Fast and Efficient Solution of Path Algebra Problems
VICTOR PAN*

Computer Science Department, State University of New York at Albany,
Albany, New York 12222

AND
JouN Rerr’

Mathematical Science Research Institute, Berkeley, California 94720; and
Computer Science Department, Duke University,
Durham, North Carolina 27706

This paper extends the author’s parallel nested dissection algorithm (Pan and Reif,
Technical Report 88-18, Computer Science Department, SUNY Albany, 1988} originally
devised for solving sparse linear systems. We present a class of new applications of the nested
dissection method, this time to path algebra computations (in both cases of the single source
path problems and of the all pair path problems), where the path algebra problem is defined
by a symmetric matrix A whose associated undirected graph G has a known family of
separators of small size 5(n) (in many cases of interest, s(n) = O(,/n).) The assumption that G
has known separators is reasonable in a large variety of practical dynamic situations, where G
is fixed and the entries of the matrix 4 associated with the edges of G may vary with the input.
We substantially improve the known algorithms for path algebra problems of this general

class:
Previous estimates
Path Sequential Parallel Precomputed

problem time time Processors separators
Single source on?) O(n) n No
O(I(n) log n) n3/(i(n) log n) Yes
All pairs o(n?) O(n) n? No
O(I(n)logn) n3/(I(n) log n) Yes

* Supported by NSF Grants MCS 8203232 and DCR-8507573.
* This work was supported by Office of Naval Research Contract N00014-80-C-0647 and by NSF
Grant DCR-8503151.

494

Preprint of paper appearing in Journal of Computer and
Systems Sciences, Vol. 38, No. 3, June 1989, pp. 494-510.

SOLUTION OF PATH ALGEBRA PROBLEMS 495

New Algorithms

Path Sequential Parallel Precomputed
problem time time Processors separators
Single source o(n'%) O((log n) \/;) nflog n No
O(1(n)log? n) n'3/(I(n) log n) Yes
All pairs O(n®logn) O((log n) \/r;) n No
O(I(n)log® n) n*/(I(n) log n) Yes

Here we assume that G is given with its O(ﬁ}-separator family. The latter assumption can be
lifted for the sequential time estimates and for O((log n) \/;) parallel time estimates for planar
graphs, because the evaluation of an O(ﬁ)-separator family can be done in O(n) sequential
time (Lipton and Tarjan, SIAM J. Appl. Math. 36, No. 2, (1979), 177-189) or, on PRAM, in
O((log n) \/r;) parallel time with (\/;)ﬂogn processors (Gazit and Miller, manuscript,
Computer Sci. Dept., University of Southern California, 1986), with small overhead constants
in both cases. /(n) denotes parallel time of computing the sum of n values, /(n) = O(log n) for
any EREW PRAM, /(n)=0(1) on a randomized CRCW PRAM. Furthermore using the
randomized algorithm of (Gazit and Miller, in “Proceedings, 28th Annu. IEEE Symp. FOCS,
1987,” pp. 238-248), we may precompute separators of a planar graph using O(log? n) time,
n+ f1** processors for a positive ¢ where fis the number of faces; this is less than the cost of
the subsequent path computation. Moreover, we preserve the above processor bounds but
further decrease the parallel time by a factor of logn (via a modification of our new
algorithms based on pipelining) in the important case of computing the minimum cost paths
in a planar graph. Further applications lead, in particular, to computing a maxflow and a
mincut in an undirected planar network using O((n)log®n) parallel steps, n'*/I(n)logn
processors, versus the known bounds, O(log®n) and n*, of (Johnson, J. ACM 34, No. 4
(1987), 950-967). © 1989 Academic Press, Inc.

1. INTRODUCTION

In this paper we substantially improve the known parallel algorithms for several
problems of practical interest that can be reduced to path algebra computations.
The applications of path algebras include the problems of: vehicle routing,
investment and stock control, dynamic programming with discrete states and
discrete time, network optimization, artificial intelligence and pattern recognition,
labyrinths and mathematical games, encoding and decoding of information, see
Section 2 and also containing some further bibliography. References [24, 25, 6]
present several general sequential algorithms for such problems based on matrix
operations in dioids (semirings); see our next sections. These algorithms, however,
do not seem efficient in the case of sparse input graphs. In the special case of the
shortest path problems there exist even more effective sequential algorithms [4],
but they have been extended neither to the case of general path algebra problems
over dioids nor to the case of parallel computations. We propose a substantial
improvement of these general algorithms in the important case where the input

496 PAN AND REIF

matrix A is associated with a fixed undirected planar graph or, more generally, with
an undirected graph from the class of graphs having known small separator
families, see Definition 2 in Section 3.

Our improvement relies on our extension of the generalized nested dissection
parallel algorithm of [16] to path algebra problems and on a further acceleration
of that algorithm. Originally that parallel algorithm was applied to linear systems of
equations, as an extension of the sequential algorithm of [12] for the same
problem; then, in [17], it was extended to the linear least-squares problem and to
the linear programming problem. In [12] the authors suggested (but apparently
nowhere developed in any detail) the idea of the extension of their generalized
nested dissection algorithm to path algebra computations for sparse graphs.

The extension of the generalized nested dissection algorithm to the case of dioids
was somewhat surprising, because the divisions and subtractions of the original
algorithm of [12] (and also of [16]) were not generally allowed in dioids.

