PARALLEL NESTED DISSECTION FOR PATH ALGEBRA COMPUTATIONS

Victor PAN *

John REIF **

Aiken Computation Laboratory, Harvard Universiry, Cambridge, MA 02138, US4

This paper extends the authors’ paralle] nested dissection al

gorithm of [13] originally devised for solving sparse linear systems.

We present a class of new applications of the nested dissection method. this time to path algebra computations {in both cases
of single source and all pair paths), where the path algebra problem is defined by a symmetric matrix 4 whose associated
graph G with n vertices is planar. We substantially improve the known algorithms for path algebra problems of that general
class: this has further applications 1o maximum flow and minimum cut problems in an undirected planar network and 1o the
feasibility testing of a multicommodity flow in a planar nerwork.

graph computations = path algebras = parallel algorithms + network flow

1. Introduction

In this paper we substantially improve the
known paralle] algorithms for several probiems of
practical interest which can be reduced to path
algebra computations. Gondran and Minoux [4.
pp. 41-42. 75-81] list the applications of path
algebras to the problems of: vehicle routing, in-
vestment and stock control, dynamic program-
ming with discrete states and discrete time, nei-
work optimization, artificial intelligence and pat-
tern recognition, labyrinths and mathematical
games. encoding and decoding of information:
compare also Lawler [8], Tarjan [17,18]. [4, pp.
84-102] thoroughly investigates general al-
gorithms for such problems based on matrix oper-
ations in dioids, see next sections. We propose a
substantial improvement of these general al-
gorithms in the important case where the input
matrix A is associated with an undirected planar
graph or. more generally. with a graph from the

* Supported by NSF Grant DCR-8507573.
=* Supported by Office of Naval Research Contract NOOG14-
80-C-0647 and by NSF Grant DCR-850351.

Preprint of paper appearing in Operations Research Letters, vol.
, October 1986, pp. 177-184.

5, No.

class of graphs having small separator families:
see Definition 2 of Section 4 and compare Lipton,
Rose and Tarjan [10], Pan and Reif {13.15). Our
improvement relies on our extension of the nested
dissection paralle! algorithm of [13] to path alge-
bra problems (originally the algorithm was applied
in [13] to linear systems of eguations to extend the
sequential algorithm of [10] for the same problem:;
then, in [15], the algorithm was extended to the
least-squares and linear programming computa-
tions). Our new extension is somewhat surprising
because the divisions and subtractions of the origi-
nal algorithm of [13] are not generally allowed in
the dioid; furthermore for that reason we can
extend (to dioids) neither the special recursive
factorization of the input matrix A from [13] nor
Choleski’s factorization of A from [10], but we do
extend the special recursive factorization of the
mverse matrix 4 ™' of [13] to the similar factoriza-
tion of the quasi-inverse A*. The quasi-inverse 4*
can be a dense matrix, so (unlike [4] and like [13]
and [15]) we avoid explicitly computing A* and
exploit its recursive factorization when we need to
solve the single source path problems.

As in [4], we define the algorithms over dioids

177

Volume 5, Number 4

(semirings); respectively, we estimate the compu-
tational cost in terms of dioid operations. We
assume a customary machine model of parallel
computation, where on every parallel step each
processor performs at most one operation of the
considered class; in our case this means at most
one operation of the dioid. In the major specific
applications to the classes of the problems of
existence, optimization and counting (se¢ the next
section), an operation over a dioid is an addition,
a multiplication or a comparison of two numbers;
the numbers involved in the computation by our
algorithms require about the same precision (num-
ber of binary digits) as the input values.

Table 1 shows our substantial improvement of
" the known algorithms in both sequential and
parallel settings. (In case of parallel algorithms we
assume that G is given with its O(/n)-separator
family.) Further applications lead, in particular,
to computing a maxflow and a mincut in an un-
directed planar network using O(log*n) paral-
" lel steps, n**/log n processors or alternatively
O(log’n) steps, n?/log n processors, versus the
known bounds, O(log?r) and n*, of Johnson and
Venkatesan [6].

