EFFICIENT PARALLEU LINEAR PROGRAMMING

Victor PAN *
Computer Science Dep State University of New Yark, Albany, NY 12203, USA

John REIF **
Aiken Compwiation Leooratory, Division of Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Receiverd October 1985
Revised Junc 1986

Linear programming and lcast squares computations arc accelerated using avthors’ parallcl algorithms for solving fincar
systems. The implications on the p of the K kar and the simplex algorithms for dense and sparse lincar
programs arc examined. The results have further ications to i ¥ i

linear programming * Jeast squarcs ¢ parallel algorithms

1. Introduction

Numerous practical computations require to find a least squares solution to an overdeiermined system
of linear equations, Ax= b, that is, to find a vector x of dimension » that minimizes || Ax — 8] given an
m X r matrix 4 and a vector b of dimension m where m > n. (Here and hereafter we apply the Euclidean
vector norm and the associated 2-norm of matrices (Golub and van Loan [5]).j Such a problem is called
the linear least squares problem, 11.s.p. In particular solving a linear system .4x = 5 in the usual sense is a
simplification of the).1.s.p. where the outpat is cither the answer that min || Ax — b} > 0 or, otherwise, a
vector x* such that Ax* ~ 5= 0.

The first objective of this paper is to re-cxamine the time-complexity of the L1s.p. and to indicate the
possibility of speeding up its solution using the paralicl algorithms of Pan and Reif {18} combined with the
techniques of blow up transformations and of variable diagonals and with the Sherman-Morrison—-Wood-
bury formula. As a major consequence (which may become decisive for determining the best algorithm for
the linear progravnming problem (Lp.p.), at least over some important classes of instances of that problem),
we will substaatially speed up the algorithm of Karmarkar [7] for the Lp.p., because solving the iLs.p.
constitutes the most costly part of every .iteration of that algorithm. Furthetmore we will modify
Karmarkar’s algorithm and will solve an Lp.p. with a deasc m X input matrix using O(Lm log®m)
parallel arithmetic steps and m>S processors where the parameter L (defined in [7]) represents the input
sizc of the problem, Applying fast matrix multiplication algorithms we may d the above p
bound in the densc case, as well as the asymptotic sequential time bound of [7), by a factor of mt3%
(preserving the best asympiotic parallel time). In fact, improving (sce Strassen [23]), or even combining the
known fast matrix multiplication methods (see Gartenberg [3], Lotti and Romani [10), Pan [13)), may lead
to further decrease of processor bounds, but the latter decrease, as weli as the improvement by a factor of
m®*, would hardly have any practical value due to a huge overhead of the usymptotically fast matrix
multiplication methods and their inability to preserve sparsity. Our acceleration of Kammarkar’s, however,

* Supported by NSF Grants MCS 8203232 and DCR 8507573.
+* This work was supported by Office of Naval Research Contract NO0G14.30-C-0647.

127

Preprint of paper appearing in Operations Research Letters, Vol. 5,
No. 3, August 1986, pp. 127-135.

is pracucal and most significant in the important case (arising, for instance, in the optimization of
ecunomy isting of several branches weakly d to each other and in the multicommodity flow
problcm in a planar network for a fixed number of commodities (see Gondran and Minoux [6] or Murty
{11, p. 391]), where the input matrix of Lp.p. is large and sparse and is associated with graphs having a
fa=ily of small separators (sec the formal definitions below, in Section 3).

Our work has several further impacts. Similarly to the case of the algorithm of [7}, we may immediately
improve the performance of several known algorithms, in particular of algorithms for systems of lincar
inequalities (Pan [14]), for mathematica! programming (Shor [22]), and for sparse non-symmeiric systems
of linear equations, because (as we indicated above) solving a system of linear equations constitutes a
particular case of the Lis.p. where min_ || Ax - b|| = 0. The latter observation ieads to a very wide range
of applications of our results, including in particular the acceleration of the simplex algorithms for a sparse
1.p.p. (compare Chvatal 2], Murty [12]). Further applications may include several combinatorial computa-
tions. This is demonstrated in Pan and Reif [19], where, relying on the latter improvement of the
algorithms for sparse non-symmetric systems of linear equations, we extend the parallel nested dissection
algorithm of [18] to the path algebra computations.

