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Abstract—We consider the problem of approximate solution # of of & linear system Az = b over
the reals, such that || AZ — || < «||blf, for a given ¢,0 < ¢ < 1. This is one of the most fundamental
of all computational problems. Let x{A) = [|A[|[| A=} be the condition number of the n X n input
matrix A. Sparse, Diagonally Dominant {DD) linear systems appear very frequently in the solution of
linear systems associated with PDEs and stochastic systems, and generally have polynomial condition
number. While there is a vast literature on methods for approximate solution of sparse DD linear
systems, most of the results are empirical, and to date there are no known proven linear bounds on
the complexity of this problem. Using iterative algorithms, and building on the work of Vaidya [1]
and Gremban et al. [2-4] we provide the best known sequential work bounds for the solution of a
number of major classes of DD sparse linear systems. Let 7 = log(k({A)/€). The sparsity graph of A
is a graph whose nodes are the indices and whose edges represent pairs of indices of A with nonzero
entries. The following results hold for & DD matrix A with nonzero off-diagonal entries of bounded
magnitude:
(1) if A hasza sparsity graph which is a regular d-dimensionat grid for constant, d, then our work
is O{nr4),
{2) if A is & stochastic matrix with fixed s(n)-separable graph as its sparsity graph, then our
work is O((n + #(n}?)x).
The following results hold for & DD matrix A with entries of unbounded magnitude:

(3) if A is sparse (i.e., O(n) nonzeros), our work is less than O(n(x + logn))* 5,

(4) if A has a sparsity graph in a family of graphs with constant size forbidden graph minors (e.g.,
planar graphs), then our work is bounded by O(n(n+log n)2+*(})) in the cass logn = o{log 7)
and O(n(x + log n)}1+2(1) ip the case log 1 = oflogn).

We use approximate preconditioned iterations to compute a sequence of iterative improvements to
the preconditioned linear system. For class (1) of matrices (and class (2) with s(n) = O{v/n)), we
construct in n) work preconditioners, which reduce the condition number of the resulting precondi-
tioned linear system condition number to O(1); and our resulting total work bounds to approximately
solve the linear systems are Ofn}, if # = O(1). For class (4), we are within a small increasing factor
of these bounds. © 1998 Elsevier Science Ltd. Al rights reserved.
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1. INTRODUCTION

This paper is concerned with the approximate solution of a linear system Az = b over the reals,
where A = {a; ;} is assumed throughout this paper to be an n x n symmetric nonsingular matrix
and b is a column vector of size n. All of our algorithms will assume unit cost arithmetic scalar
operations. The arithmetic bounds for the solution of dense linear systems are known to be
within a constant factor of the bounds for n x n dense matrix product: O(n“). The currently
best known bound is w < 2.376... [5], however, a practical bound for w is at best 2.84.

1.1. Sparse Linear Systems

Recall from the abstract that the sparsity graph of a symmetric A is a graph with node set
V ={1,...,n} and edge set E = {(i,5) | a;; # 0}. Let m be the number of nonzero elements
in A. We will assume throughout that m > n. A is sparse if m = O(n). A matrix is symmetric if
A= A", where AT is the transpose of A. Our algorithms will provide competitive performance
only in the case of sparse, symmetric matrices. Fortunately, the large linear systems found in
practice are generally sparse and symmetric and have additional properties which allow for more
efficient solution.

1.2. Diagonally Dominant Linear Systems

A is diagonally dominant (DD), if, for each i,1 < i < n, we have |a; ;| > Zj,j#i |ai;,|. That
is, at each row, the diagonal element has magnitude greater than the sum of the magnitudes of
the off-diagonal elements of that row.

In practice, DD linear systems frequently arise from discretization of elliptic Partial Differential
Equations (PDEs), with bounded coefficients, (e.g., Laplace’s equation) and the approximate
numerical solution of these PDEs is given by the approximate solution of corresponding DD
linear systems. Stochastic linear systems used in statistical computation and probabilistic analysis
generally have the property that the sum of the magnitudes of the off-diagonal elements of each
row is equal to the diagonal element (usually of value 1), due to the requirement that probabilities
of exhaustive events sum to 1, and thus these stochastic linear systems are DD.