The estimates of that table hold in case of
planar graphs and of all graphs having an O(Vn)-
separator family (see definition in Section 4); that
family is assumed given or readily computable. In
some cases (grid graphs) the separator family is
defined immediately. For a planar graph such a
family can be computed in O(n) sequential time
using the algorithm of Lipton and Tagan {9].
O(n) is a minor contribution to the total sequen-
tial computational complexity of the problem, for

which we have the bounds O(n?) (all pairs) and.

. O(n*®) (single source); see Table 1. Thus our
algorithms substantially improve the known
sequential time estimates for the most general
path algebra computations for planar graphs. They
also decrease the bounds on the parallel complex-
ity of such computations provided that the sep-
arator family is available. In many cases several

OPERATIONS RESEARCH LETTERS

October 1986

computations must be performed for the same
graph G, having variable edge weights; then one
may precompute an O(Vn)-separator family of G,
provided that there exists such a family. (In case
of a planar graph that preconditioning can be
reduced to the breadth first search (Miller [11]).)
Whenever an O(Yn)-separator family of G has
been precomputed. we may apply parallel al-
gorithms to solve general path algebra problems
using polylogarithmic time and having processor
bounds less than the sequential time bound; see
Table 1.

In particular all the bounds of the table can be
applied to the shortest path computation in an
undirected planar graph (network) G. This does

not improve the known sequential time bounds for -

that specific problem, O(n‘/'iog n) (single source)
and O(n?) (all pairs) (Fredericson [3]). However,
our parallel complexity bounds, O(log3n) parallel
steps and n'®/log n processors (single source
shortest paths) and n2/log n processors (all pair
shortest paths). substantially improve the known
estimates (so far the polylog time parallel al-
gorithms for both problems of all pair shortest
paths and single source shortest paths in planar
graphs require n® processors, as in the general
paths computation; compare Table 1). Further-

more. our parallel algorithms for shortest paths in_

planar graphs, combined with the results of Klein
and Reif [7] lead 10 2 new parallel algorithm for
the evaluation of 2 maximum flow and a mini-
mum cut in G using O(log*n) steps and n'>/log n
processors or alternatively O(log 3n) steps and
n?/log n processors, to compare with the previous
bounds of O(log>n) steps, n* processors (Johnson
and Venkatesan [6]). Further applications can be
obtained, in particular to feasibility testing of a
multicommodity flow in a planar network; see
[14].

In the next section we define dioids and state
some path algebra problems; in Section 3 we
estimate the computational cost of solving those
problems in case of general graphs. (In both Sec-

Table 1
Previous algorithms {4] New algorithms
Sequential Parallel Processors Sequential Parallel Processors
time time time time
Single source o(n?) O(logzn) n? o(n*%) 0(log3n) n""/log n
Al pair o(n®) O(log?n) n’ O(n?) Oglog*n) n*/log n

178

o

-~

Volume 5, Number 4

tions 2 and 3 we follow [4].) In Section 4 we
present our improvement of the known algorithms
for those problems for the graphs having small
separator families. In Section 4 we specify parallel
algorithms for the shortest path problems in an
undirected planar network with the applications
to computing maxflow and mincut in Section 5.

2. Path algebra problems

We start with the special case of the shortest
path problem in a graph G with n vertices defined
by an n X n matrix 4 =[a, ;] of non-negative arc
lengths, where a,; = oo if there is no arc between
the vertices i and j in G. (4 is a symmetric matrix
if G is an undirected graph.) We seek the vector
x=[x(7)] of distances x(i) (the lengths of the
shortest paths) from vertex 1 to all vertices i in G.
This is the single source shortest path problem

(s.s.s.p.p)- The distances satisfy the system, x(1) =
© 0, x(i)= minj(x(j) +a;), i=2,...,n, or equiv-
alently,

x(1) =min(m}'n(x(j) +a,), o),

x(i)=min(min(x(j)+a,,-), °°)’
J

i=2,n.
We substitute @ for min and % for + and
rewrite that system as follows:

x(l)=§x(j)aleaj,®0,

@
x())=Yx(j)*a, @00, i=2,...n,
J

or. in matrix notation, denoting i) =[0, c....,
o},

x=xXA@iV. (1)

