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We will break our study of computations with polynomials
and Toeplitz matrices into two parts, where we cover our papers
[24] and | 23, respectively.

Part 1. Approximaie Evaluation of Polynomia! Zeros

O(n*(log’n+log b)) arithmetic operations or
Oin{log'n+log b)) parallel steps, » processors saffice in order to
approximate with absolute error < 2™ 1o all the complex zeros
of an p-th degree polynomial p{x) whose coeflicients have moduli
< 9% If we only need such av approximation to a single zero of
plx). thes Ofnlogn(ntiog b)) asithmetic operations or
Oflog nllog’s +log b)) steps and n+n*/(log’n+log b) processors
suffice (which places the latter problem in NC); furthermore if all
the zeros are real, then we amive at the bounds
O{c log nflog®n+log b)), Oflog n{log™+log b)), amd =n, respec-
tively. Those estimates are reached in computations with Ofnb)
bicary bits where the polynomial has integer coeflicients. This
also implies 2 simple proof of the Boolean cireuit complexity esti-
mates for the approximation of all the complex teros of p{x),
aanounced in 1982 and partly proven by Sebénhage. The com-
patations rely on recursive application of Turan's proximity test
of 1962, op Jis more recent extensions to root radii computatiops,
and on contour integration via FFT within our modifications of
the known geometric constructions for search and exclusion.

Part 2. Toeplits Computations and Applicaticns

We compute the inverse, determinant, and characteristic
polynomial of an aXn Toeplitz matrix T using Oflog®n) paraltel
arithmetic steps. n? processors, and the precision of computation
of Oln log{e]|T|!)} binary bits. Qur new algorithm substantially
improves the known paraliel methods for all the above problems
having polylogarithmie parallel time; the kmown processor
bounds are decreased by a factor of n; even applying our parallel
algorithm as a sequential algorithm for competing & characteris-
tic polynomial of a Toeplitz matrix, we stay at the level of the
curent best sequential time bound. We also slightly improve
the known sequential algorithms for the exact evaluation of the
inverse of integer Toeplitz matrices (via Newton-Hensel's lifting
algorithm} and extend our method to computations with block
Toeplitz and some other structured matrices. As an example of
several immediate applications of our results, we evaluate the
greatest common divisor of m polynomials of degrees at most o
with ninteger coeflicients in the range from -t to t wusing
Ollog™n log{m+n)) parallel arithmetic steps and ma? processors
aad computing with the precision of O{n kog{mnt)) binary bits.
The techniques that we use include: i} the reduction of matrix
Powering to matrix inversion and FFT, i) s combination of
;'\.‘_!‘t,on's iteration with some displacement stracture theorems,
i} the variable diagonal technique; ard iv) Csanky-LeVerrier's
barallel algorithm witk an improved solution of the system of
Newior's identities.
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1. Introduction to Parts 1 and 2

In the vast bibliography on the evaluation of complex poly-
vomial zeros. only few works specifically address the complexity
issue, see [22, 28] for surveys. The complexity estimates in those
papers bave been obrained via several different algorithms, rely-
ing on Newton's iterations and on the various techniques of com-
puting power sums and contour imtegrals. Those three basic
approaches and techniques have also been manipulated with in
different ways and combined with each other and witk some
geomeirical constructions for search and exclusion in complex
domains, due to Weyl, Lehmer, Rurge. In particular Smale and
then Shab and Smale, proved thar Newton's method is highly
effective in the average case, see [28], while Turan's power sum
method of 1988 and its recent extensions turned out o be good
and reliable in the worst case, leading to the record worst case
complexity bounds of O{p’log n(n fog n+log(l/e))) arithmetic
operations for approximating to all the complex zeros x,....x, of
an p-th degree polyoomial p{x} with relative errors < ¢ and of
Oz log & log{1/¢)} for similarly approximating to a single zero,
see [20, 22,29 Later op Repegar in [23] approximated all the
zeros  of p(x) with absolute emors K¢ wing
O{n’log n{n+log log(1/¢))) arithmetic operations, provided that
pix} has been scaled 50 to make all its 2eros lie in a wunit cirele.
This improved the above estimate of [22] for approximating all
the zeros of pix} {although the improvement is minor in the cases
where |log ¢ | = Ofr Jog n}). Our pew algorithms of this paper
improve the estimates of [22] and [25] for the arithmetic compu-
tational complexity of computing all the zeros of p{x) roughly by
a factor of Bfiog n, establishing 2 new asymptotic record bound.
Furibermore, computing » single zero of a polynomial whose all
reros  are real, we resch the ~ upper  bound
Oflog nilog’n-+log log(i/c))}, which substantially decreases the
bound of {22] in the cases of larger ¢ apd which decreases the
respective bound of [23] roughly o’ times. This brings us quite
close to the known lower bound {{n-+log log{1/¢} .(At least n/2
arithmetic operations are needed already in order to process n
input coefficients of p{x); the lower bound {log log{1/¢) follows
from the stronger results of {15}, rediscovered in a weaker form
in {25]). Besides, our overhead comstants are amali; in particalar
they substantially improve over ones of [25]. It is interesting to
compare the techniques of this paper with ones of [25]. As shis is
emphatically proclaimed in the supemary and throughout the
paper 23] the algorithm of {25] “is built aroupd Newtorn’s
method and Schur-Cohn algorithm™. In our paper we share
Weyl's geometric consiruction with [25], but we rely on com-
pletely distinct aigebraic and analytical tools, that is, on numeri-
cal integration (successfully replacing Newton's iterations) and
power sum computations, particularly on Turan's proximity test
and on its extension in [27] to root radius compuotation; nowhere
we peed o apply Newwon's method or Schur-Cobn test. (i
April 1087 a draft of this paper was sent to J. Renegar, he then
used some of cur observations ir order to improve his original
(bat ot our new!) complexity bounds for the price of abandon-
ing oniy Schur-Cohn's test. but not Newton'’s method.}

Preprint of paper appearing in 28th Annual IEEE Symposium on
Foundations of Computer Science, Los Angeles, CA, October 1987,
(IEEE Computer Society Press) pp. 173-184.



Our new algorithms are also effective for paraiiel evaluation
of a single zero and of all the zeros of p(x), see Table 1.1 below.
For- parallel computations we assume the customary machine
model, where in each step each processor performs at most onme
arithmetic operation, that is, +, -, *, =, or the evaluation of an
N-th root of a positive number for a natural N. (We will also
include here the comparison of two real numbers.) We estimate
the number of processors up to within constant factors for we
may always slow down the computations K times and use K
times fewer processors (but > 1).

Table 1.1. Arithmetic complexity of approximating poly-
nomial seros in unit circle with absolute errors < 2b,

Sequential time Parallel time,Processors
All zeros O(n*(log’n+log b)) Ofn(log’n+log b),n)
Single zero | O(n log n(n+log b)) Oflog n(log’n+log b),
{general case) n+n°/(log?n log b))
Single zero | O(n log n(log’n+log b)) | O(log n(log’n+log b),a)
(all zeros
are real)

Table 1.1 shows in particular that the parallel evaluation of

a single zero of p(x) requires only polylogarithmic parallel time

and less than n® processors, so we add a new problem to NC,
[2,8]. In Section 11 we show that O(bn) bit-precision of compu-
tations suffices in order to support the arithmetic complexity
estimates of Table 1.1 where b=q+m, e=2% and the
coeflicients cy,c;,...c, of p(x) are integers such that | < 2™
{The study of perturbation of polynomial zeros due to variation
of coefficients, see [16], pp. 74-77; [18, 27], suggests that the pre-
cision of computations must be at least of an order of bn in the
worst case, but on the other hand, computing with the precision
O(b) usually suffices in practice in order to evaluate the non-
clustered complex zeros of many input polynomials p{x) with
errors < 27° relative to the coefficient size and also to factor an
arbitrary - univariate polynomial numerically in the complex
domain.)

Since O(h log h log log h) Boolean operations or O(log*h)
Boolean parallel steps, h log b log log h processors suffice for an
arithmetic operation with integers modulo 2%, [1, 5, 17, 26}, and
since in our case h = O(bn), we may immediately extend our

estimates of Table 1.1 to the case of the Boolean circuit complex-

ity model. In particular we arrive (within a logarithmic factor)
at the Boolean sequential time bound on the complexity of com-
puting all the zeros of p(x) stated in [27], Sect. 19 but only
partly proven so far. (Schonhage [27] needs to use n® arithmetic
operations already in his n stages of numerical integration, which
exceeds the bound of Table 1.1 about n times, but he computes
with lower precision in those stages and with the precision O(bn)
in other stages.) His complete proof of the Boolezn complexity
bound seems to be very much involved and has mot appeared
yet. There seems to be two difficulties with that proof. One
difficulty is due to the intention of Schonhage to supply various
techniques for the study of the asymptotic complexity of arith-
metic computations with multiple precision. That study is
important theoretically and may lead to the results of practical
value. Computing polynomial zeros is certainly a good example
where multiple precision is required. Another difficulty is due to
the approach of [27], where major efforts are spent to separate
the contours lines (used for numerical integration) from polyne-
mial zeros. Those efforts, supported by elaborate and intricate
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error analysis, lead to quite favorable asymptotic estimates for
the Boolean complexity of computing polynomial zeros (provided
that the proofs will be completed), but the overhead constants
substantially grow. (Those constants are hiddem in the “on
notation of the asymptotic estimates of [27].)