Indeed, the algorithms of [12, 16] rely on factorization of the input matrix 4 (on
the Cholesky factorization in [12] and on a special recursive factorization in [16]).
We cannot extend such factorization to the case of dioids, due to the lack of
subtractions and divisions, but we had extended the special recursive factorization
of the inverse matrix 4~ of [16] to the similar factorization of the quasi-inverse
A*; and this turned out to suffice in many path algebra computations. (The
definition of the quasi-inverse A* generalizes the definition of the inverse matrix
(I—A)~" to the case of dioids.) A* can be computed via repeated squaring of 4 or
of I® A (here and hereafter @ denotes an addition in the dioid, / denotes the
identity matrix); but using the recursive factorization of 4*, we improve even those
simple computations in the case of sparse and well-structured input matrices A.
Generally A* is a dense matrix, even if 4 is sparse, so (unlike [6] and like [12, 16,
17]) we avoid explicitly computing A* and exploit its (recursive) factorization. This
makes the computations particularly effective where we solve the single source path
problems.

We will define the algorithms over dioids (semirings); respectively, we will
estimate the computational cost in terms of dioid operations. We assume a
customary machine model of parallel computation, where in every parallel step
each processor performs at most one operation of the considered class, see [2]; in
our case this means at most one operation of the dioid. In the major specific
applications to the classes of the problems of path existence, optimization, and
counting, an operation over a dioid is an addition, a multiplication, or a com-
parison of two numbers; the numbers involved in the computation by our
algorithms are usually represented with about the same precision (that is, with
about the same number of binary digits) as the input values.

The table in our abstract shows our substantial improvement of the known
algorithms in both sequential and parallel settings. The estimates of that table hold
in the case of general path algebra problems for undirected planar graphs (as well
as for all general undirected graphs) given with their s(n)—separator families where
s(n)=0(\/r;) (the concept of s(n)-separator families will be formally defined in

SOLUTION OF PATH ALGEBRA PROBLEMS 497

Section 3). These estimates can be extended to the case where s(n) is an arbitrary
function, say s(n)=0(n°), o < 1.

The chief assumption that we need in order to support our polygarithmic parallel
time-complexity estimates is that the separator family is assumed given or readily
computable. For a planar graph its 0(\/1_1)-separator family can be computed in O(n)
sequential time [13], or, on PRAM, in O((log n) \/;) parallel time using (\/f;)/log n
processors [5], with small overhead constants in both algorithms [13,5]; or in
O(log? n) time with n+ f'** processors for any positive &, where f is the number of
faces of the graph [5a]. The latter algorithm requires randomization at its auxiliary
stage of computing a maximal independent set; for a grid graph a desired separator
family is immediately available. Similarly we may assume the separator family
preprocessed, say, for several computations for a graph with fixed sets of edges of
variable lengths. The latter assumption is very reasonable in the case of many large-
scale operations research problems, where the underlying graph G is fixed, but the
costs associated with its edges (that is, the entries of the matrix 4) may vary
dynamically with the input. In particular, such a dynamic situation arises in an
important case of a large computer network, where the costs of the links may vary
in time and, moreover, may grow to infinity but where no new links are
dynamically created. Another example is the commodity transportation problems,
where the transportation links are known and fixed but may have dynamically
changing costs. Furthermore these costs may grow so exorbitant that for some of
those links they may be essentially infinite. In both of these examples, it is certainly
useful to preprocess the underlying structure of the network in order to increase the
efficiency of the resulting dynamic algorithm. In particular, in such cases we shall
presume a precomputation stage where we shall find separators for the underlying
graph and for a certain family of its subgraphs. This will lead us to a significant
improvement of the dynamic path algebra computations of concern here.

All our parallel algorithms have polylogarithmic parallel time, that is,
O(I(n) log® n) or O(I(n)log? n), and have processor bounds less than the known
sequential time bounds for the same problems (which places our algorithms in NC,
compare [2]). Here and hereafter /(n) denotes the parallel time required for
computing the sum of n values; I(n)=0(logrn) for any EREW PRAM and
I(n)=0(1) on a randomized CRCW PRAM, see [21].

The bounds of the table in our summary can be applied to the general path
computation in an undirected planar graph (network) G. This does not improve the
known complexity bounds for some specific problems, such as both parallel and
sequential complexity bounds for computing the transitive closure of a graph and
the sequential time bounds of O(n ./logn) (single source) and O(n?) (all pairs)
[4], for the shortest path problems. However, in many other cases we substantially
improve the known estimates. In particular, we use only O(I(n)log®n) parallel
steps and n'*/(I(n)logn) processors in order to solve the single source shortest
path problem or »n?/(I(n)log n) processors in order to solve the all pair shortest
path problem, whereas the known polylogarithmic time parallel algorithms for both

498 PAN AND REIF

all pair shortest path problem and single source shortest path problem in planar
graphs required n® processors, the same number as for the path computation in
general graphs, compare the table in our summary. Furthermore, our parallel
algorithms for the shortest path computations in planar graphs, combined with the
results of [9, 107, lead to a new parallel algorithm for the evaluation of a maximum
flow and a minimum cut in G using O(I(n)log’n) steps and n'*/(I(n)logn)
processors or, alternatively, O(I(n) log? n) steps, (n/log n)* processors, to compare
with the previous bounds of O(log”n) steps, n* processors, [9]. To yield such an
extension to computing maxflow-mincut in a planar undirected network, we need
to use a simple extension of our path algebra results to the case of directed graphs.
(Such an extension may have other applications to maxflow-mincut computation
and may be itself of independent interest.) Several further applications can be
expected; for instance, we may apply our parallel shortest path algorithms to
feasibility testing of a multicommodity flow in a planar network in the case where
all the k source-sink pairs lie on the boundary of the outer face; compare [4, 7, 1417.
In that case the feasibility test based on our parallel shortest path computation and
on the algorithm of [10] for constructing the auxiliary dual graphs, both applied
within the construction of [14], requires only O(I(n)logn) parallel steps and
min{kn'3/(I(n) log n), n*/(I(n) log n)} processors, where k is the number of
commodities. This improves the previously known processor bounds by more than
on the factor of n.