Similarly, seeking the matrix X =[x(i, j)] of
distances between all pairs of vertices in G (this is
the all pair shortest path problem, ap.s.p.p.) and
denoting 1 =3}, §, =0, 5,,= 0 if i # j, we arrive
at the following matrix equation:

X=XxA4AeolI. 2)

Restricting (2) to the hth row we arrive at the
ss.s.p.p. of computing the distances from the
vertex h to all vertices in G (for =1 we arrive

OPERATIONS RESEARCH LETTERS

October 1986

back at (1)), so an a.p.s.p.p. can be reduced to n
$.8.5.p.p.’s.

The known algorithms of linear algebra can be
extended to solve the systems (1) and (2); this
turns most of them into known algorithms for the
$.5.5.p.p. and/or the a.p.s.p.p. Here are two exam-
ples.

Algorithm 1. Set x@ = i®); compute x*+1 = x(k)
¥A®i" k=0, 1.... until x**D = y(k). then
output the vector x = x*) satisfying (1).

Algorithm 1 extends Jacobi’s method of linear
algebra and amounts to the algorithm of Bellman
[1] for the s.s.s.p.p.

Algorithm 2. (a) Set A = 4.

() For k=0, 1,...,n—1, compute alk*l=
alflealf! *alll i, j=1,..,n.

(c) Output X = A"'@ I (The matrix X satis-
fies (2).)

Algorithm 2 extends Jordan’s algorithm of lin-
ear algebra and amounts to the algorithm of Floyd
[2] for the a.p.s.p.p.; compare also Algorithm 4 (in
Section 4).

Other problems listed above can be also reduced -
to the linear systems (1) or (2) or to similar
computations. We need to recall the general con-
cept already implicitly used in our reduction of
the s.s.5.p.p. to (1) and of the ap.s.p.p. to (2).

Definition 1. A dioid (sometimes called a semi-
ring) is a set S with two operations, ® and *,
such that for any triplet of elements a, b, c€ S
and for two special elements e (unity) and € (zero)
of §. the following equations hold:

a®b=beacs, (a®b)®c=ao(bdc),
ade=a, '
axbeS. (axb)xc=ax(bxc),
aXe=e¥a=a, a¥Xe=c¥a=c,
ax(boc)=(axb)e(axc),
(boc)*a=(bxa)®(cxa).

In the above reduction of the s.s.s.p.p. to 1)
and of the apsp.p. 1o (2). we used the dioid

where S=RU 0, R being the set of real num-
bers, ® = min, ¥ = +,e=0, e= oc. Generalizing

179

Volume S5, Number 4

(1) and (2) to arbitrary dioids we define that
iV=le,¢,....€], l=[8,j], 5,=e,
§,=c if i#j. (3)

Let us list some classes of path problems, which
can be reduced to solving the systems (1) and (2)
or to some similar matrix operations in ap-
propriate dioids:

(i) existence (problems of connectivity),

(ii) enumeration (elementary paths, multicriteria
problems, generation of regular languages),

(iii) optimization (paths of maximum capacity,
paths with minimum number of arcs, shortest
paths, longest paths, paths of maximum relia-
bility, reliability of a network),

(iv) counting (counting of paths, Markov chains),

(v) optimization and post-optimization (prob-
lems of kth path, n-optimal paths).
Specifically, the class (i) includes the prob-
lems of

(2) the existence of paths having k¥ (or at most
k) arcs (for a given k) between vertices i and
J in a given (di)graph G,

(b) computing the transitive closure of G,

(c) testing G for being strongly connected and
for having circuits.

An appropriate dioid for problems of class (i) is
the Boolean algebra, S= (0,1}, ® =max, % =
min, €=0, e=1, and in the incidence matrix
A=[a;}of G, a;,=1if and only if {i, j} is an
arc of G.

