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Summary

The topic of Partial Differential Equations (PDEs) is an interesting area where the
techniques of discrete mathematics and combinatorial algorithms can be brought
together to solve problems which would normally be considered more properly in the
domain of continuous mathematics. We‘investigate the bit-complexity of discrete solu-
tions to linear PDEs. We show that for a large class of PDEs, the solution of an N point
discretization can be compressed to only a constant number of bits per discretization
point, without loss of information or introducing errors beyond discretization error. We
show that the bit-complexity of the compressed solution is O(N) for both storage space
and the total number of operations. We also show that we can compute the compressed
solution by a parallel algorithm using O(log N) time and N/log N bit-serial processors,
provided that all the coefficients of the PDE are bounded integers of the magnitude
O(1). The best previous bounds on the bit-complexity (for both sequential time and
storage space) were at least N log N; furthermore, an order of N log N bit-serial proces-
sors were required to support the O(log N) parallel time in the known algorithms. We

believe this is the first case where a linear or algebraic system can be provably
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compressed (i.e., the bit-complexity of storage of the compressed solution is less than the
solution size) and also the first case where the use of data compression provably speeds

up the time to solve the system (in the compressed form).
1. Introduction

1.1 Motivation

An important area of computation (though not often investigated by theoretical
computer scientists) is the approximate solution of partial differential equations (PDEs).
Conventional discrete approximations of a PDE reduces it to the solution of sparse linear
algebraic systems of equations, which approximate to the actual solution to the PDE.
Of course, the amount of the discretization will affect the accuracy of the approximation,
In general, in the well-posed systems, if N discrete approximation points have been
chosen over a regular (two or three dimensional) grid, and if the PDE is linear with con-
stant coefficients, then the solution to the linear algebraic systems frequently approxi-
mates to the solution of the PDE with an error of the order of N8, for some constant
g>0. Thus, this approximation solution gives, at each discretization point, the first
O(log N) bits of the actual value of the solution to the PDE. Such discretization errors
have been very well studied by numerical analysts. This analysis work began in
[Courant, Friedrichs, Lewy, 1928] and culminated in the 70, e.g. in [Strang and Fix,
1973]. The high accuracy solution of large 2- and 3-dimensional PDEs requires the
number of discretization points N to grow very large. The computation is often more
limited by the storage constraints than by the time constraints (particularly, if it is
desired to store the solution in the primary storage memory, without the use of the
much slower secondary storage of the conventional machines). It is therefore important
to investigate methods that substantially reduce this storage, by compressing the data in
the solution. As we will see, this is indeed possible in some important cases and is a

surprisingly fundamental property of PDEs.



1.2 The Bit-Complexity Model

Certain sequential machines (such as CRAY) were specifically designed to solve
these large linear systems; their processor has the ability to do sequential arithmetic
operations very quickly and also has a relatively large amount of primary storage. For
such a machine, the arithmetic complexity model has generally been considered to be
appropriate. However, a machine such as CRAY is capable of performing a bit-vector
operation in one parallel step (for example, it may perform AND, OR or NOT operations
on hundreds of bits), so that the parallel bit-complexity of such machines can also be of

interest.

On the other hand, fine grained massively parallel machines (such as the CONNEC-
TION machine) have been designed with large numbers of bit-serial processors (requiring
relatively long time to execute an arithmetic operation) with very limited memory, which
is generally accessed bit-serially. A complexity model for parallel algorithms must take
mto account both the bit-serial nature of the processors and the limited memory con-
straints; in particular we feel that the parallel complexity is most reasonably measured
by the bit-complexity. In this model, we assume that each memory cell holds only one

bit, and each processor can do a single bit-operation per step.