.In contrast to that, in this paper the zeros of p{x) are
included into regions of regular shapes (circles or squares) and
are evaluated using Weyl's construction, which naturally subdi-
vides the computations into isolated and self-correcting stages.
All this simplifies the complexity analysis and enables us to
decrease the overhead constants, making our algorithms good
candidates for practical implementation. Furthermore the arith-
metic complexity bounds of the first two lines of Table 1.1 seem
to be overly pessimistic in the case of many polynomials p(x).
While deducing our worst case estimates, we pessimistically
assume that all our recursive subdivisions of the set of zeros of
P(x) are highly unbalanced, while again such a systematic disbal-
ance is certainly a rather exceptional case in practice.

Further extensions and applications of our results include,
in particular, a) the evaluation of the eigenvalues of a matrix via
the evaluation of its characteristic polynomial, see [22]; b) factor-
ization of a polynomial in the complex domain via the same algo-
rithms for computing all the zeros (with more favorable Boolean
complexity bounds for factorization), compare [27], Theorems 2.1
and 19.2), and c) computing the greatest common divisor (ged) of
two or several polynomials. Numerical treatment of the latter
problem can be reduced to numerical evaluation of all the zeros
of the input polynomials.

That reduction, however, cannot be suggested for parallel
computation, for the evaluation of polynomial zeros requires
superlinear parallel time versus O(log’n) time for the polynomial
ged computations, [8]. That parallel time bound for the ged,
however, is supported by using a quite high processor bound.
This leads us to our second major subject. We treat that sub-
ject (more broadly) as parallel computations with Toeplitz
matrices T = [t;], t; = tij Lj=0,1,...n-1 (which includes the
gcd computations as an important but very particular case).
Fast and processor efficient evaluation of the inverse T, the
determinant det(T), and the characteristic polynomial det{\I-T)
of T should have important applications to time series analysis,
image processing, control theory, statistics, solution of integral
and partial differential equations, Padé approximations, rational
interpolation, partial fraction decomposition, computations with
polynomials, and with matrix polynomials, see [7,8,30,31]. Our
main result is a parallel algorithm for the above evaluations for
an nXn Toeplitz matrix T. That algorithm rums in Oflog’n)
parallel arithmetic time and requires only O(n?) processors. The
precision of computation of O(n log(n||T||)) binary bits suffices,
where ||T|| = max }J |¢;]. Our arithmetic cBmKlexity bounds

LI

and our precision bounds immediately lead to 3 respective sub-
stantial improvement of the known bounds on i’he parallel

* Boolean circuit complexity.

For comparison the previous parallel Toepliw} algorithms
either run in linear arithmetic time (of order n) or otherwise
required at best M(n) processors and the precision of an order of
n log(n{|T|]) binary bits, the same as for the ge matrix com-
putations, see [19-21]. Here M{n) == O(n") degotes the sequential
time required for n Xn matrix mnltiplicat?/pn,);urrently in theory
w < 2.375... with huge overhead constants, and in practical com-
putations w = 3 with small overhead. Thus our improvement
means saving an order of n processors (if we refer to the practi-
cal bound w=3). Furthermore our parallel algorithm for
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computing det.()‘I-T) has sequential time O(n%log’n) arithmetic
operations, which stays on the level of the current best sequen-
yial time estimates for that computational problem. The current
pest erithmetic sequential time for the inversion of T, however,
is sbout 1 times less than the sequential time of our algorithm,
Ofn log’n), see [4,7]. Furthermore, to invert a Toeplitz matrix
T, we peed to compute the coefficients of its characteristic poly-
pomial, which may be fairly large, while some of the cited
sequential algorithms for numerscal inversion of T involve large
pumbers only where T is ill-conditioned, see [8].

On the other hand, many important computations (such as
rational interpolation and computing the greatest common divi-
sor of two or several polynomials) are reduced to solving ill-
conditioned Toeplitz linear systems, and then even the sequential
version of our algorithms can be made competitive with (and
even slightly superior to) the current best algorithms, via the
techniques used in [20, 21]. Namely, we may assume that the
entries of the input Toeplitz matrix T are integers (the real or
complex binary entries can be truncated to finite precision binary
pumbers, and then the matrix T can be scaled to turn those
binary npumbers into integers) and evaluate det(T) and
adj(T) = T7'det(T) modulo a prime power p, that is, we com-
pute with [ k log,p ] binary bits. We choose p and k such that
klog,p (slightly) exceeds the number of bits required to
represent each output value ([ nlog,(n||T||] + 1 bits would
suffice for any T; for some T even fewer bits suffice). Then we
easily recover all the exact integer output values (that is, det{T)
and the entries of adj(T)) from their values mod p* and arrive at
the desired exact solution, including also T~ = adj(T)/det T,
compare [20, 21]. The precision of those computations (measured
by the number of binary bits used in order tc represent the
operands) is within one binary bit from the number of bits
already required in order to represent the absolutely largest out-
put value (assuming that we compute the outputs exactly, which
s a reasonable assumption in the case of ill-conditioned linear
systems). Surprisingly though, we may compute with only
[bgzp] binary bits throughout, except for some stages involv-
ing O(n log’n) arithmetic operations. We will do this via
Hensel-Newton’s lifting algorithm and will arrive at a sequential
algorithm for the ezact inversion of Toeplitz matrices, whose
overall asymptotic Boolean cost is even lower than the cost of
the current best algorithms, see [23].

~ We hope that the techniques that we used are of some
“dCPCn_dent interest. Our algorithm relies on the reduction of
the auxiliary matrix powering (which destroys the Toeplitz struc-
tare) to matrix inversion (which does not). That reduction is
akin to the variable diagonal technique of [20, 21]. For matrix
'::ﬂh'ﬂon we use Newton's iterations along the line of [19], but
- ad to modify those iterations in order to preserve the lower

Placement rank of Toeplits matrices, which characterizes their
“ructure, compare [12]. Also we exploit the Csanky-LeVerrier

?mmction of (10}, with an improvement in the stage of solving
fystem of Newton's identities.

t?;r Present main' objective is o demonstrate the power of
P i:el;ts an.d techniques used in our alg_orit.hm and to deduce
ad farthe Tt;)ma&g for parallel complexity. With more work
I all' elaboration our l'nethod should lead to more effective

e ang fogomhms more suitable for implementation. We can
toms ’:@e]: many.further applications of our results to com-

Hl umokel blocllt Toe;_)lnz and other structured matrices (such as
l;nt X Toep'hu and block Hankel matrices, matrices and

the Tices having small displacement ranks). In particular
common divisor of m polynomials of degree n with
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integer coefficients ranging from -t to t can be computed using
O(log’n log(m+n)) parallel arithmetic steps, mn? processors, and
the bit-precision of computations O(n log{mnt)). This immedi-
ately leads to improvements of the known parallel algorithms for
several other polynomial and rational computations, such as
rational {Cauchy and Hermite) interpolation, Padé approxima-
tion, computing elementary symmetric functions, Taylor expan-
sion, Chinese remainder algorithm, partial fraction decomposi-
tion, square free decomposition of a polynomial, computing the
least common multiple of two or several polynomials, computing
polynomial resultants, and so on, compare [7, 30, 31].

Part 1. Approximate Evaluation of Polynomisal Zeros

2. Definitions and An Auxiliary Algorithm

Definition 2.1, compare [6]. Ou(t,p) means t parallel
arithmetic steps and p processors. O,(T) = O4(T,1) denotes the
sequential arithmetic time, that is, the number of arithmetic
operations used. Replacing arithmetic operations by Boolean
ones we arrive at the Boolean model of computations with the
notatior Og(t,p), Og(T).

Let a monic polynomial p(x) of degree n be fixed,

2 B
p(x) = Yex' = JI(x-xj), ¢, = 1. {2.1)
=0 =1

Definition 2.2. D=D(X,R) denotes the disc of radius R
with center X on the complex plane; S=S(X,R) denotes the
square with vertices X+R, X-R, X+Rv-I, X-R VT,
A == A[XR 1), R > r, denotes the annulus D(X,R) - D(X,r). We
will write p(S) = p(D) =R, p(A) = R-1.

Remark 2.1. Hereafter in different sections each of the
characters R, X, r, x, Y, X, Ry, rg; Yg, and so on may denote
distinct values; all the rectangles and squares in complex
domains have their sides parallel to the coordinate axes.

