Efficient Parallel Algorithms for Computing All Pair
Shortest Paths in Directed Graphs'

Yijie Han,? V. Y. Pan,’ and J. H. Reif*

Abstract. We present parallel algorithms for computing all pair shortest paths in directed graphs. Our
algorithm has time complexity O(f(n)/p + I (n) log n) on the PRAM using p processors, where I (n) is logn
on the EREW PRAM, loglog n on the CCRW PRAM, f(n) is o(n®). On the randomized CRCW PRAM we

are able to achieve time complexity O(n>/p + logn) using p processors.

Key Words. Analysis of algorithms, Design of algorithms, Parallel algorithms, Graph algorithms, Shortest
path.

1. Introduction. A number of known algorithms compute the all pair shortest paths
in graphs and digraphs with r vertices by using O (n*) operations [D], [F1], [J]. All these
algorithms, however, use at least n — 1 recursive steps in the worst case and thus require at
least the order of n time in their parallel implementation, even if the number of available
processors is not bounded. O (n) time and n processor bounds can indeed be achieved,
for instance, in the straightforward parallelization of the algorithm of [Fl]. (Here and
hereafter we assume the customary PRAM models of parallel computing [KR].)

NC algorithms are also available for this problem. However, they either need
2 (n® log n) operations or only work for the more narrow class of the input graphs and/or
digraphs (which have the edge weights bounded, say, by a constant or have a family of
small separators available) [AGM], [DNS], [DS], [GM], [L], [PK], [PR1], [PR2], [S].
The recent algorithm of [PP1] and [PP2] uses O(lcvgz‘5 n) paralle] time and O(n®) oper-
ations in the case of a general graph with n vertices. In this paper we improve the latter
time bound to the new record value of O (I (n) log »), still using O (n®) operations. Here
I (n) is the time complexity of computing the minimum of n elements using n proces-
sors. I (n) is O (log n) under the EREW (Exclusive Read Exclusive Write) PRAM model,
O(loglog n) under the CRCW (Concurrent Read Concurrent Write) PRAM model [V],
and a constant under the randomized CRCW PRAM model [R].

Moreover, the total number of operations involved in our O(J (n) log n)-time algo-
rithm can be decreased to o(n>) on the EREW PRAM and CRCW PRAM, by applying
the results in [Fr] and [T].

! A preliminary version of this paper was presented at the 4th Annual ACM Symposium on Parallel Algorithms

and Architectures, June 1992.
2 Department of Computer Science, University of Kentucky, Lexington, K 40506, USA. Current address:

Electronic Data Systems, Inc., 300 E. Big Beaver Road, Mail Stop 408, Troy, MI 48083, USA.

3 Department of Mathematics and Computer Science, Lehman College, CUNY, Bronx, NY 10468, USA.
Support by NSF Grant CCR 90-20690 and PSC CUNY Awards #661340 and #662478.

Department of Computer Science, Duke University, Durham, NC 27706, USA.

Preprint of paper appearing in Algorithmica, Vol 17, pp.

400 Yijie Han, V. Y. Pan, and J. H. Reif

To build our algorithms, we incorporated the well-known techniques of [Fl] and
of the reduction of the shortest-path computation to matrix multiplication over the
semirings, but added some new nontrivial techniques of studying paths in graphs and
digraphs.

We present our algorithm in three stages to illustrate our intuition behind the al-
gorithms. We first give a simple parallel algorithm with time complexity O(n*/p +
I(n) logl'5 n) using p processors. This algorithm takes O (n>) operations when we use
no more than O (n®/(I (n) logl'5 n)) processors. We then show how to speed up this algo-
rithm to achieve time O (I (n) logn) using O (n*/(I(n) log2/ 3n)) processors. By using
more sophisticated ideas we show the time complexity O (n®/p + I (n) logn) for the all
pair shortest-path problem. Straightforward applications of the results in [Fr] and [T]
yield time complexity O(f (n)/p + I (n) logn), where f(n) = o(n?).

2. Computing All Pair Shortest Paths. We use numbers 0, 1,...,n — 1 to represent
input vertices, and a matrix A such that its entry a;; represents the weight of the arc from
i to j. We use the semiring (A, min, +), so that A"~! represents the shortest distances
between all pairs of vertices of the input graph. An arc is an ordered pair of vertices.
A path is a finite sequence of vertices. We may assume that there is an arc between
every pair of vertices, some of them may have weight co. Our algorithms use matrix
multiplications to compute shortest paths. The computation can therefore be viewed as
contracting each shortest path to a single arc. For example, for an input matrix A the
operation A := AAA contracts the length of every shortest path by at least one-half.
Thus, if our algorithm contracts every path of length [< n to a single arc, then it
computes all pair shortest paths correctly. For a path p, we use (p) to denote the cost
(the number of steps or the number of iterations of a loop) for contracting p to a single
arc. We also use the following special definition.

DEFINITION 1. For a given integer k:

1. [i] denotes a vertex u such thatik <u < (i + Dk —1.[i],0 <i < n/k, form a
partition of vertices.

2. [i, j] denotes a vertex u such that ik < u < (j + 1)k — 1, [i, j] is empty if j < i.

3. [i, jllg, h] denotes an arc (u,v) suchthatik <u < (j+ Dk —land gk <v <
(h+ Dk —1.

4. [i, j]* denotes an empty path or a path [i, j][i, j]-- - [i, j] of length < n.

2.1. ASimple Parallel Algorithm. The input matrix A is divided into submatrices. Each
submatrix is a k x k matrix. For convenience, assume that k divides n, and similarly we
assume that the values of all logarithms, powers, and ratios below are integers where
this is needed. There are a total of n%/k* submatrices A; i»0 < i, j < n/k. Submatrix
A;; contains elements in rows ik to (i + 1)k — 1 and columns jk to (j + 1)k — 1 of A
(see Figure 1). Our next algorithm combines the techniques of Floyd’s algorithm and of
path computation by means of matrix multiplication.

Parallel Algorithms for Computing All Pair Shortest Paths in Directed Graphs 401

AOG ADI AOZ A(D
AIG A| I AIZ AB
Ay Ay A, Ass

Fig. 1
Algorithm APSP1
forr:=0ton/k — 1do
begin
/* Compute the transitive closure of A,, using matrix multiplication. */
Ay = A?‘;;

foralli, j,0 <i,j <n/k, do in parallel
Ajj i=min{A;j, Ait A A}
end

Let (p) denote the number of iterations of the loop indexed by ¢ in algorithm APSP1
that is needed to contract p to a single arc, where p is a path of length less than ». Fixing
k in Definition 1, we have:

LEMMA 1. ([0,n/k — 1710,]*[0,n/k — 1)) <t + 1,0 <t < n/k.