Furthermore, in [19], for a special but important path algebra problem of
computing the minimum cost paths in a (planar) graph, we use pipelining in a non-
trivial way in order to rearrange our original parallel algorithms of [16-18] and to
accelerate the computation by a factor of logs(n) (which means a factor of
alog n+ C for s(n)=Cn°, ¢ =0.5 for planar graphs); simultaneously, we preserve
the original processor bounds (defined up to within a constant factor). This result
also leads to the respective acceleration of parallel computation for mincut and
maxflow and for other related problems.

In the next section we will introduce some preliminary technical definitions
required for our parallel algorithms; in particular, we will define dioids and will
state some path algebra problems; we will also estimate the computational cost of
solving those problems in the case of general graphs. In Section 3 we will consider
those problems for input graphs having small separator families and will present
our main results, that is, our improvements of the known algorithms. Our parallel
algorithms for the shortest path computations are applied to computing maxflow
and mincut in Section 4.

2. PATH ALGEBRA PROBLEMS FOR GENERAL GRAPHS

In this section we will recall some auxiliary results and definitions for path
algebra problems for general graphs. These definitions and results will be essential

SOLUTION OF PATH ALGEBRA PROBLEMS 499

to our later work, but those readers who are already familiar with these technical
definitions and results should proceed to Section 3.

We will start with the special case of the shortest path problem in a graph
G =G(A) with n vertices defined by an »n x n matrix 4= [a;] of nonnegative arc
lengths where a;; = oo if there is no arc between the vertices 7 and j in G. (4 is sym-
metric if G is undirected.) We seek the vector X = [x(i)] of distances x(i) (that is, of
the lengths of shortest paths) from vertex 1 to all vertices 7 in G. This is the single
source shortest path problem (SS). The distances satisfy the following system of
equations, x(1) =0, x(i) =min,(x(j) + a;), i=2, ..., n, or equivalently,

x(1)=min(min (x(j) +a;), 0), x(i) = min(min (x(J) + a;),), =250
J J

We substitute @ for min (a noninvertible operation!) and * for + and rewrite
this system as follows,

x(1)=@ (x(j) *a; ®0), x()=@ (x())*a;@), i=2,.,n

J J
or, in matrix notation, denoting '’ = [0, o0, ...,],
X=x*x A@i". (1)

Here and hereafter we always assume that the operation * preceeds @, unless a
different order is set up by parentheses.

Similarly, seeking the matrix X'=[x(Z, j)] of distances between all pairs of
vertices in G (this is the all pair shortest path problem, AP) and denoting I=[6;],
0,;=0, 6= o0 if i # j, we arrive at the following matrix equation,

X=X+ADL 2)

Restricting (2) to the Ath row we arrive at the SS of computing the distances
from the vertex A to all the vertices in G (for k=1 we again arrive at (1)), so an AP
can be reduced to n SSs.

Some known algorithms of linear algebra can be extended to solve systems (1)
and (2); this may turn them into known combinatorial algorithms for the SS and/or
the AP. Here are two examples [24, 25, 6].

ALGorITHM 1. Set X9 =1"; compute x**V=x*"x A®TY), k=0, 1, .. until
g%+ = g% then output the vector % = x'*’ satisfying (1).

Algorithm 1 extends Jacobi’s method of linear algebra and amounts to the
algorithm of [1] for the SS.

ALGORITHM 2. (a) Set Al%7=4.
(b) For k=0,1,..,n—1, compute al**=all@alf»af, i, j=1,..,n
(c) Output X =A@ [(The matrix X satisfies (2).)

500 PAN AND REIF

Algorithm 2 extends Jordan’s algorithm of linear algebra and amounts to the
algorithm of [3] for the AP, compare also Algorithm 4 below (in Section 3).

Several other path computation problems can be also reduced to the solution of
the linear systems (1) or (2) or to some similar matrix computations performed by
means of additions and multiplication only. We need to recall a general concept,
already implicitly used in our reduction of the SS to (1) and of the AP to (2).

DEFINITION 1. A dioid (sometimes called a semiring, because it extends noncom-
mutative rings to the case where subtractions may not be defined) is a set S with
two operations, @ and =, such that for any triple of elements a, b, c € § and for two
special elements e (unity) and & (zero) of S, the following equations hold:

a®b=b@acs, (a®b)Dc=a® (b®c), a®@e=a,
axbesS, (axb)«xc=a=*(b+c),
axe=exa=a, a*e=¢*a=g

ax(b@c)=(axb)®(axc), b@e)xa=(b*a)@®(c*a)

In the above reduction of the SS to (1) and of the AP to (2), we used the dioid
where S=RuU {o0}, R being the set of real numbers, @ =min, *=+, e=0,
¢=00. (This dioid is also used for other optimization path problems, see (iii)
below.) Generalizing (1) and (2) to arbitrary dioids, we define that

iV=[ee.,e], I=[d;] b,=e, 0,=cifl i#]. 3)

u

Here is a list of some classes of path problems, which can be reduced to solving
the systems (1) and (2) or to similar matrix operations in appropriate dioids:
(i) existence (problems of graph connectivity);

(ii) enumeration (elementary paths, multicriteria problems, generation of
regular languages);

(iii) optimization (paths of maximum capacity, paths with minimum number
of arcs, shortest paths, longest paths, paths of maximum reliability, reliability of a
network);

(iv) counting (counting of paths, Markov chains).
Specifically, the class (i) includes the problems of
(a) the existence of paths having k (or at most k) arcs between vertices i and
jin a given (di)graph G (for a fixed k);
(b) computing the transitive closure of G;
(c) testing G for being strongly connected and for having circuits.
An appropriate dioid for problems of class (i) is the Boolean algebra, S= {0, 1},

@ =max, *=min, ¢=0, e=1; in the incidence matrix 4= [a,] of G, a; =1 if and
only if {7, j} is an arc of G.