1.3 Previous Solutions of PDEs

The solution of the linear algebraic systems approximating PDEs can be computed
by means of a number of well known and now classical algorithms. For example, for a
large class of PDEs, we may apply standard linearly convergent iterative solution algo-
rithms, such as Gauss-Siedel’s, and find the solutions to the auxiliary linear systems up
to the maximum accuracy of O(log N) bits at N points in O(log N) iterations, using N
processors. However, each such an iteration generally requires an arithmetic operation
over the O(log N)-bit numbers and hence requires at least O(log N) bit-operations per
point. Thus the total work is O(N log N) arithmetic operations or O(N lo/gQN) bit-

operations. Various multigrid methods were first proposed by Fedorenko and Bakhvalov
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n the 1960’s, and then by Astrakhantzev and Brandt in the early 1970’s for the solution
of these linear systems approximating PDEs (see [Astrakhantzev 71], [Bakhvalov 66],
[Fedorenko 64] and [Brandt 72, 77 and 84]). In [Brandt 77], it was claimed that these
multigrid methods required only O(N) arithmetic operations; this was rigorously proved
in [Bank, Dupont 81] (also, see [Hackbusch 77, 82 and 85], [McCormick 86] and [McCor-
mick, Trottenberg 83]). (Actually, the multigrid methods are effective even in many
cases where the classical iterative algorithms converge too slowly.) The works of [Brandt
80|, [Frederickson, McBryan 87], [Chan, Saad, Schultz 86], [McBryan, Van de Velde 85,
86] all describe parallel algorithms that take O(log N) arithmetic steps using N proces-
sors, and thus use an order of N log N arithmetic operations, which is off by a factor of
log N from the optimum. It follows that the known multigrid methods require a total of
O(N log N) bit-operations, and at least an order N log N bit-serial processors to support
an order of log N time. The bit-operation bound appears to be optimal since the binary

representation of the solution occupies a total of an order of N log N bits.

1.4 Our Results

Our main goal is a rigorous study of the bit-complexity of these linear algebraic
systems approximating linear PDEs. In spite of the lack of theoretical investigation into
this area, we feel that the problems are fundamental in nature. In this paper we con-
sider a class of what we call pseudo regular PDEs, which includes a large class of well-
posed linear PDEs with constant coefficients (see the formal definitions in Section 2).

We show some surprising properties of the linear algebraic systems approximating to

such PDEs:

(1) their solutions can be significantly compressed to O(1) bits per solution point
(which, by the factor of log N, improves the previous storage requirements) by
a data structure we call the Compact Multigrid Data Structure. (We do not
know of any previous provable results for data compression of solutions of any

type linear systems or of any other algebraic systems);
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(2) the compressed solutions can be very efficiently computed (both sequentially
and in parallel) by an algorithm which we also call Compact Multigrid. The
bit-complexity of ouf compressed solution algorithms is O(log N) time, N /log
N bit-serial processors and a total of O(N) bit-operations, which is optimum
since the size of the compressed solution is of the order of N. This is by the
factor of log N improvement of the bounds on both sequential time and
storage space of the known algorithms and by the factor of log?N decrease of

the number of bit-serial processors supporting O(log N) time.

Note that already the log N factor is significant for even relatively small problems;
for example, this factor is 10 or more for problems of size N > 1000, such as the 3-
dimensional grid of size 10 x 10 x 10.

A bit-serial data communication required by our compact multigrid algorithm hap-
pens to be what is known as a pyramid network, consisting of a sequence of grids
Lo, Ly,..., L, where the grid L; has 24 points and where each node of the i~th grid is
connected to its 2d neighbors in the current grid and also to the corresponding nodes of
the (i+1)-th and (i-1)-th grids. It is well known that such a pyramid network can be
compactly mapped to a hypercube network with the same number of nodes (within the
factor of 2) such that each edge of the pyramid has a corresponding edge of a hypercube;
therefore, our compact multigrid algorithm can be efficiently implemented on a hyper-

cube network with the same complexity (within a factor of 2).