We organize the papcr as follows. In the next section we recall two kanown representations of the 1ls.p.,
using normal equations and their blow-up transformations. In Section 3 we re-examine the computational
cost of sequential algorithms for 1).s.p.; in particular, we recall the sequential nested dissection algorithm
of Lipton, Rose and Tarjan [8] and adjust it to the case of L1s.p. In Section 4 we estimate the cost of
performing our parallel aigorithm for the same problem. In Section 5 we consider one of the major
applications of our results, that is, to the acceleration of Karmarkar’s algorithm, In the appendix we will
briefly comment on the current estimates for the computational cost of solving the Lp.p.

2. Linear least squares problem (L1s.p.)

We will use the known fact (see [5]) that the LLs.p. can be reduced to computing solution x to the

system of normal linear equations

AVUx=ATh, \ m
which can be reduced to the following system of linear equations in 5 and y:

D\Dls+ D,ADyy=~D,b, DJA™D]s=0,
or, equivalestly,

Hv=d,)
where

D DD, P Dy .
Helpeopr o | °|yp d=|" "L =Dy, D=,

Dy is an n X n matrix, D, is an m X m matrix, Dy, D, arc non-singular. Here and hereafter 1, W7, o', 0
and 0 denote ths identity matrix, the transposes of a matrix W and of a vecior v, the null matrix and the
null veetor of appropriate sizes, respectively. Hereafter %7 will denote the inverse of W™,

If we need to solve the lincar sysicm Ax = b in the usual sense, then that system can be equivalenily
rewritien as GA4x = Gb, for any non-singular matrix G, The latter system is cquivalent to (2) where in that
case D can be 4ny m X m matrix, noi necessarily D, DT,

Remark 1. Even though the systems (1) and (2) are equivalent to each other, it is more convenient to apply
some algorithms o sysicm (2) than to (1) where H is more sparse and/or better structured than A™4. (We
will call the iransition from (1) o (2) and similar transformations the blow-up transformations of linear
systems.) The simplest and the most customary choice for D, and D, in (2) is the identity matrices 7;

128

however, chuosing appropriate diagonal matrices for D, and D; we may scale the rows and columns of the
three blocks of H in ordzr to siubilize some special aigorithms fcr sparse linear systems (2), such as the
nested dissection algorithm; sce below, That stabilization can be combined with the customary techniques
of threshold pivoting, used in sparse matrix compwations at the stage of determining the climination
ordering (Pissanetsky [21}; sce also {20] on the stabilization based on variable diagonal techniques and
Sherman-Morrison-Woodbury formula).

Remark 2. In some cases further equivalent transformations of the systems (1), (2) are effective; see |20}

3. Sequential computational complexity of the Lis,p.

Toi ar Llsp. with a dense matrix A, its solution can be obtained from (1) usmg O(m/n)M()]
arithmetic operations where M(n) is the cost of » X n matrix mult’plication, M(n) < 2n* — n?. Theoreti-
cally M(n) is at least as small as o(n>%), [23), but that bound is not practical due 1o the huge overhead
constants hidden in that *0’, [13}, and because the underlying algorithms do not exploit sparsity of input
matrices.

If the matrix A is sparse, the solution can be accelerated uzing some special methods; see Bjorek [1]. In
particular applying the conjugate gradient method or the Lanczos method (see [1,5])) we may reduce the
cost of solving both the system (1) and (consequently) an L1.s.p. to O(mN(A)) arithmetic operations where
N(A) is the number of non-zero entries of 4, provided that the multiplication by 0 and the addition of 0
arc cost-frec operations.

We will single out 2 more specific case encountered in many practical instances of the LLs.p., that is, in
the instances where the matrix A4 is sparse and where furtherinore the graph G — (¥, E) associated with
the matrix H has an s(m + n)-separator famity with s(m + n) = o(m + n). (Hereafter we will assume that
s(k) = vk .) Here and hereafter we apply the two following definitions, which we reproduce from [18, Sect.
1.2} (compare also [8]).