PROOE. By induction. Before the iteration t < 0, [0, n/k — 1][0, :]*[0,n/k — 1] =
[0,n/k —1][0, n/k — 1], which is a single arc. Now assuming that the lemma is true for
t, we show that it is true for ¢ 4 1.

We consider three cases for a path p = [0, n/k — 1][0, ¢ + 1]*[0, n/k — 1].

(1) The interior vertices of p do not contain avertexin [t +1]. Thatis, p is of the form
[0, n/k — 1][0, ¢]*[0, n/k — 1]. In this case (p) <t + 1, by the induction hypothesis.

(2) The interior vertices of p contain one vertex in [t + 1]. That is, p is of the form
[0, n/k—1][0, 1* [t + 11[0, t]*[0, n/ k—1]. In this case p = p; p2, where p; = [0, n/k—
1[0, £]*[z4+1], p2 = [t+1][0, £]*[0, n/ k—1]. By the induction hypothesis, (p;) < t+1,
(p2) < t+ 1. Therefore, immediately after the ¢th iteration (note that ¢ starts at 0), p; has
been contracted to [0, n/k — 1][# + 1], and p, has been contracted to [z + 1][0, n/k —1].

402 Yijie Han, V. Y. Pan, and J. H. Reif

Thus p = p; p has been contracted to [0, n/k — 1][t + 1][0, n/k — 1]. In the (# + 1)st
iteration, instruction A;; := min{A;; A; 114414141415}, 0 < i, j < n/k, contracts
the path to a single arc [0, n/k — 1][0, n/k — 1]. Therefore, (p) < ¢+ 2.

(3) The interior vertices of p contain more than one vertex in [t + 1]. Thatis, p is
of the form [0, n/k — 11[0, t]*[t + 1][0, ¢ + 1]*[z + 11[0, £1*[0, n/k — 1]. In this case
p = p1p2ps, where py = [0,n/k — 1][0, t1*[t + 1], p2 = [t + 1][0, # + 1]*[r + 1],
and p3 = [t + 1][0, £]*[0, n/k — 1]. ps can be further decomposed into blocks, where
each block is of the form [t + 1][0, t]*[t + 1]. That is, each block starts at a ver-
tex in [t + 1], ends with a vertex in [t + 1], but goes through only vertices in [0, 7].
By the induction hypothesis, (p;) < ¢ + 1, (p3) < t + L. Let p’ be any block of
p2. We also have that (p’) < t + 1, by the induction hypothesis. Therefore, imme-
diately after the rth iteration, p; has been contracted to [0, n/ k — 1][r + 1], p3 has
been contracted to [t + 1][0, n/k — 1], and each block of p, has been contracted to
[t + 1][t + 1]. Thus p; has been contracted to [z 4+ 1]*. In the (¢ + 1)st iteration, instruc-
tion A;y1,41 := A, 4 contracts p; to [+ 1][t + 1]. Therefore, p has been contracted
to [0, n/k — 1][t + 1][¢ + 11[0, n/k — 1]. Finally, in the (¢ + 1)st iteration, instruction
Ajj = min{A;;, Airr1 A1 A i) 0 20 < n/k, contracts p to a single arc
[0, n/k — 1][0, n/k — 1]. Therefore, (p) <t + 2. O

THEOREM 2. Algorithm APSP]1 correctly computes all pair shortest paths.
PROOF. Setting t = n/k — 1 in Lemma 1 proves this theorem. O

THEOREM 3. The time complexity of algorithm APSP1 is O((n® + nk®logk)/p +
(nI(n)logn)/k).

PROOF. Eachiteration of the loop indexed by 7 executes a transitive closure operation for
Ay, and n?/k? matrix multiplications and minimizations A;; := min{A;;, Ai; Ay Ay}
In each iteration the transitive closure requires O (k* log k) operations and n?/k? matrix
multiplications and minimizations take O (n?/k? = k3) = O(n’k) operations. Therefore,
the whole algorithm takes O (n® + nk?logk) operations. Each iteration can be done in
time O(I (n)logn) if enough processors are available. Thus the theorem is proved. [

Setting k ton/log®’ n, we obtain a parallel algorithm with time complexity O (n*/p+
I(n) loagl'5 n).

2.2. Speeding Up the Algorithm. So far we were unable to decrease the time complexity
below O(I(n)log' n) with O(n®) operations because we do the transitive closure of
Ay, sequentially fort = 0, 1,...,n/k — 1. The loop indexed by ¢ in algorithm APSP1
represents the serialism of the algorithm. We now speed up our algorithm by adopting a
new design. In the following algorithm we let k = n/log"/* n and x = log** .

Parallel Algorithms for Computing All Pair Shortest Paths in Directed Graphs 403

Algorithm APSP2
fort :=1toS5logn do
begin
foralls,0 < s < n/k, do in parallel
Ay = AgsAgs Ay
if t mod x = 0 then A := AAA;
end

The intuition behind the design of APSP2 is as follows. We multiply all the diagonal
matrices Ags, 0 < s < n/k, simultaneously in each iteration. By doing so we hope to
eliminate the serialism in APSP1. We also replace the instruction

foralli, j,0 <i, j < n/k, do in parallel
Ajj = min{A;j, Ai A Arj};

in APSP1 with instruction
ift mod x =0then A := AAA;

APSP?2 has 5logn iterations. Each iteration executes a constant number of matrix
multiplications. Therefore, if a sufficient number of processors are available APSP2 can
be executed in O (I (n) logn) time. Also note that the number of operations executed by
APSP2 cannot be bounded by O(n®) because instruction A := AAA is executed more
than a constant number of times.

Let (p) be the number of iterations of the loop indexed by ¢ in algorithm APSP2 that
is needed to contract p to a single arc. Fixing k in definition 1, we have:

LEMMA 4. Ifp =[i]* forany0 <i < n/k, then (p) < log|p|, where | p| is the length
of p.

PROOF. Each iteration reduces the length of such a path by at least one-half until the
path has been contracted to a single arc. a

In the following we prove inequalities of the form (p;) < (p2) + n, where p; and
p» are paths and » is a number. In proving such an inequality we always assume that
|p2] < |p1l. In fact, in most situations p; is a subpath of p;.

LEMMA 5. ([0,n/k — 1][0, i]*[0, n/k — 1]) = ([0,i]*) +x,1 <i <n/k.