The restrictions needed for the property (1) to hold are the mild and customary
bounds (2.3), (2.4) below on the discretization and extrapolation errors of the PDE; we
call them the weak pseudo regularity assumptions, but even the strong pseudo regularity
assumptions, required for the property (2) to hold, are still satisfied for a large class of
linear PDEs. Specifically, the strong pseudo regularity includes the requirement that an
iterative algorithm (such as multigrid or SSOR) for solving the auxiliary linear systems

over all the grids use a constant number of steps on each grid in order to decrease the
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approximation error norms linearly with the same rate for all the grids, and we also

require that the linear PDEs have constant coefficients.

Given an N point solution, the compression can be done in O(log N) time using N
bit-serial processors, for a total of O(N log N) amount of work, which is optimal since
the input solution is of size O(N log N). A very simple decompression algorithm requires
only O(log N) sequential bit-operations to access the full precision (of O(log N) bits) solu-

tion value at any discretization point.

The compressed optimum solution can be stored and can be decompressed only
when its values need to be output. In many practical applications, the solutions need
not be decompressed. For example, in the solution of the time dependent PDEs, the
most customary solution methods perform at a discrete sequence of, say, T time steps.
In each time step, a PDE is approximately solved, using an N point discretization of the
PDE fixed at that time value and using the approximate solution at the previous time
step (in the compressed form) as an initial approximation to the current solution. Thus
the solutions at these time steps need not be decompressed, except for the solution at
the final time step. Our total bit-complexity in this case, including decompression of the
final solution and T calls for compacf multigrid, would be O(N(T + log N)) bit-
operations (requiring O(T log N + log®N) time using N/log N bit-serial processors). Here
we need the strong pseudo regularity and, in particular, the linear convergence assump-

tion; if it holds initially, we shall preserve it by using sufficiently small time steps.

1.5 Organization of Paper

We will specify our compression techniques for PDEs in sections 2 through 5. We
will simplify our presentation, assuming, in particular, the simple lattice grids, although
our results hold for more general discretization sets. In section 6 we specify some further
extensions of our results, in particular, to more general discretization sets. In Appendix
A we add a method for saving the storage space in the parallel solution of a general

well-conditioned algebraic linear system.
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2. Some Definitions and Assumptions

To simplify our presentation, we will study the linear PDEs on the unit d-
dimensional cube, discretized over a family of d-dimensional lattices Lo, Ly, . .., Ly,
where each point of L; lies at the distance hy = 27 from its 2d nearest neighbors, so that
there are exactly | L;| = N; = 291 points in L; for j = 0,1,....k, and the overall number
of points equals Ny = N = 29 where k — (logoN)/ d, provided that we identify the
boundary points whose coordinates only differ by 0 or 1 from each other. (On the actual
discretization grids for PDEs, all the boundary points are distinct, and so the grids con-

tain slightly more than Nj points.)

Let u(x) for j = 1,2,...,k denote the solution to the PDE, and let uj(x) denote the

solution to

Djuj(x) = b;, x € L;, (2.1)
which is the linear system of the difference equations generated by the discretization of
the PDE over the lattice L;, respectively, so that Aj(x) = u(x) - yj(x) for x € L; denotes
the discretization error function on Lj for j =1,...k. Let ug(x) = 0, and let {i;_4(x) for
J=1,2,...k denote an extrapolation of 4;4(x) from Li to L;, obtained, say, by averag-
ing the values of uj,(x) at the appropriate points y of Lj; lying near x. (More cus-
tomary names in the multigrid literature are prolongation and interpolation for what we

call extrapolation and averaging.) Then

uj(x) == ﬁj_]_(x) + ej(X), X € Lj, j == 1,...,k, (22)
where e;(x) denotes the extrapolation error on L;.
We will assume that the discretization and extrapolation errors satisfy the two fol-

lowing bounds, which we will call the assumptions of the weak pseudo regularity of the

PDE:

| Ayx) | <29, (2:3)
lex) | < 20 (2.4)
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for x € L;, j = 1,..., k, and for fixed ¢ 2 0 and o > 1. The assumption (2.3) holds for a
wide class of PDEs (see, for instance, [Ames, 77|, [Lapidus and Pinder 82]), including the
well posed constant coefficient linear PDEs, as well as many nonlinear PDEs. Such an
assumption is routinely made in the analysis of the multigrid methods (e.g. [Brandt,
72,77, 84], [Bank and Dupont, 81)); in particular, the auxiliary grid problems are said to

be “solved to the level of truncation” defined by (2.3) (see [McCormick, 87], p. 26).