1.3. Vector Norms and Condition

Let 27 and AT denote the transpose of vector z and matrix A. Let lzll = /3o, 22 denote
the Ly (Euclidean) norm of n-vector z. The matriz norm is || A|| = sup, o (|| Azl /||z||). Recall
from the abstract that x(A4) = ||A||||A~!|| is the condition number of A. We will also define the
generalized norm ||z||pr = V2T Mz for vector = with given matrix M.

1.4. Positive Definite Matrices

Matrix A is Positive Definite (PD) if 27 Az > z for allz #0. A is SPDif A is symmetric and
PD.

PROPOSITION 1.1. If A is symmetric, nonsingular and DD and all the diagonal elements are
positive, then A is SPD.
PROOF. (Attributed to Pothen; also see [6, p. 140].) The eigenvalues of a symmetric A are within
the gershgorin disks (see [7]), which for each 4,1 < i < n, are centered at a,; and have radius
;i |6ij|- Since A is symmetric, all the eigenvalues are real, and since A is DD, this implies
that all the eigenvalues are positive, which implies that A4 is SPD. ]
Throughout the paper we assume that the input matrix A is symmetric, nonsingular, and DD.
We can also assume, w.l.o.g., A has all positive diagonal elements (by multiplication of A by a
diagonal matrix whose 3th diagonal element is 1 if @, ; > 0, and else —1 if a;; < 0, and, noting

that multiplication by a diagonal matrix always preserves the symmetric matrix property), so A
is SPD.
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1.5. The Normal Reduction to SPD Matrices

Given a nonsingular matrix A’ that is not necessarily PD, then the normal form A’ T A’ is SPD.
We can approximately solve a linear system A’z = b’ by approximately solving the SPD linear
system (A'T A')z = A’ T¥. If A’ is symmetric, the condition number is x(A’ TA ) < x(A’)2. This
increase in condition number does not much affect the complexity of our algorithms, which grow
as log k(A’) or log!® k(A').

1.6. Forbidden Graph Minors and Graph Separators

A family F of graphs has s(n)-separators if for sufficiently large n, for each n node graph G in
the family, there is a separator set V' of s(n) nodes which, when deleted, disconnects the graph
into subgraphs G1, G2 each of < en nodes, for some constant ¢,0 < ¢ < 1, and such that the
graph G/G; derived by removing subgraph G, from G is in F, for j = 1,2. We say a graph is
s(n)-separable if it is in a family F of graphs with s(n)-separators. A graph H is a minor of
graph G if there is a subgraph of G that can be contracted to H by edge contractions. Forbidden
graph minors can be used to characterize large classes of sparsity graphs associated with sparse
linear systems. For example, the planar graphs are exactly the family of graphs whose forbidden
minors are the clique of 5 nodes K5 and the bipartite graph K3 3. Similarly, constant size sets of
forbidden minors can be used to characterize sparsity graphs arising from various discretizations
of 2D PDEs. Fix a (minor closed) family F of graphs defined by a constant size set Sr of
forbidden graph minors. F is closed under edge contractions [8]; that is, if we apply a sequence
of edge contraction to a graph of F, the result is a graph in 7. Then by [8,9], there is some
fixed graph that is not the minor of any graph in ¥, and hence, the graphs in F are sparse, with
m = O(n) edges and they have O(y/n) separators.

1.7. Direct Methods

The arithmetic bounds for the solution of dense linear systems are known to be within a
constant factor of the bounds for n x n dense matrix product: O(n“). The currently best known
bound is w < 2.376... [5], however a practical bound for w is at best 2.84.

There are many diverse techniques for the solution of sparse linear systems. Direct methods
generally use a carefully chosen ordering to apply Gaussian elimination of variables, yielding
a decomposition A = LLT (where L is lower triangular) known as a LLT -factorization, which
always exists assuming A is SPD, or symmetric DD. (If A is SPD, the LL T -factorization is called a
Cholesky LLT -factorization and L is lower triangular with positive diagonal entries.) For general
sparse linear systems, the bounds of Gaussian elimination are at least Q(n2). However, for sparse
linear systems that have sparsity graphs with separators of size s(n), the work bound to construct
a sparse LL7 -factorization using nested dissection orderings [10,11} is O(n + s(n)¥).