PROOE. After [0, i]* has been contracted to a single arc, the instruction A := AAA
will be executed within the next x iterations to contract the path to a single arc. a

LEMMA 6. If([i](0, i —11*[i]) < z(l)+logl, where l is the length of the path (i.e., there
isatermlogl in the expression upbounding ([{]1[0, i — 1]*[i])) and z(I) is a nondecreasing
Sunction of 1, then ([i1[0, i]*[i]) < z(l) + log! +loglog! + 3,1 <i <n/k:

404 Yijie Han, V. Y. Pan, and J. H. Reif

PROOF. Let p = [i][0, i]*[i]. Let | p| = L. We partition p into blocks which start from
a vertex in [i], end with a vertex in [i], but only go through vertices in [0,i — 1]. A
block must go through at least one vertex in [0, ; — 1]. Thus a block can be denoted by
[i][0, i — 1][0, i — 1]*[i]. p has not more than L /2’ blocks of length > 2. We bound N,
the number of arcs of the form [i][i] in p. We note that when a block is contracted to a
single arc [7][] (we say this block is removed or eliminated), it contributes 1 to N.

EXAMPLE. Let P = [][01[2][i1[i][i — 11[31(41[: 10101121 [][3][4][i]. p has four blocks.
N = 3. Assume that p is contracted to p; = [i]J[0][/1[i1[1[{1[1{2][i][i]. Then p; has
two blocks and N = 5. Assume now that p; is contracted to p> = [i][0][7][i][i]. Then
p; has one block and N = 2.

We note that as a path p is being contracted, then length of p is decreased, the number
of blocks is decreased, N may increase. There are two factors that affect N. When a
block is contracted to a single arc, the block is removed, but it contributes 1 to N. On
the other hand, the contraction of p also contracts subpaths of the form []*, thus decreas-
ing N.

Let P = [i][0,i — 1]*[i], |P| = [< L. By the assumption of the lemma we have
(P) < z(I) + logl < z(L) + log!l. All blocks of length < 2! in path p are removed
after z(L) + 1 iterations. There are at most L blocks removed. Therefore after z(L) + 1
iterations, these blocks contribute at most L to N. All blocks of length < 2% in path p
are removed after z(L) + 2 iterations. There are at most L /2 blocks removed. Therefore
after z(L) 4 2 iterations, these blocks contribute at most L/2 to N. In general, all blocks
of length < 2'*! in path p are removed after z(L) + ¢ + 1 iterations. There are at most
L /2’ blocks removed. Therefore after z(L) + ¢ + 1 iterations, these blocks contribute at
most L/2' to N.

Now we count how many arcs [i][i] are removed after each iteration. Because the
instruction

for all s, 0 < s < n/k, do in parallel
Ass = AgsAssAss)

is executed in each iteration, the length of a subpath [i]* is cut by at least half after each
iteration. Thus is seems that we can reduce N by half in each iteration simply because
of this instruction. Such counting is not accurate. Consider a path

p = [I213I 4510201 3]0 — 1L

N is 3 for p. After an iteration (assuming that instruction A := AAA is not executed
in this iteration), N is not changed because a single arc [{][{] cannot be removed by
the iteration. However, when an arc [i][i] does not contribute to the decreasing of N,
it is because the [i][i] is adjacent to a block. After z(L) + ¢ iterations, all blocks of
length smaller than 2" are removed. Therefore, after z(L) + ¢ iterations there are at most
L /2" blocks left, and there are at most L/2" arcs [i][i] which do not contribute to the
decreasing of N.

Parallel Algorithms for Computing All Pair Shortest Paths in Directed Graphs 405
After z(L) iterations, N < L. After z(L) + 1 iterations, we do

N < N/2 /[* Because the length of each subpath [{]* is reduced by half */
+L /* Because there are at most L arcs [i][i] not contributing to the
decreasing of N. */
+L /* Because there are at most L blocks of length < 2! removed. */

Therefore N < 5L/2.

After z(L) 4 2 iterations, N < N/2+ L/2 4 L/2. Therefore N < 9L /4. In general,
after z(L) +1 iterations, N < N/2+L/2""' +L/2~!, wehave N < (4t +1)L/2'. After
z(L) +log L + 1 iterations, all blocks are removed, and N < (4(log L+ 1)+ 1)L/2L <
2log L 4 3. At this moment p is contracted to a path of the form [i]* and of length < N.
It takes at most log(2log L + 3) < loglog L + 2 more iterations to contract the path to
a single arc. Thus (p) < z(L) +log L +loglog L + 3. O

LEMMA 7. ([0,i]*) <logl+i(3x +1loglog!+3),0 <i < n/k, wherel is the length
of the path.

PrROOF. By induction. Fori = 0 we have ([0, 0]*) < log/ by Lemma 4. Now, assuming
that the lemma holds for i — 1, we show that it holds for i.
A path p = [0, i]* may take the following forms:

(1) p contains no vertex in [i]. p is of the form [0,i — 1]*. In this case the lemma is
true by the induction hypothesis.

(2) p contains exactly one vertexin [i]. p isof the form [0, i —11*[{][0,i —1]*. Assume
that [¢] is neither the starting vertex nor the ending vertex of p (we leave to the reader the
case where [7] is the starting or the ending vertex). p = p; p2 p3, Where p; = [0,i — 1]%,
p2 = [0,i = 1][][0,i — 1], p3 = [0, i — 1]*. We assume that both p; and p, are not
empty and leave to the reader the case when they are empty. After ([0, { — 1]*) iterations,
p; 1s contracted to [0, i — 1][0, i — 1], ps3 is contracted to [0, i — 1][0, i — 1]. Therefore
p is contracted to [0,7 — 1][0,7 — 1][{][0,i — 1][0,i — 1]. It takes at most 2x more
iterations for the instruction A := AAA to be executed twice to contract the whole path
to a single arc. Therefore (p) < ([0, i — 1]*) + 2x. Therefore, the lemma is true.

(3) pcontains more than one vertexin[i]. p is of the form [0, i —11*[{1[0, i]*[{][0, i —1]*.
p = pipap3paps, where py = [0,i — 11%, p» = [0,i — 1][i], p3 = [0, i]*[i],
ps = [il[0,i — 1], ps = [0,i — 1]*. We assume that p;, p2, p3, p4, ps are not empty
and leave to the reader the case where some of them are empty. After ([0,i — 1]%)
iterations, p; is contracted to [0, i — 1][0, i — 1], ps is contracted to [0, i — 1][0,i — 1].
Now ([{][0,7 — 1]*[i]) < ([0,i — 1]*) + x (by Lemma 5) < log/ + (i — 1)(3x +
loglog! + 3) + x (by induction hypothesis) = z(I) 4 log!. Therefore, by Lemma 6,
(p3) <logl+ (i —1)(3x + loglog! + 3) + x + loglog! + 3 = T. Therefore, after T
iterations, p is contracted to [0, — 1][0, i — 1][1[i][0, i — 1][0, i — 1]. It takes at most
2x more iterations for the instruction A := AAA to be executed twice to contract the
whole path to a single arc. Therefore, (p) < T + 2x =log! +i(3x + loglog/ + 3). O

406 Yijie Han, V. Y. Pan, and J. H. Reif

THEOREM 8. Algorithm APSP2 correctly computes all pair shortest paths in time
O(n’log'n/p + I(n)logn).