Definition 1. Let C be a class of undirected graphs closed under the subgraph relation, that is, if Ge C
and G is a subgraph of G, then G’ & C. The class € is said to have a dense family of s(n)-separators or,
simply, an s(n)-separator family if there cxist constants n,> 0 and a, 0 < a < 1, such that for each graph
G & C with n 2n, vertices there is a pastition ¥}, V5, S of the vertex set of G such that |V, | <an,
|Valsan, |S|<s(n), and G has no cdge from a vertex of ¥, to ¥ (them § is said to be an
s(n)-separator of G). An undirected graph is said to kave an s(n)-separator family if the class of all its
subgraphs has an s(n)-separator family.

Binary trees ob ly have a 1-sep family. A d-dimensional grid (of a uniform size in each
dimension) has an n1 “""separalor Lipton and Tarjan [9) show that the planar graphs have a
V87 -separator family and that every n-vertex finite clement graph with <k boundary vertices in every
clement has a 4| k /2|y -separator.

Definition 2, Given a & X k symmetric matrix W =[w,], we define G(W)=(¥, E) to be the undirected
graph with vertex set V= {1,...,k } and edge st E={{i, j}|w;;#0}.

The very large linear systems Ax=»b that arise in practice often have graphs G(A4) with small
separators. Important examples of such systems can be found in circuit analysis (¢.g., in the analysis of the
electsical properties of a VLSI circuit), in structural mechanics {eg., in the stress analysis of large
structures), and in fluid mechanics (e.g., in the design of airplane wings and in weather prediction).
Similarly the associated graphs G(A™A), G(H) of the systems (1), (2) frequently have small separators. In
all such cases highly cffective algorithms can be used. In particular, when the associated graph G of the
matrix H of (2) has an s(m + n)-scparator family, the application of the techniques of nested dissection

129

(see [1, p. 182), George [4], [8]) decreases the cost of the solution of the system {2), and consequently of the
original LLs.p., to O(! E:| + M(s(m + n))) arithmetic operations where | E} is the cardinality of the edge
set of G [8]. This is the cost of computing the LDL'-factorization of H; this cost is much lower than
M(m + n), the cost in case of dense H {5). The sub luation of the osausfymg(Z)cosls
O(| E } +(s(m + n))*) arithmetic operations [8], so the approach is particularly eifective for soiving several
systems (1) with fixed A and variable b. Smnlarly for the linzar systems (1) whose graph G(4"4) has an
s(n) ~<parztor family, computing the LDL -factorizaiion of A4 costs O(| E | +M(s(n))) operations and
the subsequent solution of (1) costs O(|E|+(s(n))?); in that case stability of the nested dissection
algorithm is guaranteed and vsing system (1) should be preferred; compare Remark 3 below. To see the
potential advantage of using the nested disseciion algorithm, assume that m = O(n) and thai the
asscciated groph G of K is planar. Then G has O(/n)-separators [8}, and | E| = O(n), so computing the
LD -factorization of H costs O(n'*) arithmetic operations, and the subsequent solution of (1) costs only
O(n) for every fixed vector b, to compare with O(»*) arithmetic operations, required for the solution if the
sparsity is not exploited, and with O(n?) arithmetic operations vequired by the conjugate gradient and
Lanczos methods.

Remavk 3. The system (2) is not positive definite, so the nested dissection algorithm may involve
dastabilizing elimination steps, characierized by small magnitudes of pivot elemeats; sec Remark ? and
120] for partial remedies.

4. Parallel algorithms for Ll.s.p.

For large input ices A, the sequential algorithms for the LLs.p. can be prohibitively Jow. Their