For example, for matrices with planar sparsity graphs, where s(n) = O(4/n), the work bounds
for sparse LLT-factorization are O(n*/?); and for d-dimension grids (that is an n node grid
graph in d dimensions), where s(n) = n%~1/¢ the work bounds for sparse LLT-factorization are
O(n¥(@-1)/4) Known lower bounds for fill-in [10] imply that these are the best bounds possible
by use of such direct Gaussian elimination techniques (up to improvement in w). However, once
a sparse LLT-factorization is constructed for a fixed A4, then the system Az = b can be solved
(by back-solving) in work O(n + s(n)?) for any column n-vector b.

1.8. Our Results and Previous Preconditioned Iterations

OurR METHODS. We use Preconditioned Iterative (PI) methods (see Section 2) to compute the
approximate solution a number of major classes of DD sparse linear systems. We provide with
considerably better provable bounds than known previous bounds. A summary of our improved
work bounds for various sparse linear systems is given in the Abstract and a detailed description
of the results are given in Section 4.
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Building on the work of Vaidya [1] and Gremban et al. [2-4], we apply an interesting com-
bination of combinatorial and algebraic methods to construct our preconditioners and to bound
the condition number of the resulting preconditioned matrices. The key to our performance im-
provement is to obtain preconditioned matrices with small condition number,using a variety of
techniques including multigrid preconditioners and maximum spanning tree preconditioners, as
well as recursion, in certain cases.

COMPARISON WITH PREVIOUS PRECONDITIONED ITERATIONS. There is a vast amount of lit-
erature on preconditioned iteration (PI) methods, however, much of the literature is empirical;
there is only a very small number of proven complexity results (which we will significantly improve
on). This area represents a prime area where theoretical computer scientists might have impact,
particularly since good preconditioners require one to juggle two contrasting requirements:

(i) fast construction, and
(ii) low condition number,

and moreover, the methodologies for construction and analysis of preconditioners involve an
interesting hybrid of combinatorial and algebraic techniques.

Reference (6] provides a short introduction to preconditioning, [12-14] provide analysis of pre-
conditioned conjugate gradient, multilevel preconditioners are presented in [15,16], and [17-20]
provide efficient implementations of preconditioned iterative methods. Preconditioners have been
constructed using a wide variety of methods, including diagonal scaling, partial Gaussian elim-
ination resulting in sparse partial LL-factorizations, and algebraic transforms. For example,
consider preconditioners for a class of matrices we will denote BGRID,,, consisting of symmetric
DD matrices of size n x n which are O(1)-bounded, and where the sparsity graph is an n node
regular d-dimensional grid of constant dimension d. Such matrices frequently arise in the discrete
solution (via uniform grids) of PDEs with bounded coefficients. Multilevel preconditioners based
on symmetric successive over-relaxation [15] and modified incomplete Cholesky [21] have been
constructed for this class BGRID,, of matrices, with upper bounds of O(n'/%) on the condition
number of the preconditioned matrix, but they may require the tuning of certain parameters to
achieve this performance. A Laplacian matriz is a real symmetric DD matrix where each off-
diagonal element is nonpositive. For the subclass of Laplacian matrices in BGRID,,, Gremban
et al. [2,3] defined another effective class of preconditioners they call support trees resulting in
a preconditioned matrix with condition number O(n/4 log®! n) (their work was also general-
ized [4] to all real symmetric DD matrices in BGRID,,). These methods compute an e-solution of
linear systems with this matrix class BGRID,, and subclass in work O(n'+1/?¢log?(k(A)/e)), or
O(n!*+V/3(log®™ n) log?(k(A)/€)), respectively. In contrast, for the class of matrices BGRID,,,
by Theorem 4.1, our resulting preconditioned matrices have a constant condition number, and
by Corollary 4.1, our total work to compute an e-solution is linear in n.