PROOF. Setting i = n/k — 1 and / = n in Lemma 7 proves that algorithm APSP2
computes all pair shortest paths in logn + (n/k — 1)(3x + loglogn + 3) < Slogn
iterations. If enough processors are available each iteration can be executed in O (1 (1))
time. Instruction A, := A A Ays is executed O(logn) times for all n/k = log'/*n
submatrices, which takes O (k*(n/k)logn) = O(n’log!/® n) operations. Instruction
A := AAA is executed O(logn/x) times, which takes O (n*log'/ n) operations. O

If we use APSP2 for the purpose of computing A}, in APSP1, we get

COROLLARY. All pair shortest paths can be computed in time O (n*/p +1(n) log”/® n)
using p processors.

REMARK. Algorithms APSP1 and APSP2 sequentially evaluate the transitive closure
of the matrices on the diagonal. This property is useful for reducing the complexity of
computing the all pair shortest paths in graphs with a family of precomputed separators
[PR1], [PR2].

2.3. A Faster Algorithm. We divide matrix A into levels (see Figure 2). The Oth level
is Al()o) = A. For each matrix B = Ag‘i) at level J we divide it into four submatrices of
equa] SiZC, Bg‘g, Bo‘g, Bl'g, B],] % and define A;{+1) = Bo_(} and Aé"::ll] = Bl,l- Thus there
is a total of 2/ matrices A\ at level j, each of size n/2/ x n/2/. We involve the matrices
up to level L = (loglogn)/2, and there are 2- = log'/? n matrices at that level, each of
size n/2% x n/2-. Let K be the largest number, which is both a power of 3 and less than
or equal to logn. '

Fig. 2

Parallel Algorithms for Computing All Pair Shortest Paths in Directed Graphs 407

Algorithm APSP3
forr :=1to8logn do
begin
forall s,0 < s < 2%, do in parallel
/* Do matrix multiplication for all matrices at level L. */
AD = AD AL AW,
if 0 <i < L — 1 andi is the smallest j such that t mod (K /3/) = 0 then
/* Do matrix multiplication for all matrices at level i. */
for all 5,0 < s < 2', do in parallel
AD .= ADAD AW,
end

APSP3 executes AL := ALIALIAL in every iteration. For matrices at otherlevels,
they are being multiplied as follows. For the time interval from 1 to 8logn, we let
Tp = {t | t mod K = 0}. Instruction A := AQADAD is executed forall € Ty. Note
that because of the way K is defined, Ty contains only a constant number of elements.
Let 7y = {t | t mod (K/3) = 0} — To. Instruction A) := ADALAD js executed

forall t € Ty. The reason T is being subtracted is that A" is a submatrix of A7), ,

thus operation A{)), = A{}), AL, AV, “contains” operation A{ := ADALAD,
Thus we may view that instruction A" := ANAMAD is executed every K /3 iterations.
In general, let 7; = {z | t mod (K/3) = 0} — 3.:2y T}, i < L. Instruction A :=
APADAY is executed for all 1 € T;. We may view that instruction A := APAPAD
is executed every K /3’ iterations.

Let k = n/2-. By Definition 1, [i] denotes any vertex in

{in/2k,in/28 +1,..., (i + a2t —1}.

Denote K /3L=""1 by ;,0 < i < L — 1. Then instruction
S SN WIS L
AN o AR T g (R

can be viewed as being executed every ¢; iterations, and instruction

(L=1) . A(L=DA(L=14 (L-1)
ALY = AE-DAL-DC

can be viewed as being executed every f iterations.
To analyze paths being contracted by APSP3, we define function cost(x, I) as follows:

cost(0,1) =logl;

cost(1,1) =logi + 2ty + loglogi + 3;

If x # 0 and x is even, cost(x, [) = cost(x — 1, 1) +t;, where i is the largest
integer j such that x/2/ is odd;

If x # 1 and x is odd, cost(x, I) = cost(x — 1,1) + to + 2(loglog! + 3) +
Z;;(l) 1;, where i is the largest integer j such that (x + 1)/27 is odd.

Let p be a path, let (p) be the number of iterations needed in APSP3 to contract p to
a single arc. Let / be the maximum length of the path under consideration. We define
function COST(x,) as follows:

408 Yijie Han, V. Y. Pan, and J. H. Reif

COST(0,1) = ([0]*);

COST(1,1) = ([0, 11%);

Ifx # Oand x iseven, COST (x, 1) = ([x, x+2: =1][0, x—1]*[x, x+2' —1]),
where i is the largest integer j such that x/2/ is odd;

If x % 1 and x is odd, COST(x, 1) = ([x —2' + 1, x][0, x]*[x — 2/ + 1, x]),
where i is the largest integer j such that (x + 1)/2/ is odd.

The definition of COST is for paths of length < 1. Forexample, COST (0, I) is obtained
by taking the maximum number of iterations needed to contract a path over the paths of
the form [0]* and of length < .

We give a simple way to comprehend the formula we are evaluating.

For even x, x # 0, we define COST(x,) = ([a, b][0, x — 1]*[a, b]), where a and b
can be found from Figure 2. We first find the largest square in which x is at the top left
corner. For x = 2 this square is the square containing 2, 3. For x = 4 this square is the
square containing 4, 5, 6, 7. For x = 6 this square is the square containing 6, 7. a is the
smallest number in the square, that is, the number at the top left of the square. b is the
largest number in the square, that is, the number at the bottom right of the square. For
even x, x # 0, we also define cost(x,l) = cost(x — 1,1) + t;, where # can be found
from Figure 2. We first find the largest square in which x is at the top left corner. Then
t; is the label in the immediate left neighbor square. Note that for all even x, x # 0, the
squares containing #;’s do not overlap. If we sum all #; for all even x, x # 0, we are in
fact summing all #;’s except f,’s in Figure 2.