SOLUTION OF PATH ALGEBRA PROBLEMS 501

The subclass of shortest path problems in (iii) includes SS, AP (also in the
versions where the shortest paths are required to have exactly £ or at most k arcs),
and testing a graph for having circuits of negative lengths.

Class (iv) includes counting the numbers of

(a) distinct paths having k (or at most k) arcs between i and j in G;
(b) all the distinct paths between i and j in G.

In the dioid for this class, S is the set of integers, @ = +, *=* (that is, @ and #
are the conventional addition and multiplication, respectively), =0, e=1;
A=[a;], a;=1if and only if {, j} is an arc of G.

The solution of most of the path problems listed in the previous section can be
reduced to the evaluation (over the dioid) of the entries of the matrix 4 (the all
pair path problems) or of the vector bA*’ (the single source path problems) for
some positive k, usually for k=n— 1. Here

A= g0 @ Qe+l g=0,1,..,

A© =] (see (3)), 4 is an nx n input matrix, b=1" is a fixed coordinate vector of
dimension n. Here and hereafter we assume that all computations, in particular,
computing matrix sums, products, and powers, are performed over the dioid
associated with a given path problem; we simplify the notation, writing aU and UV
(rather than @ % U and U * V, respectively) in order to denote the product of a
vector il by a matrix U and the product of matrices U and V over dioids and
similarly for matrix powers over dioids.
There exists the quasi-inverse matrix, defined as

A*=lim A", (4)

g—x

for the incidence matrix 4 of each of the path problems listed in the previous
section, except for those shortest path and multicriteria problems where there exist
circuits of negative lengths in G and for those counting problems where there exists
a circuit in G. In both latter cases the existence of such circuits is detected by com-
puting A* or (I® A)* over the dioids. Hereafter we will consider only the most
typical case, where there exists the quasi-inverse 4* and where, moreover,

A*=AU-D 4@9=49"D for gzn (5)

(Our estimates of this section for the cost of the evaluation of 4* and b4* under
(5) can be immediately extended to the case of the evaluation of 49, 4'?), and b4‘?
for g #n—1.) Equations (4) and (5) imply that A* is the incidence matrix of the
transitive closure of the graph of A for several problems of connectivity, existence,
and optimization. Equation (5) implies that

A*=IPAQA*D --- @A™,

502 PAN AND REIF

so 4* can be computed as
A*=(I@A)IDA)IDA%)---(I®AY), k=[log,n, (6)

using a total of (4nk—k+ 1) n* operations in the dioid. (The known fast matrix
multiplication algorithms, see [15], cannot be generally applied over dioids.) For
many dioids (including the dioid that we associated with the shortest path com-
putations) the operation @ is idempotent, that is, a@a=a for all a€S. In that
case

A* = @ A= @ Cn,r)A'=IDA)=(I®A4)* (7)

r=0 r=0

(where C(n, r)=r!/n!(n—r)!, k=[log,n7), so A* can be computed via repeated
squaring of /@ A, using only n*(k—1)(2n— 1)+ n dioid operations. The resulting
asymptotic estimates for the cost of both algorithms (6) and (7) are the same:
O(n® log n) operations or O(I(n)logn) parallel steps, [n*/I(n)] processors. The
algorithms (6) and (7) are not quite efficient if 4 is sparse, for the sparsity of 4 is
not generally preserved during the computation. We may, of course, compute bA*
via computing A*; alternatively, we may perform » successive postmultiplications of
the vectors bY*_, A" by the matrix 4 for k=0,1,..,n—1 and n—1 vector
additions.

3. SOLVING PATH PROBLEMS FOR GRAPHS WITH SMALL SEPARATORS
3.1. Algorithms

DerFINITION 2 [16]. A graph G =(V, E) is said to have an s(n)-separator family
(with respect to two constants, « < 1 and a natural n,) if either |V] <n, or deleting
some separator set of vertices S of cardinality |S| < s(|V]), we may partition G into
two disconnected subgraphs with the vertex sets ¥, and V5, such that | V| <«|V],
i=1,2, and if, furthermore, each of the two subgraphs of G defined by the vertex
sets SUV,, i=1,2, also has an s(n)-separator family (with respect to the same
constants o and 7).

Grid graphs on a d-dimensional hypercube have (n -separator families,
which are readily available; in particular, square grids have \/;-separator families.
An undirected planar graph has a \/g—separator family, which can be computed in
O(n) sequential time [13], or on PRAM in O(\/;) parallel time using \/;
processors [S] (with small overhead constants in both algorithms [13, 5]), or in
O(log® n) randomized parallel time with n+ f'** processors for any positive e,
where f is the number of faces [5a]. In many cases several computations must be
performed for the same graph G, having, say variable edge weights; in such cases

1-— 1/d)

SOLUTION OF PATH ALGEBRA PROBLEMS 503

one may precompute an s(n)-separator family of G, provided that there exists such
a family.

In this section we will consider a path problem for an undirected graph
G = (V, E) given together with its s(n)-separator family, s(n)=cn’, }<o<l1,cisa
positive constant. In this case we will further decrease the cost of the computation
of A* and bA* by extending the generalized nested dissection algorithms of [12]
for sequential computation and of [16] for parallel computation.