Vaidya [1] proposed the use of preconditioners based on marimum spanning trees, which do not
require an input matrix to be O(1)-bounded. For certain results, we will apply Vaidya’s techniques
for those of our preconditioners based on minimum spanning trees, and improve both the condition
number and the resulting work bounds (a detailed comparison of his work bounds with ours are
given just after the statement of our results: Corollaries 4.3 and 4.4). However, we note that
his results do not extend (as ours do) to d dimensional grids with d > 2. More significantly, for
our main results (Corollary 4.1) for grid graphs, we use instead Multigrid Preconditioners, which
were not considered by Vaidya.

One further significant aspect of the work of both Vaidja [1] and Gremban [4] is the use
of a powerful combination of algebraic methods (initiated by Axelsson [13]) and combinatorial
methods for the analysis of preconditioners. Their approach is to define certain mappings (known
as support mappings) to and from the sparsity graph of the input matrix A and the sparsity graph
of the preconditioner matrix B, and to bound the condition number of the preconditioned matrix
B~14 by use of certain key parameters (namely, the congestion and dilation) of these mappings.
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1.9. Organization

We give in this section definitions for sparse linear systems in Section 1.1, diagonally dominant
(DD) linear systems in 1.2, vector norms and condition number in 1.3, positive definite (PD)
and Symmetric Positive Definite (SPD) matrices in 1.4, the normal reduction to SPD matrices
in 1.5, forbidden graph minors and graph separators in 1.6, direct methods for solution of linear
systems in 1.7, a comparison with previous preconditioned iterations in the Appendix, and the
organization of our paper in 1.9. Next, in Section 2, we describe iterative methods for the solution
of linear systems, including base iterative methods (e.g., Conjugate Gradient and Chebyshev
Semi-iterative) in Section 2.1, preconditioned iterations in 2.2, and approzimate preconditioned
iterations in 2.3. In Section 3, we describe combinatorial methods, known as support mappings,
for bounding the condition number of preconditioned matrices. In Section 4, we state our main
results (also summarized in the abstract), which give improved work bounds for approximate
solution of sparse linear systems. We prove, in Section 4, some results for sparse matrices with
bounds on the magnitude of the coefficients of the input matrix. In Section 5, we prove our
results for the case where these coefficients have no magnitude bounds. Section 6 concludes the
paper with a brief summary, open problems, and acknowledgments. The Appendix provides more
details of the recursive preconditioned iterations used in Section 5.

2. ITERATIVE METHODS

For a given relative error bound €,0 < € < 1, let an e-solution of linear system Az — b be
a n-vector Z such that ||AZ — b|| < €||b||. A wide variety of iterative methods can be used to
provide e-solution of sparse linear systems. Newton methods for inverse of A within relative
error € (provided with a good initial approximation) can quickly converge with second order
convergence in O(log log(x(A)/e)) iterations, but require matrix product on each iteration, with
high cost O(n*). Multigrid methods [22-27] cost O(n) per iteration but can be proved to converge
quickly only for certain restricted classes of matrices, e.g., those derived from discretization of
elliptic PDEs with bounded coefficients multigrid. (Note: When multigrid methods do converge
fast, they work well in practice, but they may not very robust. A small perturbation of a linear
system may result in nonconvergence or very slow convergence. Other iteration methods, such as
conjugate gradient, often have the greater robustness and direct methods can generally be much
more robust.)

2.1. Base Iterative Methods

For these reasons, many practitioners use highly optimized versions of classical iterative meth-
ods such as Jacobi, Gauss-Seidel, SOR, conjugate gradient and Chebyshev. Semi-iterative meth-
ods to approximately solve general sparse linear systems. A succinct introduction to these iter-
ative methods is given in [6]; also see [28-32] for further details, see [33] for sequential imple-
mentations, see [34,35] for parallel implementations, and see [36-38] for detailed analysis of the
Conjugate Gradient method. These methods have the advantage that the most costly work per
iteration consists of an inner product of the input matrix with a vector, but have the disadvantage
of requiring potentially more iterations than Newton’s method. In our algorithms, we will choose
and fix one of these iterative methods IMPROVE and call it the base iterative method. (Later, we
will restrict the base iterative method to be one of the last two listed, and consider enhancements
of the base method so as to decrease the number of iterations.) Each iterative stage of a base
iterative method consists of an iterative improvement procedure of the form