The subclass of shortest path problems in (iii)
includes s.s.s.p.p., a.p.s.p.p. (also in the versions
where the shortest paths are required to have k or
at most k arcs) and testing a graph for having
circuits of negative lengths.

Class (iv) includes counting the numbers of
(a) distinct paths having k (or at most k) arcs

between / and j in G,
(b) all the distinct paths between i and j in G,
(¢) all the circuits in G having a- given number of
arcs.

For that class we choose the dioid where S is
the set of integers, @ =+, % = * (that is, ®
and % are the conventional addition and multipli-
cation, respectively) e=0,e=1; 4 =[q,} a,,=1
if and only if {i, j} is an arc of G; see further
comments in [4, pp. 91, 94-102].

180

OPERATIONS RESEARCH LETTERS

October 1986

3. Computational complexity of path problems for
general graphs

The solution of most of the path problems
listed in the previous section can be reduced to the
evaluation (over the dioid) of the entries of the
matrix A“) (the all pair path problems) or of the
vector bA®) (the single source path problems) for
some positive k, usually for k =n— 1. Here

A(q+l)=A(qleAq+1’ q=0,1,...,

AP =1 (see (3)), 4 is an nXn input matrx,
b=i® is a fixed coordinate vector of dimension
n. Here and hereafter we assume that all computa-
tions, in particular computing matrix sums, prod-
ucts and powers, are performed over the dioid
associated with a given path problem. For every
incidence matrix A of the path problems listed in
the previous section there exists the guasi-inverse
matrix

A* = Lim A9,)

gq—

except for the shortest path and multicriteria
problems where there exist circuits of negative
lengths in G and for counting problems where
there exists a circuit in G. In both latter cases the
existence of such circuits is detected via comput-
ing A* or (1® A)* over the dioids. Hereafter we
will consider the most important case where there
exists A*, the quasi-inverse of 4, and moreover
where

A =4V AD= gD for g>n. (5)

(Our estimates of this section for the cost of the
evaluation of 4* and bA* under (5) can be im-
mediately extended to the case of the evaluation
of 4%, A'D and bA‘? for g+ n—1.) The egs. (5)
arise naturally where 4* is the incidence matrix of
the transitive closure of the graph of A (this is the
case for the existence and connectivity problems).
(5) implies that

A*=]OASGAD --- BA"?
A*=(IoA)Ie A%)(I® 4%)...(18 4%),

k= |log,n}.
Thus k + 1 matrix additions and 2k matrix mult-
plications suffice, which means (4nk —k + 1)n?
operations in the dioid. (The known fast matrix

multiplication algorithms, see Pan [12}; cannot be
generally applied over dioids.) For many dioids

——

Volume 5. Number 4

the operation @ is idempotent, that is, a®a=a
for all a€ S. In that case

n n
A=Y A=Y Ar'/n(n—r)t= (10 A)"
r=0 r=0

=(104)

(where I denotes a sum in the dioid, k = [log,n]),
so A* can be computed (via repeated squaring of
I ® A) using only k — 1 matrix multiplications and
a single addition of the two matrices 4 and I, that
is, using a total of n*(k—1)¥2n—1)+n oper-
ations. It is easy to parallelize these two known
algorithms, which yields rather efficient parallel
scheme, with O((k — 1) log n) steps, |2n/log n]
processors, for the evaluation of 4* where 4 is a
dense matrix. If A4 is sparse, then the above ways
are relatively less effective for the sparsity of A is
not generally preserved during the computation.

Computing b4* (the single source path prob-
lems) can be reduced to n successive postmultipli-
cations of the vectors bL%_ A" by the matrix 4
for k=0, 1,...,n—1 (and to n—1 vector ad-
ditions in the case where the operation ® is not
idempotent in the dioid), that is, to a total of
(2D(A)— n)(n—1) operations in the dioid (or of
2D(AXn—1) operations in the case of non-
idempotent @), provided that the operations in
the dioid are not counted if at least one of the
operands is zero, €. Here D(A) denotes the num-
ber of non-zero entries of 4. This way we exploit
sparsity of 4 to some extent; note, however, that
the above estimates translate into O(n log n)
parallel steps (substantially more than O(log®n)
achievable even in the dense case) and D(A)
processors and that » times more operations and
processors are needed to extend this to computing
A*.

