f R and 4’f = j 4 .  Using Whitney’s theorem, 
two 3-connected planar graphs, G‘ and G, are isomorphic if and only if (G’,$’) is 
isomorphic to (G,$) or (G,4-l). 

Note that an isomorphism of one embedded graph onto another embedded graph 
is determined by the image of a single dart. Given a sequence of k numbers, u = 
(u1, - - , uk), and a dart e,  there exists a unique path of length k, e = eo, , ek, 
where ei = q5uZR(ei-l) for 1 5 i 5 k .  Note that the length is the number of vertices 
on the path, and no is the number of edges. Given a path of darts, a unique sequence 
of integers can be constructed by choosing the minimum u, 2 0 such that ei = 
q!JUzR(ei-l). Next, we will show how to compute canonical sequences that will be used 
to compute the canonical forms for embedded graphs. 

THEOREM 4.4. Canonical numbering for oriented graphs is computable in O(log n) 
time, using processors. 

A canonical form M ( e )  for each dart e can be constructed in (G, 4). One simply 
picks the lexicographically least such form. For each dart, e’ # e,  the lexicographically 
least number sequence over the shortest paths from e to e‘ are found. Suppose that the 
graph G has d darts. Consider a d x d matrix where each entry is a number sequence 
or is blank. Here, the basic scalar operations will be Zedcogmphicully minimum and 
concatenation, which replace the operations, + and x. Initially, one starts with 
the matrix containing all paths of length two by storing a sequence of numbers of 
length one. A matrix product over minimum and concatenation can be computed 
in O(1) time using do(’) = processors by Lemma 2.8. Computing O(1ogn) 
iterated powers of this matrix, up to the d power of the original matrix, yields the 
lexicographically minimum of all shortest paths between all pairs of vertices. Thus, a 
canonical matrix M ( e )  is obtained for each dart e in (G, 4). The minimum canonical 
matrix M ( e )  (under lexicographical order) will be a canonical form for the embedded 

Note that there is an isomorphism if and only if the matrices M ( e ) ,  as described 
above, are equal. By also constructing the adjacent matrices for the reflection (G, 4- l )  
and computing the minimum over the larger set of matrices, canonical forms for 
embedded graphs have been constructed up to reflections. Using the additional fact 

graph tGq5). 
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that one can compute a planar embedding for a 3-connected graph in O(log2n) time 
on no(1) PRAM processors, the following theorem is derived from the above. 

THEOREM 4.5. Canonical numbering of 3-connected planar graphs can be done 
in O(log2 n) time using no(’) PRAM processors. 

5. Reducing the problem of finding canonical forms of planar graphs 
to the 3-connected case. In this section we give an O(1ogn) time reduction from 
finding canonical forms for general graphs to that of finding canonical forms for 3- 
connected graphs. 

The term “computing canonical forms” means that an oracle accepts as input a 3- 
connected graph with labels on its darts and vertices and returns an incidence matrix 
unique up to isomorphism; i.e., it returns canonical linear ordering of the vertices. 
We also assume that there is a list of new labels that can be added to the darts or 
vertices. 

By using the methods in the last section, one can find up to isomorphism a unique 
decomposition of a graph into a tree of 3-connected components. In this section, the 3- 
connected components are simply called “components.” Two components are related 
if one identifies either (1) a virtual edge with orientation (a dart) in one with a virtual 
edge with orientation in the other, or (2) a vertex in one with a vertex in the other. We 
will discuss the case where the identifications are edges; i.e., the graph is 2-connected. 
The general case is a straightforward generalization. 

Recall that not all components in a tree of 3-connected components are 3-connect- 
ed; in particular, they can be either a Sconnected graph, a simple cycle, an m-bond, 
or an isolated vertex. Canonical forms for these latter graphs can easily be constructed 
in O(1ogn) time. 

LEMMA 5.1. The canonical form for labeled cycles and m-bonds can be constructed 
in O(log n)  time using no(’) processors. 

A node of maximum height (at the center of the tree) in a tree of %connected 
components can be found in O(1ogn) time by tree contraction, [29]. If the center of 
the tree is an edge, simply introduce a 2-bond, which will become the center of the 
tree, as a new component. Thus, without loss of generality, we may assume that the 
tree is rooted at either a 3-connected component, a virtual edge, or a 2-bond. 

Since the rooted tree of 3-connected components is unique up to isomorphism, the 
vertices shall be ordered into blocks according to the component to which they belong. 
The separating pair is in the same block with the parent component. The blocks are 
ordered in postorder (see 1361). However, the children of a component must first be 
ordered. As in our construction for canonical orderings for regular trees, children will 
be first ordered at the time when labeled. The characteristic that distinguishes this 
from a regular tree case is the fact that the children are coupled to their parent by an 
edge and not a vertex. Thus, more information about the children must be passed to 
the parent. 

Let C be a component and e = ( q y )  be the virtual edge of C common to its 
parent. The edge e is written as two darts d l  and d2 (the reverse of d l ) .  If C is 
a leaf and a proper component, then, by labeling either dl or d2 with a new label, 
one gets two labels, L1 and L2, respectively, for C. Note that L1 = L2 if and only 
if there is an automorphism sending d l  to d2. Thus, RAKE is implemented in a 
Straightforward way: (1) compute the labels L1 and Lz, (2) use the label of each leaf 
C to label the corresponding darts in the parent of C, and (3) remove C. These labels 
for C also give us the ordering of the vertices in C, excluding { q y } .  If L1 > L2, 
then use the ordering from L1; the case is similar if L2 > L1. On the other hand, 
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if they are equal, then both orderings are the same, and it does not matter which 
one is picked. This completes the discussion of RAKE. Note that this computation of 
RAKE can be executed in unit time, given an oracle for generating the labels L1 and 
La. COMPRESS will be discussed next. 