dramatic scceleration that preserves their efficiency can he obtained using the recent paralle! algorithms of
{18], where iz cach step every processor may perform one arithmetic operation. Specificaily, before {18]
appeared, the best algorithms for solving a lincar system with au 7 X n deasc matrix 4 cither (i) wu'e
unstable and required O(og®n) parallel steps and 2 Vit M(n) processors, or (ii) involved > n steps and n*
processors. (Here and hereafter the numbers of processors are defined within constant factors for we may
save processors using more steps. Practically this means that the user, lfaving, say, k times less processors
than in our subsequent estimates, may still use our algorithins; the parallzl time, cven increased by a factor
of %, may stiil -be attractively small for that user.) The stable iterative algorithm of [18], based on Newtor's
iteration for the matrix equation /— XA =0, requires only O(log’n) steps, M(»}/log n processors 1o
compute the solution of such a dense system (with the relative error norm bounded, say, by 1/2"
provided that the system has a well-conditicned or a strongly diagonally dominant matrix. (In fact the
algorithm cven inverts the matrix of the given system for the above parallel cost) That algorithm
successively computes 1= [A} 1| Al o» Bo-(l/l)AT Biy1=2B,— By AB, k=0,1,...,9. B, is shown
to be a very high precision approxiination to B™' aiready if ¢ = O(log n) and if oond{A) wbounded bya
polynomial in » (similerly if B is strongly diagonally dominant, that is, if || /— XA|, <1—1/»° orif
| I~ XAl . <1—1/n° for a positive constant ¢). The cesired estimates for the parallel complexity of
sclving dense linear systems immediately follow. Applying the cited algorithm to the system (1), we solve
the original 11.s.p. using O(log m + log?n) steps, (M(n)/log n)1 + m/(n log n)) processors. These are
the bounds in the case where A is a general (dense) matrix.

Anosher narallel alaorithm of [18] is applied to the systems (2) in the cases of practical intcrest, where 4
is spasse and the graph G=(V, E) of H has an s(m + n)-scparator family; sec Définitions I and 2. In
that case the paralicl nested dissection algorithm of [18] computes a special recursive s(m + n)-factorization
of the matrix # of (2) using O(log m logs(m + a)) parallel steps and | E| + M(s(m + r))/log s(m + n)
processors, the observations of Remarks 1 and 3 are still applied. (We should apply the same algorithm to
the system (1), with even slightly better resuits, that is, we may replace m + # by # in the cost estimates
and improve the stability, provided that the associated graph of (1) has a small separator family.)
Following [18, Definition 4.1}, we define such a recursive s(m + n)-factorization of H as a sequence of

130

matrices Hy, H,,..., H; such that Hy=PHPT, P is an (m + n) X (m + n) permmtation matrix,

Y, Z

for §=0,1,...,d-1, and X, is a block diagonal matrix consisting of square blocks of sizes at most
s(a""(m+n)))<s(¢"'(m+n)) where a’(m+ n) < ny for constants ny and a of Definition 1. The
latter inequality implies that the factorization (3) has icugth d = 0(log m), so the computation of (3) is
reduced to O(log m) paralicl steps of matrix muitiplication and mversion versus m + » such steps in the
sequenln! nested dissection algorithms, required to compute the LDLT-factorization. The dense blocks of
X, (of sizes s(a’~%n X a?~%n)) are inveried by the cited paralle] algorichm of [17) for mawix inversion.
Tlnsenablmustokeep the total cost of computing the recursive factorization (3) as low as stated.

Observe that the definition of a recursive s(#)-factorization implies the following identities for
g=0,...,d-1:

ne[re % o 3]

| R o" I ol
* lo 1 o HIZj\-vxt b

X Y
¢ Hg= [] Zy=Hp + XY (3)

and henee

This reduces solving linear systems with matrix H, to solving linar sysiems witk amirices X, and H,,
and f'uuliy implies that, although the recursive !uctonzaum (3) is distinct from the mom cuslomry
-LDLT factorization uced in the sequential algorithms, bot}"ha similar power, that is, when the recursive
factorization (3) is availeble, J{{log m)Xlog s(m + n))) paraiiei steps and | E | +(s(m+ n))* processors
«*fice in order 10 solve the system (2) and consequently the origiral LLs.p. In [18], the partition of H, in
() for g=0,1,...,d—1 is defined by appropriatc enumeration of the vertices of the graph'G. The
enunieration, the study of the block diagonal structure of the matrices X, and the complexity estimates
rely on extensive exploitation of the properties of the graph G stated in Definitions 1 and 2,

Comparing the cost bounds of [8] and [18], we can sce thut the parallelization is efficient, that is, the
product of the two upper bounds en the numbers of steps anil processors of [18) is equal (within a
polylogarithmic factor) to the bound on the number of arithmetic operations ii the ¢: . :nt best sequential
algorithm of [8] for the same problem. The same efficiency criterion is satisfied in the algorithms of [18]
inverting an n X n denselﬁxinoaogzn)pamndsupsnsingu(n)/bgnpws.ansequeuuyall
our parallel algorithms for an L1s.p. are also efficient.