4. Solving path problems for graphs with small
“separators

Definition 2. Compare {10] and [13). G=(V, E)
has an s(n)-separator family if either |V | <n,
(for a constant n,) or deleting some separator set
§ of vertices, such that |S| <s(|V}). partitions
G into two disconnected subgraphs with the vertex
sets ¥, and V,, such that |V |<a|V|,i=1,2 a
is a constant, a < 1, and furthermore each of the

OPERATIONS RESEARCH LETTERS

October 1986

two subgraphs of G defined by the vertex sets
SUV, i=1,2, also has an s(n)-separator family.

The grid graphs on a d-dimensional hypercube
have (n'~1/9).separator families, which are read-
ily available; in particular, square grids have v -
scparator families. An undirected planar graph
has a v8n -separator family, which can be com-
puted in O(n) time [9].

In this section we consider a path problem for
an undirected graph G=(V, E) given together
with its s(n)-separator family, s(n)=n° o < 1. In
that case we may further reduce the computa-
tional cost of computing 4* and b4* using the
nested dissection algorithms of [10] for sequential
computation and of [13] for parallel computation.

The nested dissection algorithms of [10] and
[13] require to invert some auxiliary matrices. The
dioid elements and matrices in dioids may have no
inverses, but we compute quasi-inverses of matrices
over dioids applying the following generalized
Jordan elimination algorithm, which requires only
the operations & and * [4, p. 110].

Algorithm 3 (evaluation of 4*). Set 4% =4, B0
=] and recursively compute A= MIkl4qlk-1]
Bl= MIXIBl—1 for k=1, 2,..., n. Here M¥] js
obtained from the matrix I of (3) by replacing the
(k, k) entry of I by (alk~)* and by replacing
other entries of the kth column of I by the entries
of the vector [alf ™! % (alk~)*] where i, k=
1...., n. Output B!"l,

Algorithm 3 extends the Jordan elimination
scheme for linear systems, avoiding subtractions
and replacing the reciprocals 1/(1—alk~) by
(ali" =

Lemma 1. Let B!") be computed by Algorithm 3.
Then A* = B!,

Lemma 1 is proven in Pan and Reif [14] using
in particular the next simple lemma (which can be
immediately verified; see (4)).

Lemma 2. A* sarisfies (2).
Al"l= Bi"l4 (obvious), therefore 4* = A"l @ 1.

so we may dispense with the evaluation of B4}
and simplify Algorithm 3 as follows.

181

?..

Volume 5, Number 4

Algorithm 4 (evaluation of A4*).
(a) Set A%=4.
(b) For k from 1 to n.

kYl k-1])*
alil=(aff™")",
K o qlk-1 k=1 k k-1
alMl=alk- Ve ali~Vxal}l % aft ™V
foralli, j exceptfori=j=k.

(c) Output A*=Al"l@ .

Algorithm 4 turns into Algorithm 2 of the
Introduction for the dioids where aik'=e: this
includes the dioid associated with the shortest
path problems.

To compute A* = P'43P in parallel, we use
recursive factorization for the matrix A =
(PAPT)*, extending the recursive factorization
from Section 4 of [13] for the inverse Ag!. Here P
is the permutation matrix obtained at the ordering
stage of the nested dissection algorithm of [13]
applied to the input matrix 4. Here and hereafter
W+ and W7 denote the quasi-inverse and the
transpose of a matrix W, respectively; O denotes
the null matrix, filled with the zeros ¢; I denotes
the identity matrices (3) of appropriate sizes. Here

is our recursive factorization, where h=0,1,...,d

-1
X, YT
A,= Y: Z"h . A, =Z,0Y,XYT, (6)
I xxylxr o I (4]
A* = ;
L o) I o Ar llv.xr 1

™

Let us verify that (7) indeed defines A}. Ex-
pand the right side of (7) deleting h and replacing
h+1 by 1 in the subscripts, to simplify the no-
tation,

* sy T4x = xyTys
W X*@ X*YATYX* X*Y A} . (8)
AFYX* Ay
Lemma 3 ({14], compare Remark 2 below). Ler
A=[XY"} and W be defined by (8). Let there exist
the quasi-inverses A, X*. Then WA & I = W.