The generalized nested dissection algorithms of [12] and [16] require inverting
some auxiliary matrices of smaller sizes. Dioid elements and matrices in dioids may
have no inverses, but in our extension of the algorithm of [16], we compute quasi-
inverses of matrices over dioids applying either the algorithms (6), (7) of the
previous section or the following generalized Jordan elimination algorithm, which
requires only operations @ and * [24, 25, 6, p. 110]. (The latter algorithm uses
O(n) parallel time and »n? processors or O(n’) operations in dioids.)

ALGORITHM 3 (evaluation of 4%*). Set A1 =4, B =] and recursively
compute A= pMKI4l—11 gLl — pIKIBt—11 for k=1,2, .., n Here M™ is
obtained from the matrix I of (3) by replacing the (k, k) entry of I by (alf~'1)* and
by replacing other entries of the kth column of I by the entries of the vector
[all =11 % (afk—17)*], where i, k=1, .., n. Output B,

Algorithm 3 extends (to dioids) the Jordan elimination scheme for computing
B~'=(I—A) ! via the solution of the linear system BX = I, which can be inter-
preted as n linear systems, each consisting of #n equations in #» unknowns, having the
same coefficient matrix, B=1— 4, and having one of the » unit coordinate vectors
on the right side. We will use the following result.

LEMMA 1. Let B™ be the output matrix computed by Algorithm 3 (so that for all
the auxiliary matrices afi='1 there exist the quasi-inverse matrices (alk—1'1)*;

compare Remark 1 below). Then Bl = 4*,

In the Appendix, Lemma 1 is proven using, in particular, the argument of
[24, 25, 6, pp. 108-110] and the next simple lemma (which can be immediately
verified, see (4)).

LEMMA 2. The matrix X = A* satisfies (2).

Next we will give a proof of Lemma 1 that is slightly longer than the one in the
Appendix, but more direct and informative. In this proof we start with the
customary Jordan elimination scheme over a field, say of real or rational numbers.
In that scheme, » successive premultiplications by » matrices M™! (for k=1, .., n)
of a special format (see below) reduce n x n input matrix G= G to the identity
matrix, so that G¥1 = [gl¥1] = MTIGH 1, k=1, .., n, MM TG =1,
MUIp =10 p 01 = G Tt can be immediately verified that the latter matrix

504 PAN AND REIF

identities hold if the matrices M) are defined as follows. M™) = [mf*1], where
i,k range from 1 to n; mlF1=0 if i#j j#k; mifl=1 unless j=k;
mffl = — glk=11/gli=11 unless i=k; m1=1/gli—'1. These recursive expressions
for M) through G=G™ involve both subtractions and divisions. Now, in
addition to the above sequences of matrices {GU, M) k=0, 1, .., n}, consider
also the sequence {A™), k=0,1,..,n}, where AI=4=1-G, 4™ =[al}1]=
MUI4% T for k=1, 2, .., n. We will exploit the following correlation between the
entries af*1 and g7 for h < k (which do not generally hold for £ > k): all = — gl
unless i=k and af?=1-—g[for h=0,1,2,..k—1 for all k, so m{¥ =
al¥=1/(1 —alk—11) unless i=k, m[¥1=1/(1—alk—'3). Replacing 1/(1 —a) by the
formal power series a*=1+a+a*+ --- for a=afk~11, k=1, .., n (such a series
converges to 1/(1 —a) if |a|<1), we arrive at Algorithm 3 for computing the
matrices M, M2 MU over dioids and at the desired matrix identity

B["]=M["]M["_1]---M[1]=I@A@A2® e =A%,

That identity involves only additions and multiplications, so it holds over dioids.
Q.ED.

A™ =B 4 by the definition of A™ and B! in Algorithm 3, therefore
A*=A"I@I; so we may dispense with the evaluation of B! and simplify
Algorithm 3 as follows.

ALGORITHM 4 (evaluation of 4*).

(a) Set A1 =4,

(b) For k from 1 to n,
aff) = (aff=1)*

alfl=alf~1@alf~"1 # afi] + aff ' for all 4, j except for i=j=k
(c) Output A*=AM@IL

Algorithm 4 turns into Algorithm 2 of Section 2 for the dioids where aff) =e,
which is the case, in particular, for the dioids associated with the shortest path
problems.

Algorithms 3 and 4 can be applied to symmetric and nonsymmetric matrices 4,
but hereafter we will focus on the symmetric case, where the matrix A is associated
with an undirected graph, G(A4).

To compute A* in parallel, we recursively factor the matrix A¥ = (PAPT)* (this
extends the recursive factorization from [16] for 45!, the inverse of 4,= PAPT).
Here P denotes the permutation matrix obtained in the ordering stage of the
generalized nested dissection algorithm of [16] applied to the input matrix 4. Here
and hereafter W7 denotes the transpose of a matrix W; O denotes the null matrices,

SOLUTION OF PATH ALGEBRA PROBLEMS 505

filled with the zeros &; and I denotes the identity matrices of (3) of appropriate size.
Here is our recursive factorization, where =0, 1, .., d—1, d=O(log n):

Xy ¥i
Ah=|:Yh Zh]s Ah+1=Zh®YhX;:Y-}£= (8)
h h
*VT * 0
a=[o NG)l 1))
o I 0 Ar., |Lv.xr I

Let us verify that (9) indeed defines 4. Expand the right side of (9) deleting £
and replacing h+ 1 by 1 in the subscripts, to simplify the notation,

* *yT 4% YX* *YT *
W=[X @XFY ALY X Al] (10)

A*YX* A*

LeMMA 3 (see the proof in the Appendix and compare also Remark 2 below).
Let A=[% %], let there exist the quasi-inverses X* and Af =(Z® YX*YT)* and
let W be defined by (10). Then WA@ 1= W.