The complexity estimates of [18] have been established in the case of well-conditioned input matrices;
the algorithms of [18) output the approximate solutions with a sufficiently high precision. On the other
hand, all the estimates have been extended to the case of an arbitrary integer input matrix A in Pan [15,17]
by using some different techniques, in particular using variable diagonals. In that case the solutions arc
computed exactly, although that computaticn generally involves larger numbers, such as the determinant
of the input matrix, det .4. That algorithm exactly computes at first det A and adj 4 and then
A = adj A/det A and A7'b = (adj A)b/det A. If only a system Ax = b with an # X » integer matrix A
must be solved, only (adj A)b (rather than adj £) should be computed. The evaluation of det A4 in [15,17]
is reduced to computing the Krylov matrix, K=[v, 4v,..., A" Yo}, and the vector 4", v=[1,0....,07,
and to the exact solution of the lincar system, Ky = A"p. The soiution vector y=[y,] is the coefficient
vectorofthecbamtensucpolynomnlofA det|AZ - A}, s0 yy=det A4, and all the entries of y are
integers. At those stages, O(logn) parallel steps and M(n) processors suffice, provided that X is strongly
diagonally dominant, because we may use the algorithm of [18] in order to compute the integer solution
vector y with the absolute error norm bound, say 1/3; then we may obtain y exactly by rounding-off. To
make the matrix X strongly diagonally dominant, at first we replace A, say by 4 + pI or, more generally,

m

by 2 matrix W soch that W=A mod p, so det W=det A mod p is computed. Then using
Newton-Hensel’s lifting, we compute det W = det 4 miod p*, where 2|det A| <p®, s=2*, h= O(log n),
so we may recover det A. Similarly we compute adj 4 or (adj 4)5. In the worst case this construction
requires to choose g as large as n”. However, with probability 1 - ¢(n), e(n) = 0 as n — o, it suifices to
choose p being a prime of an order of O((n || 4]))*') and to define both the Krylov matrix and the vector
W% modulo p*. Another approach leads to slightly inferior (with the time bound increased by a factor of
log n) but detcrministic estimates. It relies on computing LU-factors of A; see [17)

S. Karmarkar’s algorith, paraflelization, application fo sparse Lp.

In this section we will examine the cost of Karmarkar’s linear programming algorithm {7}, and of its
modifications that use the blow-up transformations, the nested dissection and parallelization. At first we
will reproduce that algorithm, which solves the problem of the minimization of the linear function ¢y
subject to the constraints

ATy"oi %}?"lv .VZ”, . ' (4)

where y=[y, j=0,1,..., m—1] and ¢ are m-dimensional vectors, AT is an n X m matrix, m>n, yis
unknown. This version is equivalent to the canonical linear programming problem of the minimization of
¢y subject to ATy < b, y= 8 see [7] and enmpare [2,12). We will designate e={1, 1,...,1]7,

() =[50 2 (reees Fuea (D]
D(0)=1, D(i)=diag(3(i), N(i)s..es Vus() &)

BT=BT(3')=[ATD1.(i)]’ i=0,1,...
e .

(AR} the diagenal matrices D(i) encountered in the algorithm of [7] are positive definite.) The algorithm
proceeds as follows:

initialize CHOOSE ¢ > (¢ (prescribe tolerance) and a parameter 8 (in particular, 8 can be set equal to
1. Let p(0) =(1/n)e, i =0.
recursive step While non-optimal (p(i)cy(i) > ¢) and while the infeasibility tests fail do
Compute the vector (i + 1) = y(y(i)), increment i.
Given vector y(i), the vector y(i + 1) is computed as follows:
(1) Computc the matsix B = B({) of (5), that is, compute the matrix A™D(i) and avgment it by
appending the row e”.
{2) Compute the vector ¢, ={1— B(B"B)'BT1D(i)c.
(3) Compute the vector z(i) = y(i) — Bre,/|| c%ll where r=1/ym(m—1).
(4) Compute the vector y(i+ 1) = D(i)z(i)/e"D(i)z(i)).