Lemma 3 implies that W=A4* under (8)
(provided that there exist quasi-inverses AF. X*).
This substantiates the validity of the recursive
factorization (6), (7). (Note that computing a* for
a € S may require more than one operation in a
dioid unless (5) holds; on the other hand, we may

182

OPERATIONS RESEARCH LETTERS

October 1986

compute a* as (e —a)~! in the dioids that have
inverse operations to @ and %.)

Remark 1. The proofs of Lemmas 1 and 3 and
consequently of the validity of Algorithms 3, 4
and of the recursive factorization (6), (7) do not
require to assume (5). It is sufficient to use the
definition (4) of quasi-inverse and to assume the
existence of all the quasi-inverses included in Al-
gorithms 3, 4 and in the recursive factorization (6),

.

Remark 2. The matrix equation (7) can be reduced
to Algorithm 3. Indeed rewrite (7) as follows:

PR b Xyl x o
o Al Y, Xr 1]

Let n=2 and let A, replace 4 in Algorithm 3.
Then Algorithm 3 computes just the latter factori-
zation applied to the 2 X 2 block matrix 4,.

Remark 3. In {4] the fact that the solution X = B!
of (2) equals 4* (see Lemma 1) is stated under the
additional assumption that the preorder relation
in the dioid (a < b if and only if there exists ¢
such that a ® c = b) is the order relation (a<b
and a > b together imply that a = b). Under that
assumption, [4] suggests (with the proof omitted)
that B!"! is the minimum solution. This implies
that B!"1= 4* for A* is easily proven to be the
minimum solution to (2); in Lemma 1 we prove
that B!l = 4* even where the order relation in the
dioid is not assumed.

Remark 4. (6)., (7) generalize the recursive factori-
zation from [13] based on the following factoriza-
tion of A,=PAPT (which itself, however, does
not seem to be extendable to the case of dioids):

X, YT -
Ak=[Y: Zh,,]’ Z,= 4, ,+ 1, XY,

I olfx, o |[r x;'vf
A, = .
Py X IT)lo 4,0 1

Next we estimate the costs of computing bA*
and A*. We proceed similarly to [13], noting that
for some auxiliary s(a*n) X s(a’n) block-matrices
B (where a<1, h=k. k-1,...,0, k= O(log n))
we need to compute B*c. ¢ being a fixed vector. It
is easy to extend the assumed property that A" "

Volume 5, Number 4

=A'? for g > n— 1 to the equations B¢+ 1) = g(@)
for ¢ > s(a*n)— 1. (Indeed, 4 and B are associ-
ated with the path problems of the same kind,
having only different sizes, n and s(a”n), respec-
tively.) For the evaluation of B* given B, we
apply the cited earlier algorithms for the dense
matrix case, using s2(4sk(s)—k(s)+1) oper-
ations in the dioid or O(k(s) log s) steps,
[25%/10g s] processors where k(s)=log,s] -1,
s =s(a"n). Thus we arrive at the favorable com-
plexity bounds of O(log n log2s(n)) parallel steps
and |E|+[5%(n)/log s(n)] processors for com-
puting the recursive factorization 6). (7), and of
O(log n log s(n)) parallel steps and |E|+s%(n)
processors for computing b4* for every b where
the recursive factorization is available. Here | E|
denotes the number of edges of the graph associ-
ated with the matrix A4, |E| = O(n) for planar
graphs. Therefore O(log n log2s(n)) steps suffice
for both single source path problems (where b is
fixed and only the row 44*, but not the whole
matrix A*, must be computed; so |[E|+
[s%(n)/log s(n)] processors suffice) and all pair
path problem (where we compute A* say by
evaluating bA* for all the n coordinate vectors b,
so we use n(|E|[+][s¥(n))/log s(n)]) proces-
sors). Multiplying the bounds for the numbers of
steps and processors together, we obtain sequen-
tial time bounds, which can be slightly reduced
further, to | E| +s3(n) for the single source paths
and to (| E|+5%(n))n for the all pair paths, if we
extend the sequential nested dissection algorithm
of [10] (rather than the parallel algorithm of [13])
to path algebra computations. If s(n)= O(n)
and | E| = O(n), as is the case for planar graphs,
we arrive at the estimates shown in the table in
our summary. In particular this includes the short-
est path computations with some further applica-
tions (see the introduction).