(Ti+1,Yi+1) = IMPROVE (4, b, z,,3:)

where z; is the approximation to the solution on the i*? iteration (where, with no other informa-
tion, we may initially set zo = 0), and y; is a list of O(1) auxiliary n-vectors computed on the
ith iteration within the same relative error.
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SOME BASE ITERATIVE METHODS. In certain very simplistic iterative methods, including Jacobi,
Gauss-Seidel, and SOR, we require no auxiliary vectors in y;. Let D = diag(A) be the n x n
matrix containing the diagonals of A, and let L,U be the proper lower and upper triangular
submatrix of A. For the Jacobi iteration, we define z;.1 = D~1((A — D)z; + b), for the Gauss-
Seidel iteration, we define x;1; = U~}((D + L)z; + b), and for the SOR iteration, we define
Zip1 = (D 4+ wl) (1 - w)D — wU)z; + wb), for some 0 < w < 1.

In the conjugate gradient and Chebyshev semi-iterative iterations, y; consists of two auxiliary
vectors qi,p;. For the conjugate gradient iteration we initialize o = 0, q1 = po = b, and we
define z,41 = T; + cigi, where piy1 = p;i — ¢;Agi, ¢ = (p] pi/a] Ag;), and for i > 2, qiy1 =
pi + (0 pi/p_1Pi-1)as

The Chebyshev semi-iterative iteration is also a three term recurrence with similar convergence
bounds; see [6, p. 513].

ERRORS IN BASE ITERATIVE METHODS. The (absolute) error on the i*! iteration is defined to
be
eillbllar = | Azi — bl ar,

where M is a fixed matrix depending on the base iterative method (see [6]), and the relative
error is €;. Each such base iterative improvement procedure IMPROVE (A, b, z;,y;) requires
an inner product of the input matrix A times an n-vector. Assuming A has m nonzeros, this
costs O(m) steps per iteration (again, see [6]). The improved relative error ratio per iteration is
€;/€i—1. Assuming that the input matrix A is SPD, €;/e;—1 < 1 — 1/k(A)?, where 3 depends on
the base iterative method (for example, 3 = 1 for Jacobi, Gauss-Seidel, and SOR, and § = 1/2
for conjugate gradient and Chebyshev semi-iterative methods; see [6]). The relative error of
these base iterative methods is reduced geometrically: ¢; < 2(1 — (1/x(A)?))*. Thus, we have
Proposition 2.1.

PROPOSITION 2.1. Assuming A is SPD, these base iterative methods converge to an e-solution
in O(k(A)? log(1/€)) iterations.

Note that these base iterative methods provide no bits of accuracy until (x(A)?) iterations;
and thus, their performance is strongly dependent on the condition number x{A) of the input

matrix. Hence, a key approach to speeding up such an iterative method is to decrease the
condition number x(A).

PRECONDITIONED ITERATIVE METHODS. The number of iterations of a base iterative method
can be reduced by the computation of a preconditioner matriz B such that x(B~!A) is small.
The preconditioned linear system A'x = b’ derived from the original linear system Az = b with
preconditioned matriz A' = B~'A and b = B~!b, requires O(x(B~1A)? log(1/¢')) iterations to
converge to an ¢’-solution.

PROPOSITION 2.2. If we compute an €’-solution & of the preconditioned linear system such that
|A'Z —b'|| < €||b||, where € = ¢/(k(A")x(A)) then ||AZ — b]| < €|b].

PrOOF. Note that K(BA™!) = k(A™1B) = x(4’), so x(B) = s(BA™'4) < k(BA™1)k(4A) =
x(A’)k(A), hence, ¢ < e/k(B). Then, by definition of A’ and V', we have ||AZ — b)| < ||[B(A'Z -
b;l);‘lls IBIIIAZ = &'l < IBII(e'NI®Nl) < elibll since |BII(¢'|&']l) < | Blle’| B-*]ll|bll = (B)e'|b]] <
€l|b]l. i