As a part of the weak pseudo regularity assumption, let us further assume that
| uj(x) | <1 for x €L; and for all j and that every ej(x) is represented with (that is,
rounded-off to) o binary bits (digits).

Let us show that the bound (2.3) implies the bound (2.4). First rewrite the bound
(2.3) as follows:

Ai(x;) | < a b, x; member L. 2.5
i i X i

where a and ~ are positive constants, and h; is the length of a side of the mesh L;, so

that h; ;= 2h; for the lattices L; we have chosen. Let
7 < 1, X;_; member L;_; subset Lj, x; member L;, and | XjXj_y | =h;. Then we deduce
from (2.5) that for some ©,0< O <1, Leix) | =1 u(x;)- v (%) | <

u(x;)- u(x5) |+ u(x;)
= u(x) |+ | u(xj)- u(xiy) | < a b+ a %+ | o' (x; + ©h)) | h; < a* hy?, that is,

| ei(x;) | < a'hy” (2.6)
where 2’ — a(1-+(h;y/ b))+ | o’ (xj+6h;) | b < 3a+max | v (x) | b;'7. The bounds
(25) and (2.6) turn into the bounds (23) and (24) if we set
¢ = logpa*, o0 = — o (loggh;)/j.
Remark. We may replace the bounds (2.3), (2.4) and | u(x) | <1 by the bounds

| TAE T <279 [ux) | |, x member L,

| Te | | <279 [ui(x)| |, x member L,

for a fixed victor norm, provided that Aj(x), ¢j(x), u;(x) for x member L; are considered
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as N-dimensional vectors. This modification would not change our resulting estimates

for the complexity of the Compact Multigrid.

In Section 4, we will assume the pseudo regularity, which means the weak pseudo
regularity together with the assumption that the extrapolation from L;; to L; only
requires O(1) time using Nj bit-serial processors (which is the case for the extrapolation
by averaging).

In Section 5, we will assume the sirong pseudo regularity, that is, in addition to the

pseudo regularity, we will assume that

1)  a fixed iterative algorithm (such as Jacobi, Gauss-Seidel, SSOR or a multigrid
algorithm) for linear systems with matrices D; uses O(1) multiplications of
submatrices of D; by vectors for every j, in order to linearly decrease, by the
factor independent of j and N, the norm of the error of the approximation to

the solution uj(x) of the system (2.1);

2) the entries of the matrices Dj for all j, as well as the components of b;, are

integers having magnitudes O(1), which holds if we consider the constant

coefficient PDEs.

3. Compression of the Output Data

Now assume the weak pseudo regularity relations and compress approximations to
all the N values of uy(x) on Ly within absolute errors of at most 2°%k, 50 as to economize

on the storage space required.

For the straightforward fixed point binary representation of these values of u(x),

we generally need N [ ak—c | binary bits.

As an alternative, let us store uy(x) on Ly in the compressed form by recursively
approximating within 2°%~* to the fixed point binary values ej(x) for x € L, j =1,k
The storage space of 29[ a-c]+ oNg+Ng+..+Ny) < 28 [a—¢c ] + 2aN = O(N)

binary bits suffices for this compressed information, which means saving roughly the
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factor of k = log,N binary bits against the straightforward representation.

It is convenient to assume the fixed point binary representation in order to estimate
and to compare the numbers of binary bits used in both representations of the output,
but shifting to the floating point representation would not actually require to increase

these estimates.

4. Recovery of the Output from the Compressed Data

In this section, we will assume the pseudo regularity. To recover uy(x) on Ly from
the compressed information given by e(x) on L; for j = 1,... .k, we start with yg(x) =0
for x € Ly and recursively, for j = 1,...,k, compute the values

a) Gj_4(x) on L;, by extrapolation of u;_y(x) from L;_; to L;, and then
b) uj(x) on L;, by applying the equations (2.2).