Similarly to the proof of Lemma 1 (see Appendix), we deduce from Lemma 3 that
W=A* under (10) (provided that there exist the quasi-inverses 4, X*). This
immediately substantiates the validity of the recursive factorization (8), (9). (Note
that computing a* for a € S may require more than one operation in a dioid unless
(5) holds; on the other hand, we may compute a* as (e —a) ! in the dioids that
have inverse operations to @ and *).

Remark 1. The proofs of Lemmas | and 3 and consequently of the validity of
Algorithms 3,4 and of the recursive factorization (8), (9) do not require us to
assume (5). It is sufficient to use the definition (4) of a quasi-inverse and to assume
the existence of all the quasi-inverses included in Algorithms 3, 4 and in the recur-
sive factorization (8), (9). Furthermore, we may modify Algorithm 3 (including also
the row and column interchanges) in order to ensure the existence of the quasi-
inverses of all pivot entries (we may do this unless the quasi-inverse 4* does not
exist for a given input matrix A4).

Remark 2. The matrix factorization (9) can be computed using Algorithm 3.
Indeed rewrite (9) as

PP IE X;,*YIA:H} Xt o0
"Tlo Ar. i 17

Let n=2 and let A, replace A in Algorithm 3. Then Algorithm 3 computes the
latter factorization applied to the 2x2 block matrix 4,. (This application of
Algorithm 3 is valid because matrix algebras constitute a special class of dioids.)

Remark 3. In [6] the fact that the solution X' =B of (2) equals 4* (see
Lemma 1) is stated under the additional assumption that the preorder relation in

506 PAN AND REIF

the dioid (a < b if and only if there exists ¢ such that a@ ¢ =b) is the order relation
(a<b and a>b together imply that a=5). Under that assumption, [6] suggests
(with the proof omitted) that B(") is the minimum solution. This implies that
BU"l= A* for A* is easily proven to be the minimum solution to (2); both our
proofs of Lemma 1 imply that B/ = 4* even where such a preorder relation in the
dioid is not assumed.

Remark 4. The matrix equations (8) and (9) generalize the recursive
factorization from [16] based on the following factorization of 4,=PAPT over a
field (which itself, however, does not seem to be extendable to the case of dioids),

X, I
A”=[Y: zﬂ Zy=Ap .+ Y, XY,

A_[I o][xh 0 }[1 X,,—iyg]
IRt THO dillO I |

3.2. Computational Cost Estimates

Next we will estimate the cost of computing b4* and 4* We only need to
compute the quasi-inverses X}, the products Y,X} (which also gives X},
YT=(Y,X¥)"), and the matrices A¥, ,=(Z,® Y, XFYD)* for h=0,1,..,d—1,
d=0(logn). At first we will proceed similarly to [16]. Then for each auxiliary
matrix C that denotes an s x s diagonal block of the matrices X, (here s < s(a"n),
a<l; h=k k—1,..,0, k=0(logn)), we need to compute the vector C*v for a
fixed vector ¥. We may extend the assumed property that 49+ =49 forg=n—1
to the equations CY*Y=C@ for ¢>s(an)—1. (Indeed, 4 and C are associated
with the path problems of the same kind, having only different sizes, n and s(a"n),
respectively.) For faster parallel evaluation of C* given C, we may apply the
algorithms (6), (7) cited in the dense matrix case. Then such algorithms will use
O(k(s) I(s)) parallel steps, [2s°/(I(s)logs)] processors where k(s)=[log,s7.
s=s(a"n). Alternatively we may compute C* applying Algorithm 4; this would
involve O(s®) (sequential) dioid operations or O(s) parallel steps, s* processors
(vielding a slower but slightly more efficient version of parallel algorithms). (In the
latter case the computations are arranged similarly to the algorithm of [12], except
that computing the quasi-inverses X;* replaces the Cholesky factorization of X, for
all 4.)

Other arithmetic operations used in the algorithm of [16] are additions and
multiplications, which are replaced by the similar dioid operations. Thus we arrive
at the favorable complexity bounds of O(I(n)log®n) parallel steps and
53(n)/(I(n) log n) processors for computing the recursive factorization (8), (9), and
of O(I(n)logn) parallel steps and ((|E|/logn)+s*(n))/I(n) processors for
computing bA4* for every vector b, provided that the recursive factorization is
already available. Here |E| denotes the number of edges of the graph associated
with the matrix A4, |E| =O(n) for planar graphs. Therefore O(I(n)log?n) steps

SOLUTION OF PATH ALGEBRA PROBLEMS 507

suffice for both single source path problems (where the vector b is fixed, and only
the row bA* but not the whole matrix 4% must be computed; so that
(|E| + s°(n))/(I(n) log n) processors suffice) and the all pairs path problem (where
we compute A*, say by evaluating b4* for all the n coordinate vectors b; in this
case we use n(|E|/log n+ s*(n))/I(n) processors). In a slower parallel algorithm we
need O(s(n)) parallel steps and neither s(n)? + | E|/s(n) processors to solve the single
source path problem or (|E| +s(n)*log n)n processors to solve the all pair path
problem. By multiplying the latter parallel time and processor bounds together, we
arrive at the sequential time bounds of O(|E]| +5%(n)) in the case of the single
source path problem and of O((|E] + s%(n) log n)n) in the case of the all pair path
problem.