The algorithm inéluduthechecksior infeasibility and optimality (see [7]), but it is easy to-verify that
their computational costs, as well as the computational cost of the reduction of the problem from the
canonical form to (4), are dominated by the cost of computing the vector y(y{(i)) at the recursive steps,
which is, in turn, dominated by the cost of computing (B"B)™? given 3 = B*(i) for all i. [7] shows that
BB can be represented as follows:

T2,
BTB_[A D)4 0]'
ov m
s0 the inversion of BB is reduced to the inversion of 4"D?(/)4, which in Wwm is reduced to the wvsrsion
of the matrix H of (2) where A is replaced by D(i)A. Furthermore we can see that it suffices to compute

132

the product (B"B) 'BD(i)¢. and this amounts to matrix-hv-vector multiplications and to solving a
blown-up linear system of the form (2) with the matrix

0] A]
H=H(i)= . : 6
(1) [o ©

This algorithm of [7] requires O(Lm) recursive steps in the worst case, so the tota! computational cost is
O(LmC) where L is the input size of the problem and C s the cost of computing y(y) given by y. The
algorithm for the incremental computation of the inverse of BB of {7, Sect. 6] implics that C = O(m)
for the dense A. It is rather straightforward to perform these O(m™>) arithmetic operations in paralle
using O(Vm log m) steps and m?/log m processors (and using O(m) steps, m? processors for the initial
inversion of A'4). Aypiying the mauix inversion algorithms of [18}, we may perform every cvaluation of
¥(y) using O(log m + log*n) parallel arithmetic steps and (M(n)/log nX1 + m/(n log 1)) processors, so
we arrive at the following trade-off for the estimated total arithmetic cost of Karmarkar’s algorithm:
O(m'>L) steps, m* processors, that is, O(m>>L) axithmetic operations (via the straightforward paralleli-
zation) or O{mL(log m +log?n)) steps, (M(n)/log nX1 + m/(n log n)) processors, that is, O(mLM(n)
(log m+Yog?r)1 + m/(n log n))/log n) arithmetic operations (via the -paraliel matrix inversion al-
gorithms of [18]).

In both cases the sparsity of A is not exploited. In particular the algorithm for the incremental
computation of the inverse suggested in [7, Sect. 6] docs not preserve the sparsity of the original input
matrix. This causes some difficultics for practical computations, because the storage space increases
substantially. Thus the special methods of solving sparse 11s.p., such as the conjugate gradicas, the
Lanczos and the nested dissection methods (sce [1,5] and this paper) become competitive with Gf not
superior to) the latter algorithm of [7, Sect. 6). If the matrix A is such that ths graph G=(V, E) of the-
mabices H of (6) has an s(m + n)-separator family and s(z + n)= o(m + n), then the nested dissection
method can be strongly recommended. Specifically, in that case we amive at the estimates of
O(Lm(| E | + M(s(m + n)))) arithmetic operations for sclving the Lp.p. vy combining {7] and [8] (see
Scection 3), and of O(Lm log m log?s(m + n)) parallel arithmetic steps and O(} E | +M(s(m +
n))/log s(r: =+ n)) processors, by combining {7] and the parallel algorithm of this paper. The reades could

appreciate this improvement due to the application of the nested dissection if we recall that
s(m + n)= [8(m +n) where the graph G is planar (as occurs in many operations rescarch applications,
for instance in the problem of computing the maximum flow in a network having ar s(m + n)-separator
family). Then the processor bound for computing the recursive factorization (3) is less than 2s’(m + n) =
8/8(m+n)"* and the total number of arithmetic operations is O(mL{m+ n)"*) in that case. The
premultiplications of A by the non-singular matrix D(i) do not change the scparator scts for the graph G,
so these sets are precomputed once and for all, which is an additional advantage of using the nested
dissection in this case.