Both stages a) and b) are performed within the precision 2°°%~% so that the stage
b) amounts to appending o binary bits of ej(x) to the available string of binary bits in
the fixed point binary representation of ;_y(x) for each x € L;, and the stage a) amounts
to scanning the values of u;_(x) on L1 and to summation of few A-bit binary numbers
(where, say 8 = O(a)) defined by the B least significant binary bits in the representation

of u;_y(x) for appropriate x from L; ;. Since E N; == O(N), the computational complexity
j

estimates for stages a) and b) stay within the bounds stated in the introduction.

5. Computing the Compressed Solution by Compact Multigrid.

In this section, we will assume the strong pseudo regularity of the PDE. The time
complexity of computing the compressed data structure is dominated by the time
required to obtain the solutions ej(x) to the linear systems of equations over L; for

i=1,.k:

Diej(x) = 1j(x), x €Ly, (5.1)



- 11 -
where

rj(x) = b; - Djli(x), x € L;, (5.2)
and the matrices D; and the vector b; are from the linear systems (2.1).

We will follow the routine of multigrid methods (cf. [Frederickson, McBryan, 87])
and will evaluate the vectors ej recursively for j = 1,...k. Initially, we let ug(x) =0,
and at stage j, we successively compute:

a) 1 4(x) (by extrapolation of u;_5(x) from Ly ; to L),

b) rj(x) (by using the equations (5.2)),

¢) ex) (by solving the linear system (5.1)“to the level of truncation”),
d) uj(x) (by using the equations (2.2), as in section 4).

We may then restrict Ui 1(x) to uy(x) for j=k-1, k-2, ..., 2 (at this stage we do not
use smoothing iterations) and then recursively repeat such a V-cycle.

Part 1) of the strong pseudo regularity assumption means that the errors of the
approximations to uj(x) decrease by a constant factor independent of j and N when
stages a)-d) are repeated once for all j even if only O(1) iteration steps are used at stage
¢) for solving linear systems (5.1) for every j. Such convergence results have been proven
for the customary multigrid algorithms applied to a wide class of PDEs (see [Bank,
Dupont 81], [Hackbusch 77, 82 and 85|, [McCormick 86], [McCormick, Trottenberg 83],
[Frederickson, McBryan 87a)).

Let us estimate the time complexity of these computations, dominated by the time

needed for solving the linear systems (5.1).

The size | L;| = 2% of the linear system (5.1) increases by 2¢ times as j grows by
1. Even if we assume that the solution time for the system (5.1) is linear in |L;|, the
overall solution time for all the k such systems in terms of the number of arithmetic
operations involved is less than 1/(1-27%) times the solution time for the single system

(2.1) for j = k, which gives us the uncompressed output values uy(x) for x € Ly. The
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bit-operation count is even more favorable to the solution of the systems (5.1) for all j,
as opposed to the single system (2.1) for j = k, because the output values &;(x), satisfy-

ing the systems (5.1), are sought with the lower precision of & binary bits.

Furthermore, we solve the linear systems (5.1) by iterative methods where each step
is essentially reduced to a constant number (say, one or two) multiplications of a matrix
D; or its submatrices by vectors. Due to the linear convergence assumption we made, a
constant number of iterations suffices at each step j in order to compute the o desired
binary bits of ¢;(x).

The computational cost of multiplication of D; by a vector is O(Nj) arithmetic
operations for a sparse and structured discretization matrix D; (having O(1) nonzero
entries in each row). Moreover, parallel acceleration to the parallel time bound O(1) is
possible using N; processors (for we deal with a matrix-by-vector multiplications, and the

matrix has O(1) nonzero entries per row). Thus we arrive at Proposition 1, whose pro-

cessor bound follows similarly to the proof of Proposition 2 below.