Definition 2.3. z{U) denote the set of all the zeros of p(x)
in a complex domain U. Two complex domains U and V are
called equivalent if 2{U) = 2z(V). Transformation of a domain U
into its equivalent subdomain is called shrinking or contraction.
If U denotes a square, a disc, or an annulus, we define its rigidity -
ratio rr{U), and its isolation ratio, ix.(U), as follows,

rr(U) = minimum (p{U") / p(U)),
ir(U) = 1/minimum (p(U) / p(U")),

Here the minimization is over all the domains U™ and U™
equivalent to U and such that U" C Uand U C U™.

Definition 2.4. d(U) = max |xgx,| for a complex
domain U. Here the maximum is over all the pairs of zeros of
p(x) in U.

Proposition 2.1. rr.(S) > d(S)/(2V24(S)) for & square S;
rr{D) > d(D)/(2p(D)) for a disc D. -

Definition 2.5. A complex point X is called an ssolated ¢-
approzimation to a zero X; of p(x) if the disc D(X,¢) contains x;
and has isolation ratio at least 1+1/n.

Definition 2.8. The number of zeros of a polynomial p(x)
in a complex domain U, counted with their multipliciises, is
called the sndez of p(x) in U and denoted i(p(x),U).

Definition 2.7. The distances
ro(X) 2 r(X) > ... 2 1, 4(X) from a point X to the n zeros of
p(x) are called the root radsi of p(x) at X; r,(X) is called the s-th
root radius of p(x) at X.



Definition 2.8. For fixed positive R and ¢,
b = logy(R/¢€).

Algorithm 2.1. Superscription of 2 square about a
given set of points. Input. A (finite) set H of complex points.
Computation. Compute the maximum M and the minimum m
in the set of the real parts of the points of H. Output (M+m)/2
and (M-m)/2. Then repeat the same computations for the set of
the imaginary parts of the points of H.

Proposition 2.2, compare Remark 2.1. The two half-sums
in the outputs of Algorithm 2.1 equal the real and imaginary parts
of the center of the minimum rectangle containing the set H.
The two half-differences equal the half-lengths of the sides of that
rectangle. The center z and the half-length r of the longer side
define a square S(x,r) containing the set H. Moreover r < p(S)
for any square S containing H.

In the sequel we will use the known algorithms for some
basis operations with polynomials (such as their multiplication
and division with a remainder, discrete Fourier transform {DFT),
scaling and shift of the variable) and for solving a triangular
Toeplitz system of equations; the arithmetic cost of those compu-
tations is O ,(log n,n), see [1, 5, 17, 22].

(2.2)

3. Turan’s Proximity Test
Algorithm 3.1 (Turan’s proximity test).

Inputs. A degree n polynomial p(x) of (2.1) and a complex
number X that is not a zero of p(x).

Stage 1. Choose a natural N and compute the values of
the (shifted inverse) power sums,

n
SgN = 'Zl _Y"N, Yi= 1/(X—xj), g’j=[y2’_'_’n.
=

and r* = 5!/Nr.

Theorem 3.1,
3.1

[29], p. 299. For the ouiput r of Algorithm

that is, i(p(x),D) =0, ir(D) < 5'/N where D = D(X,r), see
Definitions 2.8, 2.6.
For our purpose it will suffice if N==32; then

1.051581 < 5N « 1.051582. (3.1)

[29] performs Stage 1 for N = 2 as follows.
Subalgorithm 3.1. '

Stage a). Shift the variable y=x-X and compute the
coefficients of the n-th degree polynomial g¢fy) with the zeros
¥y; = 1/(x;-X), j=1,...,n, such that -

o

¥ cX) ¥,

plx) =p(X +y) =
. 1=0

Y X) 7 =X I Gy (32)

qy) =y"p(X + 1/y) =
. i=0 =1

Stage b). Let qyy) = q(y)/co(X) and successively compute

the coefficients of the polynomials
%1(y) = a(Vy)a(-vy)i=0,1,....b-1.

Iteration i squares the zeros of qfy) (Dandelin, Graeffe, [14, 18]},
s0

(33)

a(y) = (1P [[6-5") = Yoy, N =2,

=1 =1

(34)

Stage c). Compute the (shifted inverse) power sums s
for g=1,....n from the following triangular Toeplitz svsiem of
Newton’s identities, [16], p. 36,

CopdN + Cap =0,
Cap%oN T Cp-1pSN + 26503 =0, (35)

Cp h8aN + Co1 pS(@-1)N +.-F By = 0.

The cost of Algorithm 3.1 is O4(log n,n) for Stages a), 3} ¢} can
be immediately reduced to O(1) applications of DFT a Of{n)
points, [22], Sect. 4.

Remark 3.1. Subalgorithm 3.1 can be replaced by numer-
ical integration, [14],

=50 [ 05 ()/aly)dy.
r

yE

(3.8)

4. Computing the Number of Polynomial Zeros iz an Iso-
lated Disc
The well known winding number algorithms (whaose cost is
Oy(log n,n)), (14], pp. 239-241; [25], compute the index ¥p{x}.D)
of p(x) in a disc D=D(x,r) provided that all the zeros of p(x} lie
far enough from the boundary of D or of a fixed dise Dixs’)
equivalent to D. [25] proves that the bound i.r{D) > 3 aiready
suffices to assure the latter assumption, see Remark 42 in [24]
for an alternative solution having the same cost. Let ms reduce
the case of arbitrary dise D with ir{D) > 1 to the case
ir(D) > 9. )
Algorithm 4.1. Inputs. Complex X, positive r and v,
and polynomial p(x) of (2.1) such that ir(D(Xr)) 2> I+» > 1,
compare Definition 2.3.
Stage 1. Compute the coefficients of the monic pofynomial
q(y) = p(X+ry)/r*, i(p(x).D(X,r})) = i(qe{y).D(0.1)).
Stage 2. Apply h iterations (3.3) where

h = [ log,(log 9/log (1+v)) ] = O(log(1/v)) as ¥ — 0.

Stage 1 of the algorithm transforms the discs D{X,r) and
D(X,(1+v)r) into the discs D(0,1) and D(0,(1+v)), respectively.
Stage 2 transforms the disc D{0,1) into itself and the disc
D(0,(1+)) into the disc D(0,(1+u}* ), where 1*° > 9 due to (4.1),
so the isolation ratio of D(0,1) with respect to qu(¥) is as least 9.
Therefore, we may apply a winding number algorithm aad com-

(41)

_pute the index i(qy(y),D(0,1)) = i(p{x),D(X,r)).
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Proposition 4.1. Let ir{D)> 14+v>1 for & disc D.
Then the indez i(p(x),D) can be computed for the cost
Oa(h log n,n) where h-1s defined by (4.1);

Corollary 4.1. Given an isolated ¢-approzimation X to 6
zero of p(x), the indez of p(x) in the disc D(X,¢) can be computed
for the cost O,(log?n,n).

Proof. Apply Proposition 4.1 with r==¢, v=1/n. Q.E.D.

Remark 4.1. The results of this section would not change
if we set q(y) = p(X+y) in Stage 1 of Algorithm 4.1.

5. Turan-Weyl’s Exclusion Algorithm
Algorithm 5.1 (Turan-Weyl).




Inputs. Polynomial p(x) of (2.1), positive integers J,k, and N,
complex X, and positive R such that the square S(X,R) contains
ot most k distinct zeros of p(x) and has isolation ratio > V2. In
Stage O call the square S(X,R) suspect.

Stage j, j==0,1,...,J. Subdivide each suspect square with
side length R/2F ! into four squares with side length R/2j and
apply Algorithm 3.1 at their centers. Call the tested square
suspect if Algorithm 3.1 outputs r < R/27%5. In Stage J output
the centers of all suspect squares having side length R/2’.

Proposition 5.1. Jteration j of Algorsthm 5.1 hae cost
O,llog n,kn) and defines af most 4k suspect squares with side
length R/2). The centers of those squares approzimate to all the
seros of p(x) in S(X,R) with errorse < R/27°° and the center of
every euspect square lies at the distance at most (R/2j'°'5) 5N
from some zero of p(x).

Proposition 5.1 immediately follows from Theorem 3.1.