For odd x, x # 1, we define COST(x, 1) = ([a, b][0, x]*[a, b]), where a and b can
be found from Figure 2. We first find the largest square in which x is at the bottom right
corner. For x = 3 this square is the square containing 0, 1, 2, 3. For x = 5 this square is
the square containing 4, 5. For x = 7 this square is the square containing 0 to 7. a is the
smallest number in the square. b is the largest number in the square. For odd x, x # 1,
we also define cost(x,) = cost(x — 1,1) + to + 2(loglog! + 3) + 3_1;, where }_¢;
can be found from Figure 2. We first find the largest square in which x is at the bottom
right corner. The #;’s in ¥ #; are the 7;’s in the bottom “row” of the square. Note that for
all odd x, x # 1, the squares containing }_ #;’s do not overlap. If we sum all) # for
all odd x, x # 1, we are in fact summing all #;’s in Figure 2 except the #o in the top left
square containing 0 and 1. Now consider the extra #o. Considering the fact that xq’s are
not present in the formula for cost(x, [), x is even and x # 0, if we sum all ¢; for all x
except x = 0, 1, we are in fact summing all #; in Figure 2 twice except the 7, in the top
left square containing 0 and 1. However, fy is counted twice in the formula for cost(1, 1).
Therefore, if we sum #; for all x, we are in fact summing all #; in Figure 2 exactly twice.

We use several properties of APSP3 in the analysis of paths.

One property we use is symmetry. We note that vertices in [2i] and vertices in [2i +
1] are symmetrical with respect to APSP3. For example, path p; = [1][0, 1]*[1] is
symmetrical to path p» = [0][0, 1]*[0]. That is to say, if we replace [1] in p; with [0]
and replace [0] with [1] we obtain p, as the symmetrical path of p;, because a matrix
multiplication at level < L — 1 in APSP3 either involves both [0] and [1] or involves
neither [0] nor [1], and matrix multiplications at level L involves [0] and [1]. Therefore,
the way that p; and p, are contracted is the same as far as APSP3 is used to contract
p1 and p. Therefore, (p1) = (p2). We also have that p; = [2][1]*[2] is symmetrical to

Parallel Algorithms for Computing All Pair Shortest Paths in Directed Graphs 409

p2 = [2][0]*[2], and p; = [4, 5][0, 7]*[4, 5] is symmetrical to py = [6, 7][0, 71*[6, 7]
(refer to Figure 2). We also use symmetry in a somewhat generalized sense. For example,
ps = [6][0, 5]*[7] is symmetrical to ps = [6][0, 5]*[6] because matrix multiplications
for contracting ps and pg proceeds in the same pattern. Also, p; = [6, 7][0, 3]*[4, 5]
is symmetrical to pg = [6, 7][0, 3]*[6, 7]. We have (p;) = (p2) if p; and p; are
symmetrical.

The second property we use is reverse. The reversed path of p; = [1][0][2][3] is
p2 = [3][2][0][1]. That is, the reversed path is obtained by reversing the vertices of the
original path. Itis not difficult to see that if p is the reversed path of p,, then (p1) = (p2).

The third property we use is proper subset. If the set of paths represented by p; is
contained in the set of paths represented by path p,, then we say that p, is a subset of
p2. If the containment is proper, then we say p; is a proper subset of p,. For example,
[0, 11[5, 6]*[0, 1] is a proper subset of [0, 3][5, 6]*[0, 3]. If p; is a proper subset of p,,
then (p1) < (p2)-

We use the four lemmas below to prove COST(x,1) < cost(x,l). We use an im-
plied induction. That is, when we are proving COST (x,[) < cost(x,[) we assume that
COST(y,l) < cost(y,l)istrue forall0 <y < x.

To help understand the following proofs, we suggest that the reader try several par-
ticular values for x and refer to Figure 2 for each case analyzed.

LEMMA 9. COST(0,1) < cost(0,1).

PROOE. Each iteration contracts such a path by at least half. Therefore, the lemma is
true. O

LEMMA 10. COST(1,1) < cost(1,1).

PrOOF. 'We have the following cases for a path p = [0, 1]*:

(al) p is of the form [0]* or [1]*. Then (p) < log! because instruction A" :=
APABIAL is executed in each iteration.

(a2) pisofthe form [1][0]*[1]. After [0]* is contracted to a single arc, it takes at most
-ty iterations for the instruction ALY ;= AL-DAE=DAL=D {0 be executed in order to
contract the path to a single arc. Therefore, (p) < ([0]*) + to < logl + #y (by (al)).

(a3) pis of the form [1][0, 17*[1]. Then (p) < log! + #, + loglog! + 3 (by (a2) and
Lemma 6).

(a4) pisoftheform[0][0, 1]*[0]. Thiscaseisasymmetrical case of (a3). By symmetry
we have (p) <logl + 1y +loglogl + 3.

(a5) p is of the form [0][0, 1]*[1]. Assume that p has at least two vertices in [0] (we
leave to the reader the case that p has only one vertex in [0]). p can be written as
p1p2p3, where py = [0][0, 1]°[0], p2 = [0][1], p3 = [1]". By (a4), (p1) < logl + 1+
loglog! + 3. By (al), (p3) < logl. Thus after log! + fo + loglog! + 3 iterations, p;
is contracted to a single arc [0][0], p3 is contracted to a single arc [1][1] (it is possible
p3 1s empty). Therefore p is contracted to [0][0][1][1]. Within #, iterations, instruction

410 Yijie Han, V. Y. Pan, and J. H. Reif

ALD = AL-DAL-DAL=D will be executed, which contracts p to a single arc.
Therefore (p) < logl + 2ty + loglog! + 3.

(ab) p is of the form [1][0, 11*[0]. This case is symmetrical to (a5).
Now a path p = [0, 1]* can be in only one of the following two situations.

(1) p only contains vertices in [0], or p only contains vertices in [1]. This situation is
taken care of in (al).

(2) p contains vertices bothin[0landin[1]. Welook at the starting and ending vertices
of p. If the starting—ending vertex pair (a, b) is ([1], [1]), the situation is calculated in
(a3). If the pair is ([0], [0]), it is calculated in (a4). If the pair is ([0], [1]), it is calculated
in (a5). Finally, if the pair is ([1], [0]), it is calculated in (a6). O

LEMMA 11. Forevenx,x # 0, COST(x,1) = ([x,x + 2" —1][0, x — IJ*[x, x +2f =
11) < cost(x, 1), where i is the largest integer j such that x /24 is odd.

PROOF. For x # 0 and x even, and for p = [x, x + 28 — 1[0, x — 17*[x, x + 20 — 1]
we have the following cases.

(b1) xisapowerof 2. By the definition of i, x—2' = 0. When [0, x —1]* is contracted
to a single arc, p is contracted to [x,x +2' — 1J[0, x — 1][0,x — 1][x, x + 2/ — 1].
Vertices in [0, x — 1] and [x, x + 2/ — 1] are in A ~'~", therefore it takes at most #;
more iterations to multiply the matrices at level L — i — 1 in order to contract the path
to a single arc. Therefore COST (x, 1) = ([x, x +2' — 1][0,x — 1]*[x, x + 2/ — 1]) <
([0, x = 11"+t = COST(x — 1,1) + 1; < cost(x — 1,1) + t; = cost(x,).