S. Improvement of parallel evaluation of a mini-
mum cut and 2 maximum flow in an undirected
planar network

The best sequential algorithms for computing a
minimum cut and a maximum flow in an undi-
rected planar network N = (G,). (G=(V,E)a
graph. ¢ a set of the edge capagcities), run in
O(n log n) time and exploit the reduction to the

OPERATIONS RESEARCH LETTERS

-

shortest path computations; see [3]), Hassin and -.

October 1986

Johnson [S], Reif [16]. Specifically. [16] presented
O(n log’n) time algorithm for computing a
mincut, [5] extended that algorithm to computing
a maximum flow and [3] improved the time bound
to O(n log n). The previous best parallel polylog
time algorithms [6] for those problems (via a rather
straightforward parallelization of the sequential
scheme) require an order of n* processors. Com-
bining our results for the $.8.5.p.p. in planar graphs
with the results of [7] we arrive at the bounds of
O(log*n) steps and n'*/log n processors or alter-
natively O(log>n) steps and n?/log n processors.

[6] reduces computing a mincut and the value
Unax Of @ maxflow to the following stages (see
[5,6,7,16) for further details):

(1) compute a plane embedding I1 of N, for
the estimated cost of O(log?n) steps, n* proces-
sors,

(2) find the plane dual network D(N); step,
processor bounds are O(log n), n3,

(3) compute the p-path, that is, the shortest
path in the dual between the two faces F, and
F, that adjoin the source s and the sink r of
the primal network; step, processor bounds are
O(log?n), n3,

(4) compute the consistence clockwise order-
ings for the faces on the p path; step, processor
count is O(log n), n?,

(5) compute the F-minimum cut-cycles in
D(N) for every dual vertex Fon the p-ath (that is,
compute the cut-cycles of the minimum length in
D(N) passing through the vertex F); the latter
stage can be reduced to solving the apsp.p. in
the dual network D(N); the cost is O(log’n)
steps, n® processors.)

(6) finally compute the minimum value of the
F-minimum cut-cycles over all the dual vertices F
on the p-path; this gives Usax and a mincut; the
cost is O(log n) steps, n processors.

The recent algorithm of [7] performs the com-
putation at the substage (1) using O(log>n) steps,
n processors; the computation also includes sub-
stages (2) and (4) performed using O(log n) steps,
n processors. Applying our parallel algorithm for
the s.s.5.p.p. at stage (3) and our parallel algorithm
for the apspp. at stage (5), we perform the
computations at those stages in O(log’n) steps
using n'>/log n processors at stage (3) and n/
log n at stage (5). Summarizing we need O(log’n)
steps, n’/log n processors for computing ¢,
and a mincut. Alternatively we may use O(log*n)

183

Volume 5, Number 4

steps and O(n'?/log n) processors at stage (5).
which dominates the total complexity. To arrive at
those bounds, we apply the algorithm of [16],
which performs stage (5) by successively solving
s.s.s.p.p.’s in the dual networks derived from
D(N). This is performed in at most [log,n] sub-

stages; on substage r up to 2’ sss.p.p.’s are
£ g P pP-p

solved in the derived networks having the total
number of edges at most 2| E|+2", r=0, 1,...
Here E is the edge set of the original planar
network, |E|=0(n), 2"<2*8"=2p, so the
total number of edges on each substance is O(n).
Therefore our algorithm for the s.s.s.p.p. enables
us to perform each substage using O(log?n) steps,
n'3/log n processors, so O(log*n) steps,
n'3/log n processors suffice in all substages of
stage (5) and consequently suffice for the entire
computation of v_, and of a mincut.