Proposition  5.2. Let ¢ be @ positive constant,
b = log)(R/€), compare (2.2). Then the center X, of every
suspect square output by steration J = [ b+log,n] + 5 of Alge-
rithm 5.1 15 an isolated ¢,-approzimations to a zero of p(x) for
€&, < €. ¢ Jor all the suspect squares cen be computed for the cost
Opllog k,k?), s0 isolated e,-approzimations to all the k zeros of
p(x) in S(X,R) where ¢, < ¢ for all s can be computed for the cost
O,((b+log n)log n,kn). :

Proof. Due to Proposition 5.1, each output suspect square
S(X,.r) has center X, approximating to a zero of p(x) within

/A 21/N
2 5/~ and

r < ¢/((120+1) V2). (5.1)

Also other required properties immediately follow, except that it
remains to prove the ¢,-isolation of X, with ¢, < ¢ and to esti-
mate ¢, for each center X,. Define

n=rv2,r, = r;+3r = (3i+1)rg for i=0,1,2,... (57.2)

Successively (for i=0,1,...) check if any suspect square does not
lie m the disc D(X,r), but lies in or intersects the disc
D{X;r{n+1)/n) and therefore lies inside the disc D(X,,r,). Since
there are at most 4k suspect squares, checking step i will give
answer “po” for some i=1i(s) < 4k. Then
L= (Bi+1)ry < (12k+1)ry < ¢, and ir{D(X,r;) > 1+1/n, so
X, Is 2 desired isolated ¢,-approximation to a zero of p{x) for
€, =r,. For every fixed s perform all the O{k) checking steps in
parallel. Q.ED. ’

Bemark 8.1. The index of p(x) in the ¢,~neighborhood of
each isolated ¢,~approximation to a zero of p(x) can be computed
by Algorithm 4.1.

8. How to Contract a Square Region

For the cost O,(log n,n), the next algorithm will contract a
Square S{Y,R) having isolation ratio > 3 into its subsquare
S(Z.r) such that either ‘

r < 08R (6.1)

or

rr(S(Z,r}) > 0.1 and d(S(Z,r)) > 0.3R > 0.3r, {6.2)

compare Definitions 2.3 and 2.4.

Subalgorithm 8.1. Inputs. Polynomial p(x) of (2.1),
complex Y, and positive R, such that i.r(S(Y,R)) > 3.
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Stage 1. Let g and h take the values -1 and 1 and let
Y(gh) =Y + (g+hvV- ) R

denote the four vertices of the square S(Y,R). Fix N, apply
Algorithm 3.1 to the polynomial p(x) at the four points Y(g,h),
and denote the output values r{g,h), r*(g,h) (rather than r, r°).
Denote D), = D(Y(gh), r'(g,b)).

Stage 2. Compute the distances between the two pairs of
discs, d'(1,1)=dis{D_,,D;), d°(1,-1) =dis¢(D; D),
where  disy(D;,D;j) = max {0, | Y(g,h}-Y(i.j) | -r"(g,b)}r"(i,j)} -
Output the values h, d° = d"(1,h), Y(1,h), Y(-1,-h), r*(1,b),
r’(-1,-b) and denote D; = D(Y(-1,-k),r'(-1,-h)),
D, = D(Y(1,b).r*(1,k)) where h=1 if d°(1,1) > d°(1,-1) and
h=-1 otherwise. Due to Theorem 3.1,

rr{Dg) 2> 1/5N for g=1,2. (6.3)

Stage 3. Conpsider the four discs D(Y(g,h),{g,h)) (for gh
taking the values 1 and -1) and the square S(Y,R). For each pair
of those five domains compute all the intersection points of their
boundaries not lying outside of the square S(Y,R) or inside any
of the four dises. Let V = {v,,...,v;}, g £ 10, denote the set of
all those intersection points defined by all the pairs of the five
boundaries. Apply Algorithm 2.1 to the set V to compute a
square S{Z,r) of minimum size that covers the set V (and conse-
quently contains zll the zeros of p(x) in S(Y,R)). Output Z and
r.

Proposition 8.1. Subalgorithm 6.1 outputs complez 7 and
positive T and d such that i) the square S=S(Zr) 15 equivalent to
the square S(Y R); ir(S) > 3; i) 4(S) > d°, and s51)

23R - d* < (4R-2rp5'/N.
Proof. S(Y,R)- L{ID(Y(g,er(g,h)) C S C S(Y,R) by the

defipition of S, and, :s follows from Theorem 3.1, the discs
D(Y(g.h)r{g.h}) contain no zeros of p(x) for all gh. This
immediately implies 1). On the other hand, each disc
D(Y{g.h),r'(g.k)) must contain at least one zero of p(x), and this
implies ii). To prove (6.4), define the straight line L(-1,-1) con-
pecting the two  points  Y(-1-1)+r{-1-1) and
Y(-1,-1) +r{-1,-1) V-1 of the intersection of the boundaries of
the square S{Y R) and of the disc D(Y(-1,-1),r(-1,-1)). Similarly
define the straight lines L{1,1), L{-1,1), and L{1,-1). Let d(h)
denote the distance between the parallel lines L{~1,-h) and L{1,b})
for b=1 and h=-1. Observe that no points of the set V
{defined in Stage 3 of Subalgorithm 6.1) lie in the rectangle bor-
dered by the four lines L{g,h} and deduce that

(6.4)

max {d(1),d(-1)} > V2 r. (6.5)
Next prove for h=1 that
d(b) = 2V2R - (2RV2 - d(1,h))/V?2) (6.6)

where d(1,h) denotes dist{D(Y(-1,-h),{-1,-h}),
D(Y(1,h){1,h})) = |Y(-1,-b) - Y(1,b) | - H{-1,-b) - f(L,h). Let
E_,,E,,F,.F_; denote four successive points of the diagonal of the
square S(Y,R) passing through Y(-1,1) and Y(1,1), namely, the
four intersection points of that diagonal with the four lines:
L{-1,-1), boundaries of the two discs D(Y(g,g)).X{g,g)) for g=-1
and g=1, and L(1,1). Let A, and B, denote the two intersection
points of L{g.g) with the two sides of the square S(Y,R) for g=-1
and g=1. Then d&1)= |E,-E,|, d(1,})= |F;-F, }s
[Y(g:g)- Eg| = |Y(gg)- Agl/V2= |Ylgg)-Fyl/ V2 for
g=1 and g=-1, so 2v2R - d(1) = | Y(1,1)-Y(-1-1)| - d(y) =
Y [ Y(gg) - Eg =Y |Y(gg) -Fel/V2=
€ [3



(2V2R - d(1,1))/V2. This proves (6.6) for h=1; similarly (6.8)
can be proven for h==-1. Recall (8.5) and deduce that
(2v2R-d) < 4R-2r, where d = max{d(1,1),d(1,-1)}. Now (6.4)
follows because 2v2R-d* = (2v2R-d)5'/N. Q.E.D.

Corollary 8.1. IfR > r > 0.8R then
d(S(Z,r)) > dis{D,;,D,) = d°* > (2v2-{2.4)5'™)R. (8.7)

Otherwise (6.1} kolds.

Next let N=32, apply (3.1) and Proposition 2.1, and deduce
(6.2) from (6.7). Since i.r.(S(Z,r)) > 3, Subalgorithm 6.1 can be

applied again (with the inputs p(x), Z, r, k). Continue that pro-

cess recursively (call it Algorithm 8.1) and arrive at

Proposition 8.2. For s positive E, a square S(Y,R) having
isolation ratio > 3 can be coniracted for the cost O,(g log n,n),
g == log(R/E), into @ square S(Z,r) such that r < E or else the
relations (6.2) are satisfied.

7. Accelerated Shrinking of an Isolated Square
In this section we will rapidly contract a square S{Y,R) hav-

ing isolation ratic at least 3 either i) into a disc of radius < € (so -

its center approximates to all the zeros of p(x) lying in S(Y,R)
with errors < ¢€) or ii) into a square output by Subalgorithm 6.1
and satisfying the relations (6.2).- At first we contract the square
S(Y,R) into a disc having isolation ratio, say > 16m, applying
Proposition 6.2. Then we will need some auxiliary results.
Denote

k
M= ‘gl xj(i)'/ k. (71)

If k==n, then the value M = ¢,_;/n is immediately available, see
(2.1). In the next section we will prove the following result.
Proposition 7.1. For two positive constants ¢ and T, a
natural k, and o disc D such that ir(D) > (1+v)?, v > 0,
i(p(x),D)=k, the center of gravity M = M(D) of the k zeros of
p(x) in D can be approzimated by a point M* € D with absolute
error < (14+0)r for the cost Ox(log ,n°).
In the sequel we will also use the following proposition.
Proposition 7.2. Let i(p(x),D) =k for a disc D and let M
denote the center of gravity of the k zeros of p(x) lying in D.
Then d(D} > r,_ (M)k/(k-1), compare Definitions 2.4, 2.7.
Proof. Let xj),....Xjx) denote the k zeros of p{x} lying in
the disc D and let |M - "jml = r, (M). Without loss of gen-
erality, M=0, «x is negative. Then
k

th :
assume at i

k
3> Re xjpy) = 0.  Therefore Y. Re Xj(n) = ~Xj1) = ra (M),
b=1 b=
‘max Rexg 2 ra(M/(k-1),  so  d(D) > r, y{(Mk/(k-1)
QED. '

Corollary 7.1. Let under the assumptions of Proposition
7.2, |M"-M|/r, (M) =a for some complez M*, and let D°
denote the disc D(M®(1+a)r, ((M)). Then D' D D(M,r, (M),
rn—k(M‘) S (l+a)rn—k(M)l

d(D") 2 d(D) > (ry (M) (1+a)ik/(k-1)).