(b2) x is not a power of 2. There are three subcases.

(b2.1) p does not have any vertex in [x —2!, x —1]. Thus p is of the form [x, x +2' —
1[0, x — 2' — 1]*[x, x + 2/ — 1]. We have (p) = ([x, x +2¢ —1][0, x — 2 — 1]*[x, x +
20— 1)) < ([x — 2, x + 21 — 1][0, x — 2f — 1]*[x — 2/, x +2' — 1]) (by proper subset)
= COST(x — 2!,) < cost(x — 2!, 1) < cost(x,]).

(b2.2) p contains one vertex in [x — 2i, x — 1]. pis of the form [x, x +2' — 1][0, x —
2 1" [x — 2, x — 1][0,x — 2! — 1J*[x,x + 20 — 1]. p = p1p;, where p; =
[x, x+2f =1][0, x =2 —1]*[x =2}, x—1], p; = [x—2, x—1][0, x—2' —1]*[x, x+2' —1].
(p1) = ([x, x +2 = 1][0, x = 20 — 1]*[x =2, x — 1]) < ([x -2l x 42t = 1][0, x —
20 — 1]*[x — 2/, x + 2 — 1]) (by proper subset) = COST(x — 2',1) < cost(x —2,1) <
cost(x — 1,1). After (p,) iterations, p; is contracted to a single arc. Because p; is the
reverse of py, pz is also contracted to a single arc after (p;) iterations. Therefore, after
(p1) iterations, p is contracted to p3 = [x,x + 2 — 1][x — 2/, x — 1][x, x + 2 — 1].
Vertices in ps are all in a submatrix A" ~'~1. Therefore, it takes at most 7; more iterations
with an execution of matrix multiplication at level L — i — 1 to contract p to a single
arc. Thus, (p) < cost(x — 1,1) + t; = cost(x,).

(['_12.3) p contains more thanlone vertex in [x — 2\, x — 1]. p is of the form [x,x +
2' = 1[0, x -2 1) [x =2, x = 1][0, x — 11'[x — 2 x —1][0,x =2} — 1" [x, x +
2 —1]. p = p1p2ps, where p; = [x,x +2' — 1][0, x — 2 =1 [x -2, x — 1],

Parallel Algorithms for Computing All Pair Shortest Paths in Directed Graphs 411

pr=1Ix—=2x—1][0,x — 1]*[x = 2,x — 1], p3 = [x =2/, x — 1][0,x — 20 —
1*[x,x + 2 — 1]. We have (p;) = ([x,x +2/ — 1][0,x — 20 — 1]*[x — 2/, x —
1) < (x — 2, x + 2 — 1][0, x — 2" — 1]*[x — 2!, x + 2/ — 1]) (by proper subset)
= COST(x —2,1) < cost(x —2!,1) < cost(x — 1,1). We also have (p3) = (py) (by
reverse) and (p2) = COST(x — 1,1) < cost(x — 1,1). Therefore, after cost(x — 1,1)
iterations, p is contracted to py = [x, x+2' —1][x—2', x—1][x —2¢, x— 1][x, x+2—1].
Vertices in p; are all in a submatrix AL ~~1. Therefore, it takes at most #; more iterations
with an execution of matrix multiplication at level L — i — 1 to contract p to a single
arc. Thus, (p) < cost(x — 1,1) + t; = cost(x,). O

LEMMA 12. Foroddx,x #1,COST(x, 1) = ([x=2"+1,x][0, x]*[x =2"+ 1. x]) <
cost(x, 1), where i is the largest integer j such that (x + 1)/2/ is odd.

PROOF. Let i be the largest integer j such that (x + 1)/2/ isodd. Let y = x — 1. Let
i’ be the largest integer j such that y/2/ is odd. We have the following cases:

() ([x10, y=11*[x]) < ([y, y+2" —1][0, y=1]*[y, y+2"~1]) = COST(x—1,]) <
cost(x—1,1). (Ix][0, y=11*[y]) < ([y, y+2" =1][0, y=1T*[y, y+2" ~1]) = COST(x~
L1) < cost(x = 1,1). (Y10, y —17°[x]) = (Iy, y+2" =110, y = 1I*[y, y+2" = 1]) =
COST(x—1,1) < cost(x —1,1). (¥1[0, y— 1T*[yD < (Iy, y+2" = 110, y— 1"y, y +
2" —1]) = COST(x — 1,1) < cost(x — 1,1). All by proper subset.

(c2) ([¥110, ¥I*IyD < cost(x — 1,1) + loglog! + 3 (by Lemma 6 and (c1), because
cost(x — 1,1) = z(l) + log!).

(c3) [x][0, y]*[x] can have three subcases.

(c3.1) [x][0, yI*[x]does not contain any vertex in[y]. Thusitis of the form [x][0, y —
17*[x]. This reduces to (c1).

(3.2) [x][0, yI*[x] contains one vertex in [y]. It is of the form p = [x][0,y —
11*[¥1[0, y—1]*[x]. p = p1p2, where p; = [x][0, y—1]*[y] and p; = [y][0, y—1]*[x].
We have (p;) = (p2) (by reverse). After (p;) iterations, p is contracted to [x][y][x].
Because [x] and [y] are in a submatrix A"~ it takes # more iterations to contract p to
a single arc. Therefore ([x][0, y]*[x]) < ([x][0, y — 1]*[y]) + t,. This reduces to case

(cI).

(€3.3) [x]1[0, yI*[x] contains more than one vertex in [y]. It is of the form p =
(100, y = 11*[¥1[0, ¥I*[¥1[0, y — 11*[x]. p = p1p2p3, where p; = [x][0, y — 1]*[¥],
p2 = Y0, yI*[¥]. p3 = [¥1I0, y — 11*[x]. We have (p;) = (p3) (by reverse). After
max{(p1), (p2)} iterations, p is contracted to [x][y][y][x]. Because [x] and [y] are in a
submatrix AX~D| it takes at most o more iterations to contract p to a single arc. Thus
(p) < max{(p1). (p2)} + to. Now (p;) is evaluated in case (c1) and (p,) is evaluated in
case (c2).

Summarizing three subcases for (¢3) and using (c1) and (¢2), we obtain that ([x][0, y]*
[x]) < cost(x — 1,1) + to + loglog! + 3.

(cd) ([x][0, x]*[x]) < cost(x — 1,1) + to + loglog! + 3 + loglog! + 3 (by Lemma 6
and (c3)).