Proposition 1. O(log N) parallel arithmetic steps and N/ log N processors suffice to
compute e;(x) for all j, that is, to compute the smooth compressed solution to a strongly

regular PDE discretized over the lattice Ly.

Furthermore, we only need O(1) binary bits in order to represent e;(x) for every j.
Since D; has only O(1) nonzero entries per row and since these entries are integers hav-
ing magnitudes O(1), it suffices to use O(1) bits to represent 1(x). Thus, we will perform

all the arithmetic operations with O(1)~bit operands and will arrive at Proposition 2.

Proposition 2. O(log N) steps, N/ log N processors and O(N) storage space under the
Boolean model of computation suffice in order to compute the compressed solution to a

strongly pseudo regular PDE by using the Compact Multigrid algorithm.
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Proof. As described above, our algorithm has stages j=1, ..... , k = (log N)/d, where at
stage j we require O(1) time for each of the N; = 2% bit-serial processors. Thus our
parallel algorithm (if naively implemented), appears to take O(log N) time using N bit-
serial processors. However, the first (log N)/d - log log N stages only require N/ log N
bit-serial  processors. Thus, at each of the last loglog N  stages
j=(log N)/d-log log N+1,...(log N)/d, we will slow down the computation to the time

dj
O(“)TgN), using only N/ log N bit-serial processors. The overall time of our resulting

parallel algorithm is then still O(log N).

6. Extensions of the Results. Our results can be immediately extended to the case of
more general sequences of the sets So, Sy;..., S of the discretization of the PDEs, pro-
vided that each set S; consists of cjaj points (where 0 < ¢ < ¢ < ¢t o> 1,¢ ¢ and o
are constants), and that the pseudo regularity assumptions are respectively extended to
the case of the sets Sj. We also need to assume a constant degree bound 2d for all the
discretization points, that is, each of thém is supposed to have at most 2d neighbors:

this will imply that each equation of the associated linear algebraic system has at most

2d+1 nonzero coefficients.

Finally, the presented approach can be further extended to some nonlinear PDEs,
as long as our assumptions (such as (2.3) and (2.4)) hold and as long as dealing with non-
linear systems of difference equations replacing the linear systems (2.1) remains relatively

inexpensive.
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Appendix A. Space Efficient Parallel Solution of a Well-Conditioned

Linear Algebraic System of Equations



In this appendix, we will give a space efficient methodology (but not a data
compression technique), which we also suggest for reducing local storage in parallel solu-
tion of a general well-conditioned linear algebraic system of equations. The idea is to
subdivide the original problem into the problem of parallel solution of several linear sys-
tems, with a substantial decrease of temporary storage space for the transition to each of

the new linear systems.

Formally, we will proceed as follows. Given a nonsingular linear system of equa-

tions

Ax = b, (A1)
where the components of the vector b are numbers between —1 and 1 having ag binary

bits in their fixed point representation, we will subdivide each such a component into g

g
segments of a-bit binary numbers and represent b as the sum b — 3 b; where com-
i=1

ponent j of the vector b; for every j is defined by the i-th segment of the respective com-
ponent j of b. Denote 8= o — [ logscond A ], cond A = | [A]] | A,

Xj = A_lbi (A2)
and let x;” be the (hi)-bit approximation to x; within absolute error 277! in each com-

ponent. According to the well-known error estimate,

i i
L lx= 2501/ 1 1=l 1 <(1Ib=Xbil ] /[ 1b||)condA
=1 j=1
(see [Atkinson 78], [Golub and van Loan 83]), and it follows that

d
| 1x-2x"| | <27
i=1

Thus, we reduced the solution of the linear system (A.1) within the error norm 2798
to the solution of g linear systems (A.2) within 27 for i = 1,..., 8. The main advantage
of this reduction is that for the system (A.2) for each i we only need to store the o
binary bits of each component of the input vector b; and £ binary bits of each com-

ponent of the output vector x;", whereas the storage space for the input and output of



the original system (A.1) is by g times greater than that.