The next algorithm rapidly contracts a disc, as desired.
Algorithm 7.1.
Inputs. Polynomial p(x) of (2.1), complex X, natural k, and
positive r and v such that

i(p(x),D(X,r))=k, i.r{D(X,r))=(1+v)*>max{4,(2560%)"/%}. (7.2)
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Let M denote the unknown center of gravity of the k zeros of
p(x) lying in D(X,r).

Initialization. j=0, My=X, ry=r, yy=v, Dy=D(M,,1;).

Stage j, j=0,1,..., J-1. At first compute (for the cost
Ou(log n,n)) an approximation M;,; € D(M,r;) to M with abso-
lute error bound

€01 = (142) (7.3)

(apply Proposition 7.1 where c=1, T=4, X = M;, r=T;, v=y,,
compare also Proposition 7.3 below). Then compute an approxi-
mation rj%; to the (n-k}-th root radius r, ((M;j,;) of p(x) at M,
with relative error at most 8n. (The cost is again O,(log n,n),
see [24].) Denote

rj1=80 1%y, Dy =D(Mjs1,5541), (1+vj0 =144 (74)

If rj;; < € set J=j+1, output M; and ry, and end the computa-
tions. If '

€ <1y < 1280%(140) ™y (7.5)
enter Stage j+1. Otherwise set J=j+1 and apply Algorithm 6.1
to the square S(M;r;v2) superscribing the disc D; (until the
relations (8.2) are satisfied).

Let us analyze Algorithm 7.1. At first consider the case
where (7.5) holds for all j. Then recursively apply the last equa-
tion of (7.4) and obtain that (l+uj)2= (1+u)2", j=0,1,..,J-1.
Substitute this into (7.5), apply the resulting relation recursively,
and deduce that in this case ’

logy(r/r;) > 4n'log,(1+v),
ry < eif J = [ (log,logy(rfe) - 2 - log,log{1+v))/logn .
We need, however, the following result in order to apply Proposi-
tion 7.1 when we deduce (7.3).

Proposition 7.3. If (7.5) holds for j=0,1,..g then
(1+y;)* < ir(D;) for j=0,1,....8.

Proof. (7.4) implies that all the discs D; are equivalent to

Dy and to each other. Therefore |M;,; - M;| < 141y, for all
j- On the other hand,

(ix(Djrr)rivs = ror(Mjyy) 2
Toka(Mj) = [ Mg - Mj| = (ir.(D)r - | My - M|
for all j. It follows that
(ir{Djs1) + 1)/(ixr(D;) - 1) 2 rj/r;14

for all j. Apply (7.5) and deduce that

(ir(Djyy) + 1)/(ir(D;) - 1) > (1+v;)**/(1280%)  (7.6)
for all j. Recall that (1+#,) = i.r(D,) and observe that i.r.(D;)
grows more rapidly than (H-uj)2 as j grows. (The latter fact fol-

lows from the comparison of (7.8) with the last equation of (7.4)
for j==0,1,... and from the inequality of (7.2).) Q.E.D.

Next assume that (7.5) does not hold for some j. Note that
i(p(x), Djs1) = k, T (Mjyy) < 1y < 840, (M), (77
(7.7) and Corollary 7.1 together imply the following estimate,

d(Dj11) 2 (rp-sMjy) / (14a;4)Xk/(k-1)),
ajy < €41 [ TiM) < €4y / (FaMjin) - €540)-

9




.

Therefore

d(Dj,y) 2 ("-—k(Mj+1) - €54)k/(k-1).
If (7.5) does not hold for some j, then
1280%,, = 1280%(14+))'r; < 1y, < B40%r, (M),
2641 < T Mjr)y Ta Mo k€540 > o l(M4)/2.
Then (7.7) and (7.8) imply that
d(D;+1) 2 (0-5)ra (M J /(k-1) 2 (r;,, /(128 )k /(k-1)).

On the other hand, unless (7.5) holds, Algorithm 7.1
requires to apply Algorithm 6.1 to the square S(M,r;,,v2),
superscribing the disc Dy, ;; in that case the output will satisfy
the relations (8.2) in O(log n) recursive applications of Subaigo-
rithm 8.1 {due to (7.9)), and then the computations of Algorithm
7.1 will end. Summarizing we arrive at the following result.

Proposition 7.4. Let b satisfy (2.8) for R > r. Then for
the cost Oyflog(bn),n) Algorithm 7.1 contracts its input disc
D(X,r) satisfying (7.2) into @ disc of radius < € or else {only for
k>1) inte o disc D;,; satisfying (7.9). In the latter cese,
Oflog n) further recursive applications of Subalgorithm 6.1 stert-
ing with the squere S(Mjﬂ,rjﬂ\/i) suffice sn ovder to satisfy the
relation (6.2) (for the additional cost O,(log®n,n)).

(7.8)

(19)

8, Computing the Center of Gravity of & Set of Polyso-
mial Zeros

Extending (3.6) we arrive at the following formula, [14],

- [ 68 (0] Bl

2rki (&.1)
where i = V-1, the value M=M(U) is defined by (7.1), and the
domain U bordered by the contour I' contains exactly k zeros of
p(x) (not necessarily distinct), that is, Xjn)p b=1,...k. Assuming
that U=D(Xr) is a disc with isolation ratio > (14v)?, we will
choose T' being the boundary of the disc D(X,R), R = (14w
and will approximate to the integral (8.1) using the integral sum

. 1

T 2rkQi

Here wis a primitive Q-th root of 1, w@=1, u? 7 1 for 0<g<Q.
We bound the error of the approximation to M by M* basing or
the Laurent expansion -

%;’ (X+R o9 p' (X+RwY / p(X+Ruf). (82)
q=0

0 )
P (x)/px) = T sx'™= 3 §x™7, (83)
m=0 =]
k [
=T asa= 3 5
i=1 i=k+1

xap ..., Xjp)} is the set of all the zeros of p(x) numbered such
fhat | X-xyy] < R if and only if i < k, compare [27], Sect. 12.
'8.1H8.3) immediately imply that

IMM| < 2R(® + (k)% / (K(1-g%),  (84)

g= lxéxjign min { | X-x;| /R, R/ |X-x;]}, (835)

aad XXy denote all the zeros of p(x). g < 1/(1+v) since
R=(14v)r, ir{D(X,r)) > (1+2)%. (8.4) and (8.5) imply that

IM*-M| < 4Rn / (k(142)%!) = 4or/(k(1+2)%). (88)

We will keep Q of an order c’n for 2 constant ¢, so the
€St of the integration will be O,(log n,0°); we will choose the
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constant ¢” such that |M'-M | < (142)™ %, as this is required
in Proposition 7.1. Q.E.D.

8. Turan-Weyl’s Isolation Algorithm for Computing All
the Zeros of a Polynomial

Using the machinery of the previous sections we will now
arrive at the bounds of Table 1.1 for computing all the zeros of
pi{x). We will proceed recursively; in each recursive step the set
of the n zeros of p(x) will be covered with a square or with
several squares of the same size.

Initially cover all the zeros of p(x) with the single square
S(0,R),

R=2vZ max |c,u/c, |,
= n

(9.1)

so i.r.{S{0,R}) = oo , [14], Sect. 6.4. We will maintain isolation ~
ratio at least six for the output squares (and thus for the input
squares) of each recursive step. This will enable us to partition
each recursive step into parallel processes associated with each
isolated square and performed independently of each other. Let
S(Y,R) denote an input square of some recursive step such that
ir(S(Y,R)) > 6, i(p(x),S(Y(R)) = k. Applying Algorithm 7.1,
we will contract the square S(Y,R) and will either approximate
all the k zeros of p(x) in S(Y,R) with errors < ¢ or will arrive at
the case where Subalgorithm 6.1 has been applied and its out-
puts satisfy (8.2), in particular, in that case S{Y,R) shrinks to a
square S such that rr(S) > 0.1.Then we will apply (Turan-
Weyl's) Algorithm 5.1 stopping in

J = [log,{nR/e)] + 3

iterations. We will, however, end the computations in j itera-
tions for j < J if we can group the suspect squares output by
iteration j into at least two maximal connected components,
strongly seolated in the sense to be defined now.