412 Yijie Han, V. Y. Pan, and J. H. Reif

(c5) We use i steps to evaluate ([x — 2/ + 1,x][0, x]*[x — 2" + 1,x]). We define
cost(x,1,0) = cost(x — 1,1) + ty + 2(loglog! + 3) and cost(x, 1, j) = cost(x,1, j —
D+t 1<j<ilnstepl <j<iwe evaluate ([x — 2/ +1, x][0, x]*[x — 2/ +
1, x]). We show that ([x —2/ + 1, x][0, x*[x — 27 + 1, x]) < cost(x, [, j). We denote
[(x =2/ + 1, x][0, x]*[x — 2/ + 1, x]) by COST(x, 1, j). Therefore we need establish
COST(x,1, j) < cost(x,l, j), 1 < j <i. We have the following steps:

(c5.1) ([x 297141, x][0, x]*[x = x])=(x— 2741, x— 2j_1][0, x]*[x —
27 41, x — 2/717), by symmetry.

(c5.2) Evaluate ([x — 2/ + 1, x — 2/71][0, xJ*[x — 2/~! + 1, x]). For such a path p we
have the following cases:

(¢5.2.1) p contains only one vertexin[x —2/ +1, x—2/ "' and one vertexin [x =2/~ +
1,x]. Then pisofthe form [x —2/ + 1, x —=2/71[0, x —2/*[x —2/~! +1, x]. We have
(p)=(x -2/ +1,x=2"1[0,x =2 [x =277+ 1,x]) < ([x =2/ + 1, x][0, x —
2/]*[x =2/ + 1, x]) (by proper subset) = COST (x —2/ + 1,1) < cost(x =2/ +1,1) <
cost(x, 1, j).

(¢5.2.2) p contains more than one vertex in [x —27 + 1, x —2/="] but only one vertex in
[x—2/"1+1,x]. Letp = p;p,, where p; contains all vertices [x —2/ + 1, x —2/~]
in p and ends at the last vertex [x — 2/ + 1,x — 2/=17in p. p; and p, can be written
as pp = [x —2/ 4+ 1,x — 277100, x — 2771 [x — 24+ 1,x=-21,pp =[x -
2+, x =20, x =21 x -2+ L,x]. (p) =[x — 2/ +1,x - 2/71][0, x —
21 x =27 +1,x = 2 < (x =27 +1,x - 20710, x*[x =2/ +1,x = 2/71])
(by proper subset) = ([x — 2/~ + 1, x][0, x]*[x —2/~! + 1, x]) (by symmetry, see case
(c5.1)) = COST(x, 1, j — 1) < cost(x,1, j — 1). (p2) = (x —27 + 1, x —2771][0, x —
2T x =201 41, x]) < ([x —2/ 4+ 1, x][0, x —2/]*[x — 2/ + 1, x]) (by proper subset)
= COST(x — 2/ + 1,1) < cost(x — 2/ +1,1) < cost(x,l, j — 1). Therefore, after
cost(x, 1, j—1) iterations, p, is contracted to [x —2/ +1, x —2/~!][x =2/ 4+ 1, x =2/71],
p» is contracted to [x — 2/ + 1, x —2/~1][x — 2/~! 4 1, x]. Therefore p is contracted to
x—2/ +1,x=2/"1x =2/ +1,x —2/~[x — 2/~1 + 1, x]. It takes at most #j_; more
iterations for the instruction AiL_j) = Ag‘”j)Ay‘_j)AﬁL_j) to be executed in order to
contract p to a single arc. Therefore, (p) < cost(x,l, j — 1) +tj_1 = cost(x, I, j).

(¢5.2.3) p contains more than one vertex in [x — 27~ + 1, x] but only one vertex in
[x =2/ +1,x —2/71]. This case is symmetrical to case (c5.2.2). By symmetry we
have (p) < cost(x, I, j).

(c5.2.4) pcontains more than one vertexin[x—2/+1, x—2/=1) and more than one vertex
in[x—2/~141,x]. Letp = p| pap3, where p; contains all vertices [x—2/+1, x—2/~"]
in p and ends at the last vertex [x —2/ +1, x —2/~!]in p. p1, p2, and p; can be written as
o1 =[x—2/+1,x=27"1[0, x*[x =2/ +1,x=2/"1], pp = [x =2/ +1,x=2/71][0, x—
V=27 L xl ps =[x =277 H L x][0, x P =27+ 1, x]. (p1) = ((x =27 +
1,x—2"100, x]*[x =2/ + 1, x = 2/71)) = ([x = 2/~"+1, x][0, x]*][x =2/~ + 1, x])
(by symmetry, see case (c5.1)) = COST(x, 1, j — 1) < cost(x,1, j — 1). (p2) = ([x —
241, x=2"1[0, x =2/ F[x =2/ +1, x]) < ([x—27+1, x][0, x =2/]*[x =2/ +1, x])
(by proper subset) = COST(x — 2/ + 1,1) < cost(x — 2/ + 1,1) < cost(x,1, j — 1).
(p3) = ([x—277"141, x][0, x]*[x—2/~1+1, x]) = COST(x, 1, j—1) < cost(x,1, j—1).

Parallel Algorithms for Computing All Pair Shortest Paths in Directed Graphs 413

Therefore, after cost(x, [, j — 1) iterations, p, is contracted to [x —2/ +1, x — 2/~][x —
2/ 4+ 1,x = 2/71], pyis contracted to [x — 2/ 4+ 1,x — 2/~ 1][x — 2771 4+ 1,x], p3 is
contracted to [x —2/~1 +1, x][x —2/=' +1, x]. Thus p is contracted to [x —2/ + 1, x —
27 Nx =2/ +1,x = 2/""[x = 2771 + 1, x][x = 2/~! + 1, x]. It takes at most £;_; more
iterations for the instruction A§L_j Ve §L_j)AﬁL_j)AJEI’_‘i) to be executed in order to
contract p to a single arc. Therefore, (p) < cost(x,!, j — 1) + t;—; = cost(x, 1, j).

~ Summarizing (c5.2.1)~(c5.2.4) we have (p) = (Ix — 2/ + 1, x — 2/7'][0, x]*[x —
271 41, x]) < cost(x, 1, j).

(c5.3) Evaluating ([x — 2/~ 4+ 1, x][0, x]*[x — 2/ + 1, x —2/~1]). This is the reversed
path of the path analyzed in case (c5.2). Therefore ([x — 2/=! + 1, x][0, xJ*[x — 2/ +
1,x — 271 < cost(x, L, j).