Let C be a component of degree two where darts el and e2 are common to the 
parent and darts dl  and d2 are common to the only child. Using two new labels, L 
and L’, assigning L to either el or e2, and assigning L’ to either dl or d2 yields four 
labelings of C. Use the labeling with maximum value to determine the order of the 
vertices in C, excluding the end vertices of e.  As before, if two labels are equal, then 
C has a symmetry; either order is the same up to isomorphism. This completes our 
discussion of COMPRESS. 

It is important to point out that we have not determined where, in the final 
ordering, a given vertex was mapped, since finding this map was not required. This 
lack of information occurred when one of several orderings for a given component was 
arbitrarily picked in COMPRESS, and when the children of a component were simply 
sorted by label. One can determine up to a permutation of order two the ordering of 
components by using a tree expansion phase 1291. 

To compute the image of each vertex in the new ordering, it will suffice to de- 
termine the orientation induced on the virtual edges by the new ordering; i.e., is a 
given virtual edge left alone or is it reflected in the new ordering? COMPRESS will 
be discussed here (the case of RAKE is very similar). Let C be a component with 
two virtual edges e and d. The possible symmetries consist of reflecting e and inde- 
pendently reflecting d, the Klein 4 group &. The actual symmetries will be one of 
five possible subgroups. Thus, the canonical orderings will be a coset of one of these 
groups. There are thirteen such cosets, which can be determined by using a parallel 
call to the oracle for proper components (by applying Theorem 4.4) or which can be 
determined directly for cycles or m-bonds (by applying Lemma 5.1). 

To implement COMPRESS, one need only compute the coset of canonical order- 
ings for a consecutive pair of components from the coset of canonical orderings for 
each component. Let C and C’ be two consecutive components of degree two with 
virtiial edges, d, e, and f, respectively. Further, let A and B be the cosets of canonical 
ordcrings of C and C’, respectively. Note that A acts on { d ,  e }  and B acts on { e ,  f}; 
onc wants to return an appropriate coset acting on { d ,  f}. If the natural interscctiori 
is not empty, it will be returned as the coset of the canonical ordering for C and C’. 
It will be empty when A and B fix e in opposite orientations. In this case, the cosct 
of the canonical orderings for C and C’ consists of a cross-product pair. On(. it& OII 

d according to A and acts on f according to B. Thus, a method for roinpiitiiig tlici 
coset of canonical orderings for the virtual edges of C U C’ has been prcscntcd which 
uses O(1ogn) time and no(1) processors. 

In summary, the CONTRACTION phase consists of the followiiig stcys: 

determine the coset of canonical orderings on their virtiial ctlgcs. 
1. Compute the canonical labels for all components with dcgrcc onc or two and 

2. For leaves, pass the canonical label to the parent. 
3. For chains, combine pairs of components as descrilwd al)ovc, coniputing both 

canonical labels and cosets of canonical orderings. 
Note that there will be missing cosets when we cxc~ciit.~~ c h i n  contraction. After 

the tree of components has been reduced to a single coniponcnt, we perform a tree 
expansion phase as described in 1291 to compute the missing cosets from this further 
information obtained. Each step can be executed in unit time and thus, by the analysis 
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in [29], the total time is O(1ogn). 
We have just given an O(1ogn) time reduction from finding canonical forms for 

general graphs to that of canonical forms for 3-connected components. 
O(log2n) time, no(’) processor algorithms used for finding canonical forms for 

%connected graphs have already been presented. This reduction implies an O(10g3 n) 
time, no@) processor algorithm that can be used to compute canonical forms for all 
planar graphs. We summarize our results as a theorem. 

THEOREM 5.2. The problem “Computing canonical forms for a general graph” 
is O(1og n) time wing no(1) processors ducible to the problem “computing canonical 
forms for its 3-connected components.” 

6. Conclusion. Since the original writing of this paper, many other applications 
of ParaZZel T h  Contraction have been found. Similarly, many extensions, improve- 
ments, and simplifications of the work in this paper have been found. The basic 
parallel tree contraction can now be done on an EREW PRAM in O(1og n) determin- 
istic time using nllogn processors, 191, [Zl] ,  [13], [l]. All of these algorithms use the 
fact that list-ranking can be performed optimally in deterministic time O(1ogn) on 
an EREW PRAM, [3], 191. Very simple randomized algorithms for the list-ranking 
problem are also known, [5]. Parallel k Contraction can be performed optimally by 
a randomized algorithm on a parallel model that is more restrictive than an EREW 
PRAM [4]. 

In this paper, we restricted our attention to maximal subtree isomorphism. The 
more general problem for determining if one tree is a subtree of another was first 
addressed by Matula [22], who gave a polynomial-time algorithm for the problem. A 
randomized NC algorithm for this problem was given in [14] using the parallel tree 
contraction technique. 

PTC has also been used for efficient parallel evaluation of arithmetic circuits. 
Prior to the parallel tree contraction technique, the best algorithms for the circuit 
problem used divideand-conquer, [37]. Using PTC, one can evaluate circuits on-line 
in the same time and size as [37] achieved off-line [28], [23]. 

PTC can be used to design efficient parallel algorithms for problems where the 
tree is known only implicitly. Examples of such problems occur in the context-free 
language parsing, constructing Huffman codes, and optimal binary search trees. See 
I331 for an example of a divide-and-conquer algorithm for such problems and see [6] 
for a PTC-based approach. 

Other applications include: testing triconnectivity of a graph [27], 1111; testing 
graph planarity [19]; finding separator for planar graphs [25], [12]; and finding algo- 
rithms for reducible flow graphs “1. 

This is not an exhaustive list, and we apologize for the works which we have 
neglected to reference. 
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