Finally we apply fast matrix multiplication algozithms in order to decrease the known theoretical upper
bounds on the complexity of solving Lp.p. with a dense input matrix from O(m*>L) arithmetic operations
of['l]toO(m‘L)whemﬁ<3.165.Reuﬂlbnimﬁoniof[ﬂanberedwedtoinverﬁnglhmauix i)
of [9); furthermore the diagonal matrix A(i)= D~(i) — D(i— 1) has at most j= O(Ym) non-zero
entries for cach /, i=1, 2,... Now we will apply the Sherman-Morrison-Woodbury formula 5, p. 3}

(S-UV) '=st+5W(I-Vvs~U)T Vs, (04

which holds for arbitrary matrices S, U and V of appropriate sizes such that 7+ ¥$~'U is a non-singolar
matrix. We will Jet U=V be a diagona! matrix with at most j non-zero emtries, such that UV =
1450 9]. Then thé computation of H~(i) given H™'(i ~ 1) is reduced to the inversion of a j X j submatrix
of 7— VH (i — 1)V and to two rectangeler matrix multiplications, of the sizcs 2 X J by 7 X j and m X
by j X m; see [T]. Thus the entire arithmetic cost of one iteration of [7] is dominated by the arithmetic cost,
M(m, j, m), of the mXj Gy j X m matrix multiplication. Respectively, the cost of solving the Lp.p. is
O(LmM(m, j, m)) asithmetic opcrations or O(Lm log*m) parallel steps, M(m, j, m) processors, where

133

Table 1

Arithmetic Parailel Processors
ocperations steps
st itesation of [7) o(m®) OQlog?m) m>/log m
Average over n
iterations of [7} o(m>%) O(log*m) ms
Any iteration of revised
simplex algorithms o(m?) O(m) m

j=0(m), M(m, j, m)=0O(m*). Surely §<225, for M(m, j, m)=M(jXm/j) =o(m*®), il j=
O(/m), but in fact 8 is upper bounded by 2.165 ([3, p. 108}, also compare [10]). This implics the sequential
time bound O{ Lm*>'*) and conscquently (see {18, App. AD the processor bound M(m, j, m) = O(m*'*%)
(with the parallel time O(Lm log?m)) on the complexity of the 1p.p.). As we have mentioned, large
overhead makes fast matrix multiplication algorithms non-practical. Note, however, that even with the
straightforward matrix multiplication M(m. j, m)=m>(2j— 1), which implies decreasing the parallel
cost of one iteration of {7] to O(log®m) parallel steps, m>> processors (using as many iterations as in [7),
that is, O(Lm)).

Remark 4. The latter asymptotic complexity estimates (but with dowble overhead} could be deduved
relying on the inversion of A™D(i)A.

Appendix: Corrent computationsl cost of sclviag the Lp.p.

In Table 1 we display the estimates for the compuiational cost of one iteration of the simplex and
Karmarkar’s algorithms for the Lp.p. having a dense m X r input matrix A4; compare Pan [16}. We will
restrict our analysis to the cases where n < m= O(n). As in [16], we will not use the possible accelerations
based on fast matsix multiplication, but now we will apply ﬂ-: results of [15,18) and ths improvement of
Karmarkar’s from the end of the previous section.

Thelelsaeenmneontmvusyabonuhccumtuppcremmamforthenumberofmrauonsmthetwo
cited algorithms. The worst case upper bounds, O(Lm) for [7] and 2™ for the simplex algorithms, greatly
meedthenumbﬂohmuonneqmredwhezetbesamealgomhmsmnmpmcueeoruserandommput
instances. This vncertainty complicates the theoretical comparison of the effectiveness of the two
algorithms. However, some preliminary comparison can be based a1 the partial infermation aiready
avulable.lnpmﬂar]etusameﬁnempmwlupperboundow""")'ondnenumberofneranons
(pivot steps) of the simplex algorithras, cited by mmeauthomwhoreferwthcdeeadcsofpracucal
computation; sec {2, pp. 4546}, [12, p. 434} The bound implies that a total of O(m® log m) arithmetic
operaticns suffice in the simplex algorithm vs. O(m®) used already in the first iteration of [7). Morcover
there arc specizl methods that efficiently update the wriangular factorization of the basis matrices used in
the simplex algosithms, which further simplifies every iteration of the simplex algorithms in the case of
sparse input matrices; see {2, Chs. 7, 24), [12, Ch. 7). On the other band, if appropriate modifications of
Karmarkar’s original algorithm indeed run in a sublinear number of iterations (as he reported on at the
TIMS/ORSA meeting, Boston, May, 1985, and a¢ the 12th International Symposium on Mathematical
Programming, Boston, August, 1985), this would immediately imply a substantial acceleration of the
i algorithms at least in the cases of (§) parallel computation and dense input matrices (sce Table 1),
and (ii) both paralle] and sequential coniputations where the graph associated with the matrix H of (2) has
an s(m+ n)-scparator family with s(m + n) = O{(m + n)?). ¢ <1 {sce the estimates of Section 5).