Partition the union of all the suspect squares returned by
iteration j into H(j) maximal connected components, C,,...,CHU);
each component contains at least one zero of p(x), so

H{j) < k. (9.2)

For every g apply Algorithm 2.1 to the set of all the vertices of
all the suspect squares of Cg and arrive at a square S(Xg,Ry’) cov-
ering C,. Note that

Ry < (k+2)R / 2%, (9.3)
Call component Cg and square S(X‘,R;) strongly ssolated if
IXp-Xg| >V2(Ry +8Ry)forallh#£g  (9.4)

(9.4) implies that the square S = S(XR,’) is equivalent to Ce

and
ir(S) > 6. (9.5)

Let exactly h(g) strongly isolated components be output by itera-

tion g of Algorithm 5.1, let h(g! =1 for g < j, b(j) > 1. Com-

bining (9.2}-(9.4) we deduce that

J S 1-0.5 + log,7 + logy((k+1)(k+2)) 1. (9.6)

Having completed that iteration j, fix ali the h(j) strongly iso-
lated components and continue applying Algorithm 5.1 to all the
suspect squares of all other components until only strongly iso-
lated squares are returned. We will call that modification of
Algorithm 5.1 Turan-Weyl’s isolation algorithm, eompare [25].
fts cost is O(H log n,n) where H denotes the total number of all



the suspect squares processed in all the iterations.

Next we will prove that H=O(h) where h denotes the
number of strongly isolated components output by the final
iteration. Moreover we will prove that H=Ofh) even for a
modification of the algorithm where the suspect squares of each
strongly isolated component are subdivided further as long as
the diameter of the component exceeds the diameter of a suspect
square more than twice. Then each output component consists
of not more than four suspect squares. Certainly the cost of the
original algorithm may only increase due to that modification.
To show that H = O(h), we will retrace back the process of the
recursive subdivision of suspect squares, beginning from its end,
that is, from the last iteration, which returns h strongly isolated
components. We will respectively reverse the basis property of
the forward subdivision process, that is, a subdivision of a
suspect square decreases its diameter by 50%, but that diameter
is doubled when we retrace the process back; therefore every
backtrack step expands the compoments in all directions.
(Exception: the strongly isolated output components will stay
unchanged by the backtrack steps where they remained
unchanged by the associated steps of the forward process.) The
distance between every two components output by iteration j is
lower bounded by the length of an edge of a suspect square; we

may at least double such a bound unless in a backtrack step

(from iteration j to iteration j-1) these two components are out~
put components or meet each other. Therefore each component
C either is a strongly isolated output componment or meets
another component in at most [ logy3k(C))] backtrack steps,
where k(C) is the number of suspect squares in that component
C, compare (9.4). Let us represent all the components in all
iterations by the nodes of a tree whose h leaves correspond to
the h output components of the algorithm and whose each edge
represents one or several backtrack steps needed in order that
one component could meet another. The total number of the
nodes of the tree is at most 2h-1, which also means at most b
edges of the tree. At the leaves level there are at most 4h
suspect squares. This immediately implies that H = O(h log?h)
since the number of suspect squares cannot grow in the back-
track process, which in particular bounds the number of suspect
squares in each component by h. The stronger bound H=0(h)
follows from the simple observation that in each step of the
backtrack process each comnected set of g suspect squares is
imbedded into a set of at most 2+g/2 larger suspect squares;
therefore the number of suspect squares processed in all the com-
ponents having at least five suspect squares decreases at least by
10% in each backtrack step. Consequently a total number of
suspect squares in all steps is less than 40h, not counting the
suspect squares in the components consisting of at most five
suspect squares. If a component consists of k < 5 suspect
squares, then the edge in the tree from that component in the
direction to the root corresponds to at most [ logy(3k)] < 4
backtrack steps and therefore to at most 20 suspect squares.
There are at most 2h-2 edges in the tree, so we arrive at the
rough upper bound H < 40h+20(2h-2) < 80h. )

Summarizing, in H = O(h) iterations for the overall cost
Oalh log n,n), Turan-Weyl's isolation algorithm returns h
strongly isolated components Cg, g=1,..,h, each consisting of at
most four suspect squares. We cover each of these h components
Cg by a square S equivalent to Cy and such that ir(Sy) 2> 6, see
(9.5), and compute the indices of p(x) in all those squares (see
Proposition 4.1). Then again we recursively apply Subalgorithm
8.1, Algorithm 7.1, and finally Turan-Weyl's isolation algorithm
to each of those squares Sg, until we compute all the zeros of p(x)
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with absolute errors less than ¢. To estimate the overall cost,
associate the subdivision of the input components for each appli-
cation of Turan-Weyl's isolation algorithm with the edges of the
tree, whose nodes are those input components, whose root is the
input square S(O,R) for R satisfying (9.1), and whose leaves are
the components of diameters < ¢. There are at most n leaves,
so there are at most 2p-1 nodes in the tree, and all the required
applications of Turan-Weyl’s isolation algorithm have overall
cost Oy(n log n,n). Due to the recursive applications of Algo-
rithms 4.1 and 7.1 (required O(n) times) and of Subalgorithm 6.1
(required Ofn log n) times), the overall cost bound increases to
O,(n(log’n+log b),n).

Theorem 8.1. All the zeros of a polynomial p(x) of (2.1)
can be computed with absolute errors at most ¢ for the cost
O4(n(log’n+log b),n) where b satisfies (2.2) for a positive R that
upper bounds the moduli of all the zeros of p(x).

10. Computing a Single Zero of a Polynomial

Next we will compute a single zero of p(x) for the cost
estimated in line 2 of Table 1.1.

The first two strongly isolated components C; and C, are
computed in at most Oflog n) iterations of Turan-Weyl's algo-
rithm, see {9.1}-(9.6). Compute the indices i, and iy of p(x) in
both of these components, see Proposition 4.1. i;+i, < n, so
min{i;,i} < n/2, say i, = i(p(x),C;) < n/2. Apply our algo
rithms of Sections 6-9 to the component C, and repeat that pro-
cess recursively, defining a sequenee of strongly isolated com-
ponents Cyg) 2> Cyyy 2 ..., such that Cy = Cy,

i(p(x).Cqn) < n/2%, b=0,1,.., (10.1)

{10.1) implies that the component Cgy) contains at most n/2b?
suspect squares, so the cost of the corresponding Turan tests is
O,(log n,n%/2%). Slow down that computation to save processors
and arrive at the cost bound O,((log’n)/2"n%/log n). Summing
in b from 0 to log n, add the cost of O(log n) applications of
algorithms of Sections 4,7, and 8, and arrive at the bounds of
Table 1.1.

In the smportant case where all the zeros of p(x) are real,
the aigorithm for computing a single zero of p(x) can be substan-
tially improved to reach the cost bound O,(log n(log b+log®n),n),

see [24].

11. Boolean Circuit Complexity of Computing Polyno-
mial Zeros

In this section we will reexamine our algorithms assuming a
finite precision of computations. We have reduced the evalua-
tion of polynomial zeros to computing root radii via root power-
ing (Algorithm 3.1) and via numerical integration, applied in
(8.2) and in the winding number algorithms. All these computa-
tions are immediately reduced to polynomial multiplications (to
which also the shifts of variable x can be reduced), polynomial
divisions (to which also the solution of triangular Toeplitz sys-
tems can be reduced), and to discrete Fourier transforms. Using
the known estimates for the errors of performing those basis
operations with finite precision and taking into account that
Turan-Weyl’s algorithm is self-correcting (that is, the errors of
each its iteration are corrected in the next iteration), we may
estimate the output errors of finite precision computations by
our algorithm and its Boolean (bit-operation) complexity. The
required basis estimates in the case of polynomial multiplication
and division and DFT can be taken from [3, 13], and [27]. The
analysis of the errors of finite precision computations is simple or




readily available for numerical integration, see [14], pp. 239-241,
‘27], so we will focus on Turan’s tests, specifically, on the solu-
tion of Toeplitz systems and on the shifts of the variable. Next
we will show (relying on the known error estimates for those
operations, [3,13]) that the magnification of errors by Turan’s
tests may only require to increase the precision of computations
about O(n) times comparing with the prescribed output preci-
sion, while such an increase is inevitable in any algorithm for
computing zeros of an arbitrary polynomial, see’ [18], pp. 74-77,
[18]. (It Is even easier to show that the precision of computa-
tions required in our case for numerical integration needs not be
higher than that.)

Let us assume that the input coefficients Cg,---,Cy Of p(x) are
integers and that '

(11.1)

max || <2 e=2%b=nm + q,
3

compare (2.2} and Theorem 1 of [2]. (We may arrive at that case
via trancation of the mantissas of c,,...,c, and scaling p(x).) Then
it can be shown that the computations with the precision O(bn)
binary bits will suffice. Let us verify this for both stages of
Turan’s test:

shift of the variable x (by X),

b) computing m‘ax IS‘N/nI’/(‘N).
g=1,..n

a)

Stage a). We will choose the shift values X such that both real
and imaginary parts of 297X are integers. (This way we still
may assure the absolute output error bound < ¢ = 279, note
also that |X| < 2™.) Then the coefficients of the polynomial
q(¥) of (3.2) are integer multiples of 2(9+2Jn (that is, they take the
form h/29*?* where b is an integer), so it is sufficient to com-
pute them with absolute errors less than 1/200+201 404 o
recover their exact values via rounding-off. We reduce comput-
ing the shift to convolution of two vectors whose entries have
absolute values < 2%® {compare (11.1) and [22]), so that O(bn)
bit-precision of computations will suffice. {Convolution can be
reduced to FFT whose error analysis is available, see [13] or i3],
P- 194, or alternatively to integer multiplication, [11], whose
error estimates are available in [27].)