If s(n) = O(ﬁ) and .|E| = O(n), as in the case of planar graphs, we arrive at the
estimates shown in the table in our abstract.

4. TMPROVEMENT OF PARALLEL EVALUATION OF A MINIMUM CUT AND OF
A MaxiMuMm FLow IN AN UNDIRECTED PLANAR NETWORK

The best sequential algorithms for computing a minimum cut and a maximum
flow in an undirected planar network N=(G,c) (G=(V, E) denotes a graph, c
denotes a set of the edge capacities) run in O(nlog) time and exploit the reduc-
tion to the shortest path computations, see [4, 8, 20]. Specifically, [20] presented
O(n log? n) time algorithm for computing a mincut, [8] extended that algorithm to
computing a maximum flow, and [4] improved the time bound to O(nlogn). The
previous best parallel polylog time algorithms [9] for those problems (by means of
parallelization of the sequential scheme) require on the order of n* processors using
polylogarithmic time. Combining our results for the SS in planar graphs with the
results of [10], we arrive at the bounds of O(I(n) log® n) parallel steps and
n'5/(I(n) log n) or alternatively, O(log’ n) and (n/log n)?. More precisely, we should
use the extensions of our results for the SS in planar digraphs; such extensions for
both SS and AS immediately follow if we replace the matrices Y for all & by
general matrices W), of the same sizes but defined independently of Y.

Reference [9] computes a mincut and the value v,,, of a maxflow using the
following stages (see [8-10, 20] for further details):

(1) compute a planar embedding of N, for the estimated cost of O(log?n)
steps, n* processors;

(2) find the planar dual network D(N); step, processor bounds are
O(log n), n’;

(3) compute the p-path, that is, the shortest path in the dual between the two
faces F, and F, that adjoin the source s and the sink ¢ of the primal network; step,
processor bounds are O(I(n) log n), n’;

(4) compute the consistent clockwise orderings for the faces on the u-path;
step, processor count is O(log n), n%;

508 PAN AND REIF

(5) compute the F-minimum cut-cycles in D(N) for every dual vertex F on
the p-path (that is, compute the cut-cycles of the minimum length in D(N) passing
through the vertex F); the latter stage can be reduced to solving the AP in the dual
network D(N); the cost is O(I(n) log n) steps, n> processors;

(6) finally, compute the minimum value of the F-minimum cut-cycles over all
the dual vertices F on the y-path; this gives v,,,, and a mincut; the cost is O(log n)
steps, n processors.

The recent algorithm of [10] performs the computation in the substage (1) using
O(log® n) steps, n processors; the computation also includes substages (2) and (4)
performed using O(log 1) steps, n processors. Applying our parallel algorithm for
the SS in stage (3) and our parallel algorithm for the AP in stage (5), we perform
the computations in those stages in O(I(n)log®n) steps using n'%/(I(n)logn)
processors in stage (3) and n*/(I(n) log n) in stage (5). Summarizing we arrive at
O(I(n) log® n) steps, (n/logn)® processors computing v,,, and a mincut. Alter-
natively, we may use O(/(n) log® n) steps and O(n"*/(I(n) log n)) processors in stage
(5); this would dominate the overall complexity. To arrive at these bounds, we
apply the algorithm of [20], which performs stage (5) by successively solving SSs
in the dual networks derived from D(N). This is performed in at most [log, n]
substages; in substage r up to 2" SSs are solved in the derived networks, having the
total number of edges at most 2|E| + 2", r=0, 1, Here E is the edge set of the
original planar network, |E| = O(n), 2" <2'*'°8” =25, 50 the total number of edges
in the derived network is O(n) in each substage. Therefore our algorithm for the SS
enables us to perform the computations in each substage using O(I(n) log® n) steps,
n'*/(I(n)logn) processors, so O(I(n)log®n) steps, n'*/(I(n)logn) processors
suffice in all substages of stage (5) and consequently for the entire computation of
Umay and a mincut.

When a mincut (passing through a vertex F on the y-path) and the value v,,,, are
known, we may immediately reduce computing a maxflow to a SS in the dual
network, following [8]. (Specifically, this is the SS of computing the shortest
distances between F and all other vertices in the dual network N.) Thus in that final
stage we only need O(I(rn) log® n) steps, n'3/(I(n) log n) processors.

APPENDIX: PrOOF OF LEMMAS 1 AND 3

Proof of Lemma 1. It is immediately verified that BI"J=A* is the unique
solution 4* of (2) in the case of the special dioid where S is the set of real matrices,
D=+,x=*¢=0,e=1,

lafs—1 <1 for all k, (11)
and, say,
nmax |a,| <1. (12)
L

The latter inequality immediately implies that 4* =3 4" converges to (/—A4) !

SOLUTION OF PATH ALGEBRA PROBLEMS 509

whereas |afs~11| <1 implies that (aff~')*=2%jL, (aff—'1)" converges to
(1—aft~17)"

Let us consider again an arbitrary dioid (S, @, *), where v* is defined as the
formal power series, @B, o' 1°=eif ve§, v°=1Tif v is a matrix with the entries
from S. Then the entries of B(") and A* are multivariate power series in the entries
of A. The numerical values of the two power series representing the (i, j)-entries of
B") and A* for an arbitrary pair i, j must coincide with each other on any real
matrix A such that (11) and (12) hold. It follows that such two power series
coincide with each other also as formal power series. Q.ED.