(¢5.4) Now evaluating ([x — 2/ + 1, x][0, xJ*[x — 2/ + 1,x]) = COST(x,1, j). The
starting—ending vertex pair {a, b) of path p = [x—2/ 41, x][0, xJ*[x—2/+1, x]iseither
x=2"+1,x =2 [x =21+ 1, x=2"or (x—2"1+1,x], [x =2/ +1,x]) or
x=274+1,x=2"1, x =21+ 1, xDor{[x -2/~ + 1, x], [x =2/ + 1, x = 2/~1]).
Therefore p is one of the four paths py, pa, ps, ps, where p; = [x =2/ + 1,x —
2700, xP[x =2/ + L, x — 2071, pp = [x — 271+ 1, 200, x)*[x — 27 + 1, x]),
p3=[x—2/+1,x=2/"1[0, x]*[x —2/ ' +1, x],and ps = [x =2/~ +1, x][0, x]*[x —
2/ 41, x—2/-1]. We have (p;) = COST(x, 1, j —1) < cost(x,1, j —1) < cost(x,1, j),
(p1) = (p2) (by symmetry), (p3) < cost(x,1, j) (by (c5.2)), (ps) < cost(x,l, j) (by
(c5.3)). Therefore we have (p) < cost(x, 1, j).

Summarizing (c1)~(c5) we have COST (x, 1) = ([x—2'+1, x][0, x]*[x—2'+1, x]) <

cost(x,1,i) = cost(x, |, 0)+Z;;f) tj = cost(x—1,1)+1+2(log 10gn+3)+2};[1] t =
cost(x,). O

THEOREM 13. COST(x,1) < cost(x,1),0 < x < 2L,
PROOE. By Lemmas 9-12. O

THEOREM 14. The total number of iterations needed to compute all pair shortest paths
in APSP3 is no more than 8 logn.

PROOE. By Theorem 13, cost(2k —1,n) upper bounds the number of iterations needed
to contract any path of length less than z to a single arc. We have cost(2-—1, n) < logn +
2 (loglogn +3) + Y1, 12t/ = logn + 2L (loglogn +3) + Y j_, K2t~/
3L-J < 2logn + 6logn = 8logn. As we have explained before, when we sum all
t;’s for all x we are in fact summing all #;’s in Figure 2 twice. We thus get the term
Y1 12877+ 2(loglog n + 3) is included once for each odd x except x = 1 where
the term is only loglogn + 3. Thus we get the term 2% (loglogn + 3). The term logn
comes from cost(1, n). O

THEOREM 15. Algorithm APSP3 computes all pair shortest paths in time O(n®/p +
I(n)logn).

414 Yijie Han, V. Y. Pan, and J. H. Reif

PROOF. Each iteration can be executed in 7 (n) time if enough processors are available.
Thus we only need to show that the total number of operations executed is 0 ().
Matrices at level i,0 < i < L, are multiplied with themselves 8logn/f; ;-1 <
8logn3'/K < 24 % 3' times. There are 2' such matrices and each matrix multipli-
cation takes O ((n/2")?) operations. Thus the total number of operations for these matrix
multiplications is O(Z,-L;Ol 3 %20 % (n/21)%) = O(n®). There are 2- submatrices at level
L. Each of them is multiplied to itself 8 log n times. The total number of operations for
these matrix multiplications is O(25(n/2%)% logn) = O(n?). O

If we multiply two matrices by using the results in [Fr] and [T], we can reduce the
number of operations to o(n?).

COROLLARY. Algorithm APSP3 computes all pair shortest paths in time O(f (n)/p +
I(n)logn) on the EREW and CRCW PRAM, where f(n) = o(n?).

This corollary does not apply to the randomized CRCW PRAM. Because we multiply
two matrices in constant time using n* processors on the randomized PRAM, Fredman
and Takaoka’s technique cannot be applied in constant time to result in savings.

References

[AGM] N. Alon, Z. Galil, and O. Margalit. On the exponent of all pairs shortest path problem. Proc. 32nd
Ann. IEEE Symp. FOCS, pp. 569-573, 1991.
[DNS] E.Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph algorithms. SIAM J. Comput. 10:657—
675, 1981.
[DS] E. Dekel and S. Sahni. Binary trees and parallel scheduling algorithms. [EEE Trans. Comput.
32:307-315, 1983.
(D] E.W.Dijkstra. A note on two problems in connextion with graphs. Numer. Math. 1:269-271, 1959.
[F1] R.N. Floyd. Algorithm 97, Shortest path. Comm. ACM 5:345, 1962.
[Fr] M. L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J. Comput.
5(1):83-89, 1976.
[GM] H. Gazit and G. L. Miller. An improved parallel algorithm that computes the BFS numbering of a
directed graph. Inform. Process. Lett. 28(1):61-65, 1988.
[71 D.B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. Assoc. Comput. Mach.
24(1):1-13, 1977.
[KR] M. Karp and V. Ramachandran. A survey of parallel algorithms for shared memory machines.
Handbook of Theoretical Computer Science, pp. 869-941. North-Holland, Amsterdam, 1990.
[L] A. Lingas. Efficient parallel algorithms for path problems in planar directed graphs. Proc. SIGAL
'90, pp. 447-457. Lecture Notes in Computer Science, vol. 450. Springer-Verlag, Berlin, 1990.
[PK] R.C.Paige and C. P. Kruskal. Parallel algorithms for shortest path problems. Proc. Internat. Conf.
on Parallel Processing, St. Charles, Illinois, pp. 14-19, 1985.
[PP1] V.Y.Panand F. P. Preparata. Supereffective slow-down of parallel algorithms. Proc. ACM Symp.
on Parallel Algorithms and Architectures, San Diego, California, pp. 402-409, 1992.
[PP2] V.Y.PanandF. P. Preparata. Work-preserving speed-up of parallel matrix computations. SIAM J.
Comput. 24(4):811-821, 1995.
[PR1] V.Y.Panand J. H. Reif. Fast and efficient solution of path algebra problems. J. Comput. System
Sci. 38(3):494-510, 1989.
[PR2] V. Y. Pan and J. H. Reif. The parallel computation of minimum cost paths in graphs by stream
contraction. Inform. Process. Lett. 40:79-83, 1991.

Parallel Algorithms for Computing All Pair Shortest Paths in Directed Graphs 415

[R] R. Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM J. Comput.
14(2):396-409, 1985.

[S] R. Seidel. On the all-pair-shortest-path problem. Proc. 24th ACM STOC, pp. 745-749, 1992.

[T] T. Takaoka. A new upper bound on the complexity of the all pairs shortest path problem. Inform.
Process. Lett. 43:195-199, 1992.

[V] L.G. Valiant. Parallelism in comparison problems. SIAM J. Comput. 4(3):348-355, 1975.