Stage b). Consider the evaluation of the power sums via the
iterations (3.3) and via solving the system (3.5). Surely the few
required iterations (3.3) (reduced to convolutions and DFTs) can-
ot blow-up the errors too much (compare the error estimates
from [13] or [27]), so we will only analyze the errors of the solu-
tion of the triangular Toeplitz systems (3.5). For an entry s of
the inverse of a {(gN) X (gN) unit triangular Toeplitz matrix T,
we have the following useful estimate from [8], Lemma 2, p. 192,
i (log IS/{ )| = O(gN log (1+t)), 0
log( |5 |1 ) = Oflog (1+t)), where t denotes the maximum
absolute value of an entry of T. In fact the diagonal entries of
the coeflicient matrix of the system (3.5) equal cax 7% 0, which is
the N-th power of the leading coefficient of the polynomial
q4y) = ydp(X + 1/y), see (3.2). We will keep our previous
3ssumptions (see part a) above) that the coeflicients of p(x) are
B-bit integers and that X has real and imaginary parts of the
form h/29°2 1o 4p mteger b, so all the coefficients of g{y) are
\teger multiples of 1/29%2k "and it suffices to scale the system
,b-' 22N Which means the increase of the precision by
1972)aN = O(bn) binary bits. Thus, due to the estimate from
» 1t suffices to compute with the precision of O{bn) bits in
order 10 control the errors in Stage b). (We could arrive at a
"wilar resylt if we used Cauchy's integrals (3.8) in order to com-
‘Tu I'sx | /0N, compare [27], p. 34.) Summarizing we obtain

3 the computations with O(bn) binary bit precision suffice to
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support the applications of Algorithm 8.1 (and in fact similarly to
support all other steps of our algorithms).

The errors of finite precision computation of polynomial
zeros are closely related to the errors due to the perturbations of
the coefficients. The known bounds on the perturbation errors,
see 18], pp. 74-77; [2], Theorem 4, [18, 27), suggest that our estj-
mate O(bn) for the bit-precision cannot decrease if applied to all
the polynomials p(x) of degree n. For many input polynomials,
however, the perturbation bounds of order bn are overly pes-
simistic, exceeding the actual values by a factor of n, and that
property is translated to our precision bounds. Similarly the
precision of computations could be decreased by a factor of n if
we only need to factor p(x) numerically, that is, to compute y;
and v; such that all the coeflicients of the polynomial

p(x) = I] (ux+v;) have absolute values < ¢, see [27].
P=1 .

Finally we combine our arithmetic complexity estimates
with the known bounds on the Boolean circuit complexity of
arithmetic operations over integers modulo 2! (that is, with the
estimates Og(t{h}} for the Boolean sequential time and
Ogllog’h,t{h)) for the Boolean parallel  cost  where
t{h} = O(h log h log log b), see [1,5,17,26,27]). We apply
those bounds with h = O(bn), multiply the entries of Table 1.1
by t{h) or by log’h, respectively, and arrive at the Boolean cir-
cuit complexity estimates for the problems of computing polyno-
mial zeros. The resulting Boolean complexity bounds coincide
within (poly Jlogarithmic factors with (yet unproven) estimates
stated in [27]. Incorporating the estimates of [27] for the
Boolean complexity of polynomial multiplication, DFT, and
shifts of the variable and of [3] for polynomial division would
probably improve our estimates for the Boolean complexity of
computing all the zeros of p(x) by (poly)logarithmic factors in n.

12. Alternatives, Improvements, and Open Problems

We may modify our algorithm in 2 number of ways, keep-
ing the same overall estimates for the asymptotic arithmetic
complexity {within logarithmic factors). Let us briefly list some
of them.

1) Instead of the center of gravity M of k zeros of p(x) i 2
disc D, computed via (8.1), (8.2), we could compute the zero
z of the {k-1}-th derivative of p(x) iz D via Newton's itera-
tion, provided that ir(D) > 80n%; ¢ may serve similarly to
M; the cost of computing z is OA(Iogzn,n/log_n), ‘which is
only slightly worse than the bound of Proposition 7.1, com-
pare [24, 25].
2) Turan’s test can be replaced by the root radius algorithm
of [27], Sect. 15, whose arithmetic cost, is O,(log n log log n,n),
slightly higher than Turan's; the proof of that cost bound in [27]
is elementary. In the applications of Section 8, we can see some
other alternatives to (but not improvement of) Turan’s Algo-
rithm 3.1.

3) Using the algorithms ol; [27], we may eflectively compute
the coeflicients of the factors TT (x-xju)) of p(x), given a square
b=1

S = S(Y,R) containing exactly those k zeros Xp), b=1,...k, pro-
vided that, say ir(S) > 3. Such an isolation of those factors is
obtained via numerical integration over the boundary of the disc
D(Y,2R) circumscribing S and via subsequent Newton'’s iteration.
The asymptotic cost seems to pemain the same as in our algo-
rithm. The latter approach can be extended to replace Turan-
Weyl's algorithm: we may apply the integration already where
all the zeros of p(x) are included into two or several discs bavirg



isolation ratio say > 1+1/n; such discs exist and can be com-
puted for a low cost where Subalgorithm 6.1 has been applied
and has output discs D; and D, satisfying (6.2), see [24]. In that
approach the error analysis becomes much harder, but
apparently the Boolean circuit complexity bound (but not arith-
metic bounds!) for computing 2 single complex zero of p(x) can
be decreased by a factor of n or so, compare [27].

The major open problem is computing all the complex zeros
of p(x) for the cost O,((log n)o(‘),no&). It is also interesting (at
least theoretically) if the root radius estimate of [29] can be
extended to cover also the approximation to the s-th root radius
of p(x) for s>1.

Part 2. Toeplits Computations and Applications

2. Some Basic Definitions

[T] denotes a set of all nXn Toeplitz matrices, containing
the two subsets [L] and [U] of lower and upper triangular Toe-
plitz matrices, respectively; T, L, and U (with or without sub-
scripts, superscripts, and so on) will be our notation for the
members of the sets [T}, [L] and [U], respectively. We will write
L = L(X), U = U(5) if X is the first column of L, and if 7" is the
first row of U. Here and hereafter the superscript T indicates
transposition, while the superscript r will indicate the reversion
of the order of the entries of a vector. [LU]; denotes the set of
nX1n matrices that allow the following displacement representa-

d )
tion, LUl = {X LU}, [9]. For a matrix
i=1

d 5 ’
V = VL) UF") where L, € [L],U; € [U], the set B of the
=1

pairs of the vectors (i('),y‘{')) is called a (nonunique) LU-
displacement generator of length d for V (d being an upper
bound on the displacement ranks of V and W, compare [9, 12]).
We will use the shorthand, LU-generator. A Toeplitz matrix
T = LI+IU lies in [LU]J,. Here and hereafter I denotes the iden-
tity matrix, I € [L], I € [U].

3. Auxiliary Results

Proposition 3.1. Given an LU-generator of length d for a
matriz V, the cost of computing any fized column of V is
O(log{dn),dn).

Proposition 3.2, [9]. Let two matrices V, and V, be given
with their LU-generators B, and B, of lengths d, and d,, respec-
tively; let ¢ be a constant. Then an LU-generator of ViV, of
length < d;+d,+1 can be computed for the cost of
Oa(log(ddon),d,dsn), and (obviously) B, U (cB,) is an LU-
generator of Vi+cV, of length < d,+d,. Here the set cB, is
obtained from the set By by multiplying all the z-vectors of By by

c.

Theorem 3.1, [7]. Let T € [T] be an nXn uppermost
principal submatriz of an (n+1)X(n+1) Toeplitz matriz T", both
T and T* be nonsingular; X = [Xgs-erXpy]T and ¥ = [xg,...xs]T
be the first columns of T™ and (T°)™, while y= [}’n-lw-rYo]T and
') = s3] be the last columnas of the same matrices. Let

[YO’;"Jn—l]T' T = [0y Xy] 7= [0yatr-7Ts
T = [xg |, ¥ = [ys,-¥1 ] . Then

xT™ = LE)UF) - LHU@E), G-1)

% T = LE)UF) - LE)UE), (32)

Xo =y, = det T/det T".
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Definition 3.1. The pair of the vectors X.§ of (3.1) if
Xo 7 0 and the pair of the vectors X',7° of (3.2) if x; # 0 will be
called the canonical generators of T\

Corollary 3.1. Under the assumptions of Theorem 9.1, all
the diagonal entries of the matriz T~ can be computed from its
canonical generator for the cost of O(log n,n).