Proof of Lemma 3. Let X=X,, Y=Y,, Z=Z2, and let (3), (8), (10) define I,
A=A,, Ay=A,,,, W. Then the matrix WA®I has the upper left block

IOX*X®X*YTA*YX* X @ X*YTAY
—(I®X*YTArY)X*X@])
=X*@X*YTAFYX*, since X*X®I=X*
has the upper right block
X*YT@X*YTAFYX*YT@X*Y A Z
=X*YTOX*YTAHYX*Y @ Z)
=X YTQX*YTA*A, = X*YT(IDAFA,)
=X*YT4¥ since I@AFA =AF;
has the lower left block
AFYX*X@AFY=AFY(X*XQI)= A} YX*;
and has the lower right block
@A YX*Y QA Z=T@AF(YX*YT®Z)=1D A} A, = A}.
Compare all this with the blocks of the matrix W of (10). Q.E.D.

ACKNOWLEDGMENTS

The authors thank the referee and Professor Donald B. Johnson for helpful comments and also Sally
Goodall for typing this paper.

REFERENCES

1. R. BELLMAN, On a routing problem, Quart. Appl. Math. 16 (1958), 87-90.

2. A. BORODIN, J. VON ZUR GATHEN, AND J. HOPCROFT, Fast parallel matrix and GCD computations,
in “Proceedings, 23rd Annu IEEE FOCS, 1982, pp. 65-71; and Inform. and Control 53, No. 3 (1982),
241-256.

510 PAN AND REIF

3. R. N. Froyp, Algorithm 97, shortest path, Comm. ACM 5 (1962), 345.

4. G. N. FrepEricson, “Fast Algorithms for Shortest Paths in Planar Graphs, with Applications,”
SIAM J. Comput. 16, No. 6 (1987), 1004-1022.

5. H. GaziT aND G. L. MILLER, An 0(\/; log(n)) optimal parallel algorithm for a separator for planar
graphs, manuscript, Computer Science Dept., University of Southern California, 1986.

5a. H. Gazit aNp G. L. MILLER, A parallel algorithm for finding a separator in planar graphs, in
“Proceedings, 28th Annu. IEEE Symp. FOCS, 1987, pp. 238-248.

6. M. GONDRAN AND M. MNoux, “Graphs and Algorithms,” Wiley-Interscience, New York, 1984.

7. R. HassiN, On multicommodity flows in planar graphs, Networks 14, (1985), 225-235.

8. R. HassiN anp D. B. JounsoN, An O(nlog® n) algorithm for maximum flow in undirected planar
networks, SIAM J. Comput. 14, No. 3 (1985), 612-624.

9. D. B. JounsoN AND S. W. VENKATESAN, Parallel algorithms for minimum cuts and maximum flows
in planar networks, J. ACM 34, No. 4 (1987), 950-967.

10. P. KLEIN AND J. REIF, An efficient parallel algorithm for planarity, in “Proceedings, 27th Annu.
IEEE Symp. FOCS, 1986,” pp. 465-477; invited to appear in J. Comput. System Sci.

11. E. L. LAWLER, “Combinatorial Optimization: Networks and Matroids,” Holt, Rinehart & Winston,
New York, 1976.

12. R. J. LietoN, D. Rosk, AND R. E. Tarsan, Generalized nested dissection, SIAM J. Numer. Anal. 16
No. 2 (1979), 346-358.

13. R. J. Lirto~n AND R. E. TARIAN, A separator theorem for planar graphs, SIAM J. Appl. Math. 36,
No. 2 (1979), 177-189.

14. K. MatsuMoTO T. NISHIZEKI, AND N. Saito, An efficient algorithm for finding multicommodity
flows in planar networks, SIAM J. Comput. 14, No. 2 (1985), 289-302.

15. V. Pan, “How to Multiply Matrices Faster,” Lecture Notes in Computer Science, Vol. 179, Springer-
Verlag, Berlin 1984,

16. V. Pan anp J. RElF, “Fast and Efficient Solution of Sparse Linear Systems,” Technical Report
TR-88-16, Computer Science Department, SUNY, Albany, 1988. (Short version in “Proceedings
17th Annu. ACM STOC, pp. 143-152. Providence, RI.)

17. V. Pan anD J. RerF, Fast and efficient algorithms for linear programming and for the linear least
squares problem, Comput. Math. Appl. 12a, No. 12 (1985), 1217-1227.

18. V. PaN anD J. REIF, “Extension of the Parallel Nested Dissection Algorithm to the Path Algebra
Problems,” Technical Report 85-9, Comput. Sci. Dept., SUNYA, Albany, NY, 1985.

19. V. Pan anp J. REIF, “Acceleration of Parallel Computations of the Minimum Cost Paths in an
Undirected Graph Having a Small Separator Family,” Technical Report TR 87-10, Comput. Sci.
Dept., SUNYA, Albany, NY, 1987.

20. J. REIF, Minimum s-f cut of a planar undirected network in O(n log?(n)) time, SIAM J. Comput. 12,
No. 1 (1983), 71-81.

21. R. REISCHUCK, A fast probabilistic parallel sorting algorithm, in “Proceedings, 22nd Annu. IEEE
FOCS, 1981,” pp. 212-219.

22. R. E. TarIaN, A unified approach to path problems, J. Assoc. Comput. Mach. 28, No. 3 (1981),
577-593.

23. R. E. TarsaN, Fast algorithms for solving path problems, J. Assoc. Comput. Mach. 28, No. 3 (1981),
594-614.

24. R. C. BAckHOUSE AND B. A. CArrE, Regular algebra applied to pathfinding problems, J. Inst. Marh.
Applics. 15 (1975), 161-186.

25. B. A. CaRrE, An algebra for network routing problems, J. Inst. Math. Applics. 7 (1971), 273-294.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