. When a mincut (passing through a vertex F on
the p-path) and the value v, are known, we may
immediately reduce computing a maxflow to an
s.s.sp.p. in the dual network, following [5}.
(Specifically, this is the s.s.s.p.p. of computing the
shortest distances between F and all other vertices
in the dual network N.) Thus at that final stage
we only need O(log®n) steps, n'*/log n proces-
SOTS.

Acknowledgement

The authors thank Sally Goodall for typing this
paper.
References

[1] R. Bellman, “On a routing problem”, Quart. Appl. Math.
16, 87-90 (1958).

2] R.N. Floyd, “Algorithm 97, shortest path”, Comm. ACM
5, 345 (1962). ,

[3] G.N. Fredericson, “Fast algorithms for shortest paths in

184

OPERATIONS RESEARCH LETTERS

October 1986

planar graphs, with applications”. CSD TR 486, Depart-
ment of Computer Science. Purdue University, West
lafayette, IN, 1984.

[4] M. Gondran and M. Minoux, Graphs and Algorithms,
Wiley-Interscience, New York. 1984.

{5] R. Hassin and D.B. Johnson, “An O(n log?n) aigorithm
for maximum flow in undirected planar networks™, STAM
J. on Computing, forthcoming.

[6] D.B. Johnson and S.W. Venkatesan, “Parallel algorithms
for minimum cuts and maximum flows in planar net-
works”, Proc. 23-rd Ann. IEEE Symp. FOCS, 244-254
(1982).

{7] P. Klein and J. Reif, “An efficient parallel algorithm for
planarity”, Technical Report, Center for Research in
Computer Technology, Aiken Computation Laboratory,
Harvard University, Cambridge, MA and Proc. 27-th Ann.
IEEE Symp. FOCS, Toronto, Oct. 1986.

[8] E.L. Lawler, Combinatiorial Optimization: Networks and
Matroids, Holt, Rinechard and Winston, New York, 1976.

[9] R.). Lipton and RE Tarjan, “A separator theorem for
planar graphs™, SIAM J. Applied Math. 36 (2), 177-189
(1979).

[10] R.J. Lipton, D. Rose and R E. Tarjan, “Generalized nested
dissection™, SIAM J. Numer. Analysis 16 (2), 346-358
(1979).

{11] G. Miller, “Finding simple cycle separator for 2-con-
nected planar graph™, J. Computer & System Science.
forthcoming, _

[12] V. Pan, “How to multiply matrices faster”, Lecture Notes
in Computer Science, Vol. 179, Springer, Berlin, 1984.

[13} V. Pan and J. Reif, “Fast and efficient solution of linear
systems”, Technical .Report TR-02-85, Center for Re-
search in Computer Technology, Aiken Computation
Laboratory, Harvard University, Cambridge, MA, 1985.
Extended abstract in Proé. 17-th Ann. ACM STOC, Provi-
dence, RI. 143-152.

[14} V. Pan and J. Reil. “Extension of the parallel nested
dissection algorithms to path algebra computations™,
Technical Report TR 85-9, Computer Science Depart-
ment. SUNYA, Albany, NY. 1985.

{15] V. Pan and J. Reif, “Efficient sparse linear programming”™.
Technical Report TR-11-85, Center for Research in Com-
puter Technology, Aiken Computation Laboratory.
Harvard University, Cambridge. MA, forthcoming in this
Journal.

[16] J. Reif, “Minimum s — ¢ cut of a planar undirected net-
work in O(n log%(n)) time. SIAM J. Compur. 12 (1),
71-81 (1983).

[17] R.E. Tarjan, “A unified approach to path problems™, J.
ACM 28 (3), 577-593 (1981).

[18] RE Tarjan, “Fast algorithms for solving path problems™,
J. ACM 28 (3), 594-614 (1981).