4. Inversion of Very Strongly Diagonally Dominant Toe-
plitz Matrices

Definition 4.1. for a matrix

IAll = max 3 S
1

A = [a;]. A is called strongly diagonally dominant if for a con-

stant q,

T-All<q<1. (4.1)

Proposition 4.1, see, e.g., [19]. Let (4.1} hold and let
Newton’s steration for computing A™ be defined as follows,

By =1B'=2B" -B"YA B, i=12..  (42)

Then
- BXAll < Il - BLAIP < %,
IIB;* - A7Y| * [1-BAll * [[A7Y] < (1+a)q™® for alli.

Next assume that A = T € [T] and modify Newton’s itera-
tion (4.2) as follows,

B, = 2I-T, B; = 2B_;-B; TB;, (4.3)
B; = (LEOUE)-LFWE) /), i=23....

Here @ and (7YY denote the first and the last columns of the
matrix B; of (4.3), 7 denotes the reversed (7", and @ and ¥
are defined by X and 7' the same way as § and ¥ are defined

by X and 7 in Theorem 3.1. :
Proposition 4.2. Let (4.1) and (4.8) hold for T = A and

q = 1/10; denote ||B; - T7!|| = a(i). Then
ali+1) = |[Bi,s - T™|| < a%(i)(10/9) (2-2(0a(i)+20)/(8-9a))".

Let q = 1/10. Note that B, of (4.3) and B, of (4.2) denote
the same matrix if A=T. Therefore a(2) < 1/9000, see Proposi-
tion 4.1. If

a(i) < 1/9000, (4.4)

then Proposition 4.2 implies that a(i+1) = ||B;,,-T'|| satisfies
ai+1) < a%(i)(10/9)(2.2¢20.001/7.999F < 34a’(i). (4.5)

For i=2, (4.4) and therefore (4.5) hold, which implies (4.4) and
(4.5) for 1=3 and then recursively for i=4,58,..., sc that

34a(i) < 1/250%" for all i > 2.

Consequently B; and therefore also B, converge to T™! quadrati-
cally asi — oo . »

On the other hand, T and B; for all i are in [LUJ,, so the
cost of each iteration of (4.3) is O4(log n,n), see Propositions 3.1
and 3.2, and we arrive at the following result.

Theorem 4.1. Let c.be a constant, A=T be an nXn Toe-
plitz matriz satisfying (4.1) for q=1/10. Then the canonical
generator X, ¥ of (3.1} of the inverse mairiz T can be computed
with error norm < 1/250°° for the cost O,(log’n,n).

£ 1
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§. Computing Matrix Powers

Definition 5.1. The canonical set of eniries of a square
matrix is the set of all its entries in its first and its last columns
and on its diagonal.

Next let us compute the canomical sets of entries of the
powers T* of a given nXn Toeplitz matrix T for k=2,3,..q
where ¢>n; in this paper we will only use g==n and (in Appen-
dix) g=2n. Let m=2q, w be a primitive (m+1)}-th root of 1, h
be such that

0 < h[IT|| < 1/10, b; = o for j=0,1,...m. (5.1)

Then (4.1) holds for A=I-h;T for each j, so we may apply
the algorithm (4.3), Theorem 4.1, and Corollary 3.2 and compute
the canonical set of entries of the matrix

(5T = § BT = T aT  (52)
k=0 k=0

with absolute error bound

E* = (1/34)/250*° (5.3)
(where c is an arbitrary constant) for the cost O,(log’n,n).
Let m=2q, §; = i (bT)**. Then

k=0

E = Ji0-b;T)-8;| < (BfITI)™ < 1/10%, (54)

see (5.2). The entries of (I-h‘-T[_1 approximate to the entries of
S, with absolute errors < E'+E, see (5.3), {5.4). The cost of
computing all those approximations for all j is O, (log’n,mn).
Next apply inverse FFTs in order to compute the canonical set
of entries of (hT)* for all k < m (FFT is applied once for each
entry of the canonical set), and then divide the results by h¥ to
obtain the desired entries of T*. The divisions by b* increase the
errors b¥ times, and k<g=m/2 in our case.

Theorem §.1. The cenonical set of entries of the powers
TY of an nXn Toeplsitz matriz for k=2,3,....q.9>n, cen be com-
puted with absolute errors less than

E = 0(1/(250" 2%+ (n%log 0)/10%)

for the cost O,(log n log(nq).nq) using the precision of computa-
tions of O{(q+n)log(||T]|+(1/h))) binery bits, where a positive h
satisfies (5.1), |log h| = Oflog|IT||)), and c is an arbitrary con-
stant. If oll the entries of T are integers and if the error bound E
of (5.5) is less than 1/2, then the ezact values of the entries of the
canonical sets of TX can be recovered for all k via rounding-off
the computed approzimations to the neerest integerss.

(5.5)

8. Csanky-LeVerrier Algorithm
tions

Recall the following definitions and facts.

for Toeplitz Computa-

s; = trace(TY) = k=1, . n, (6.1)
T= (D4, (82)
D= diag(1,2,.,0), L = L(P) € [L], B = [081p.i]";
SUAT)=\- 53 e T (5-Ay), comi-1pdet(T;
=1 =1
T = (T - .}jl ¢TH) /e,
=1
™ k:llg;: lt:m 8.1 (Csanky-LeVerrier), [10]. Input:
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Successively compute the vectors § = [81,50,-.-,85]T of (6.1) and
T = [c; 1,Ca-2,-iC0]" Of (6.2) and then the matrix

-1
adj(T) = = (T*' - ¥ T,
=1
Then define T™' as the pair (adj(T), det(T)) or if ¢4 5% 0, com-
pute .
T = adj(T)/det(T).

(6.3)

" (6.4)

Applying Algorithm 6.1 in the case of a Toeplitz matrix T,
we take the canonical sets of entries of T as the inputs and only
compute the first and the last columns of 2dj(T) and of T™! or, if
Xg = 0 in (3.1), we imbed T into the (n+1)X(n+1) matrix T® of
Theorem 3.1 (choosing the entries t,, and tg, of T* such that T®
is nonsingular) and repeat the computation with T replaced by
T*. Computing the vector T that satisfies (8.2) can be reduced to
the inversion of the triangular matrix D+L for the cost of
Op(log®n,M(n)), but we use the elegant algorithm of [27], sect.
13, in that stage and arrive at the following cost bounds.

Table 6.1.

(6.1) and Theorem 5.1 '| (6.2) | (8.3) and (8.4)
0, (log?n,0%) | Oa(log’n,n/log n) | O,(log n,n%/log n)

7. Extensions to Computations with Different Structured
Matrices and to Computing the Greatest Common Divi-
sor of Polynomials and the Rational Interpolation

Our algorithms and complexity bounds can be immediately
extended to computations with many well structured matrices,
such as all the matrices of the class (2.1) (in that case the asymp-
totic parallel time bounds do not change and the processor
bounds increase d times), the matrices of similar classes, defined
by Hankel type displacement generators or by some other similar
operators, and so on, see [9, 12]. If a matrix V belongs to such a
class of structured matrices, then so are the matrices VT and
VTV, see [9] (which implies immediate extensions of our results
to least-squares computations with structured matrices); further-
more our algorithm can be easily extended also to the case of
structured block matrices. In fact, our approach works whenever
Theorem 3.1 and Proposition 3.2 can be extended, and numerous
extensions of those theorem and proposition are presented or
implicit in {9, 12]. In particular this implies

Theorem 7, [23]. The greatest common divisor of two
given polynomials of degrees at most n with integer coefficients
whose absolute values are less than a fized value t can be com-
puted for the cost of O,(log®n,n?) using the precision of computa-
tions of O(n log(nt)) binary bits.

Similarly our approach can be extended to several other
rational and polynomial computations (such as the evaluation of
the ged of several polynomials, of the least common multiple of
two or several polynomials, of the entries of the extended
Euclidean scheme, of the squarefree decomposition of polynomi-
als, of elementary symmetric functions, of partial fraction decom-
position, of rational interpolation (Hermite or Cauchy) and of
Padé approximation) basing on the known reduction of those
problems to solving Toeplitz linear systems, see [7, 30, 31].




Appendix. Fast Sequential Inversion of Toeplitz and
Almost Toeplitz Matrices

We may modify the method of Section 4 and extend it to
p-adic computations for the inversion of integer matrices of the
class [LU},, which will lead us to their effective sequential inver-
sion {although its parallel Boolean time is at best linear). The
algorithm can be extended to the inversion of other structured
matrices.

Proposition A.1 Let S be a nonsinguiar nXn integer
matriz from the class [LU}4 for a natural constant d, k be a posi-
tive integer, p>n be a prime in the interval

’[ITII** < p < n**9|IT||*/*
for a positive constant ¢,
P > (a]IT})* > p™/ for N = 2.

Then the matriz S mod p is nonsingular with probability converg-
ing to 1 as n — oo, and the matriz S can be computed for the
overall sequential Boolean cost Og(n log(nh)u(h)).
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