134

References

[1]Aﬁm’mlwmmhmmm.h:;_KmmDJ.mmSpar:rMmimelp‘nim.
Academic Press, New York, 1976,

[2} V. Chvatal, Linear P) ing, F: San Francisco, CA, 1983,

(&) P.A.Gn-nbu;“l’mmpﬂ:rmmmluﬂmn MMWMMUWMC_M
Los Angeles, CA, 1985,

{4) J.A. George, “Nested dissection of a regalar finite element mesh”, STAM J, on Nwmerical Analysis 18 (2), 345-367 (1973).

{51 G.H. Golub and CF. van Loan, Matrix Conputations, Johns Hopkins University Press, Bahiniore, MD, 1983,

IGIMWMMMmGMMAmWMMYu&IM

[7] NK. Karmarkar, “A new p ithm for lincar progr , Combinatorica 4 (4), 373-395 (1984).

(8] R Lipton, D. RouelndR.l'.quan Gmnimdn&:ddmecnm SMMJ on Niomerical Anclysis 16 (2), 346-358 (1979).

9] RJ. Lipton and R.E. Tacjan, “A. separator theorem for planar graghy”., S7534.° mwumum-lxonm

{10] G. Lowi and ¥. Rmu‘ca\uwmmﬂmrynfmmmuﬁmm ion”, Th f Ce Seizace 23,
171-185 (1983).

{t1] K.G. Murty, Linear and Corbinatorial Programwiing, Wikey, Mo York, 1978,

{12} K.G. Marty, Linear Programming. Wiley, New York, 1983,

{13] V. Pap, “How to multiply matrices faster”, Lectare Nuter in Compater Science, Vol. 179, Springes, Belin, 1984.

{14] V. Pon, “Fast ﬁuumethodﬂoruyvmoﬂu-rwmus" Computers and Mathematics (with Applics.) 1% (4), 355-3%%
(1985).

[15] V. Pan, “Fast and efficient algorithms for the exact inversion of integer matrices”, Proc. Fifth Confe an Founds of
Software Engin. and Theor. Compuer Science, Indian Institute of gy and Tata Insutute of Fi New
Delhi, Dec, 1985,

(16} V. Pan, “On the complexity of a pivot step of revised simplex algosithm”, Comy and (with Applics.) 18 £21),
13127-1140 {1585)

nnv.m“rmndmmudpdymmmmmw.nmmmmmmmsm

UNY, Athany, NY, April 1986.

[18]V Pan and J. M“Flﬂandﬂﬁmtpﬂalldwlumoﬂmwm Technical Report TR-02-85, Center for Research in

ogy, Aiken Comp L y, Harvard Univerity, Cambrioge, MA, 1985. Shoet version in Proc. 17-th

AM.ACMSWC Provideace, R, 143-152.
{19] V.Paz and J. m-maummmwommwm Techmical Report 85-9,
Computer Science Depariment, SUNY, Albany, NY, June 1985,

[20) V. Pan and J. Reif, “Efficient paralle] linear programming”, Technical Report 86-15, C Science Deg SUNY,
Albany, NY, 1986.

[2] S. Pissanctsky, Sparse Matrix Technology, mmmv«mm

[22) N.Z. Shor, “New development trend in nondiff , Kibernetika 13 (6), 87-91 (1977). Translation in

Cybernetics 13 (5), 881-386 (1977).
[23} V. Strassen, “ The asymptotic syoctmm of tensors and the exponent of matrix multiptication™ (cxtenced absiract), submitted for
Proc. 27th Ann. IEEE FOCS Symp., Toroato, 1986.

s