2.2. Preconditioned Iterations

The preconditioned iterative (PI) procedure is
(Zi+1,¥i+1) = IMPROVE (4, ', ;, u:) ,

where z; is the approximation to the solution on the it" iteration (where, again, generally initially
zo = 0), and IMPROVE is a base iterative method.
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For example, for the preconditioned conjugate gradient iteration with preconditioned matrix
A" = B7'A, we define 7,41 = z; + c;q;, where piyy = p; — c;A'q;, ¢ = (! pi/al A'qy),
and for ¢ > 2, 41 = p; + (p;r pi/. p,-T_lpi_l)q,-. The relative error of the PI procedure is
€ = ||A'zi — V|| /||| m, (where again M is a fixed matrix depending on the iterative method)
and so the relative error is reduced geometrically €] < 2(1 —1/k(A’)?)?, where x(A’) is the condi-
tion number of A’ and 3 again depends on the base iterative method. Again, y; is a list of O(1)
auxiliary vectors computed on the §*! iteration within the same relative error. It is important to
note that the preconditioned matrix A’ = B~ A need not be explicitly computed. Nevertheless,
the base iterative improvement procedure IMPROVE (A/, ¥, z;,y;) requires an inner product of
the preconditioned matrix A’ = B~1A times an n-vector vector in y;. These inner products can
be done first by a multiplication by A, resulting in an n-vector, say, r;, and then a multiplication
by B~1. Assuming the input matrix A has m nonzero entries, this inner product cost O(m) steps
per iteration.

2.3. Approximate Preconditioned Iterations

The computation z; = B~!r; at first appears to imply the need for an exact solution z; to
the induced linear system Bz; = r;. However, that is not necessary. The induced linear system
Bz; = r; need not be computed exactly. Instead, let an approzimate PI algorithm be a PI
method exactly as detailed above. (zi41,¥i+1) = IMPROVE(A', ¥, z;,y:) (utilizing one of the
previously listed base iterative methods), modified so that we use an approzimation b’ to b’ with
relative error O(e/x(B)) and we compute an approzimate solution %; to the induced linear system
Bz; = r; with relative error €;; = O(¢€]/s(B)). (Note that an approximate PI is often used by
multigrid solvers, except that we restart the iteration of the 2 from 0, rather than from %;_;,
due to the possible near-orthogonality of #; and Z,_;.) It is well known (e.g., see [6]) that the
resulting iterations still reduce the relative error geometrically, as €, < O(1 — (1/k(4)P))".

WORK BOUNDS. Let Wg be the work to do this computation of an approximate solution %; with
relative error ¢;. Let Pp be the work to construct the preconditioner matrix B. The error bounds
given by Proposition 2.1 on the number of iterations require that the preconditioned matrix A’
be SPD. (If this is not so, we may detect a violation of the error bounds or exceed the required
number of iterations. If A’ = B~!A4 is not SPD, we instead redefine the preconditioned matrix
to be the normal form preconditioned matriz A’ = (B~'A)T(B~!A). We have noted above
that any such normal form is SPD. We will bound the condition number of the normal form
preconditioned matrix by x(A’) = x((B=*A)T(B~14)) < k((B~'A)T)x(B~'A). (Each iteration
may now require two approximate solutions of linear systems with matrix B, but the work per
iteration is asymptotically the same.) In general, the work of an approximate PI algorithm
depends on Wg, Pg, and on the condition x(A’) of the preconditioned matrix A’. The total
precomputation and initialization work for an approximate PI algorithm in either case is Pg.

By Proposition 2.1, we have Proposition 2.3.
PROPOSITION 2.3. If A’ is SPD, an €'-solution to the preconditioned linear system A’z = b’ can
be computed in O(k(A')? log(1/¢')) iterations.

By Proposition 2.2, we have the following.
PROPOSITION 2.4. If A’ is SPD, an €'-solution to the preconditioned linear system A’z = b'

provides an e-solution to the given linear system Ax = b, with O(x(A’)? log(k(A’)x(A)/e)) iter-
ations.

The work of each iteration is O(m + Wp) arithmetic steps, assuming the input matrix 4 has m
nonzeros. Hereafter, we assume that we use a base iterative method such as conjugate gradient
or the Chebyshev semi-iterative method.
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LEMMA 2.1. Assuming that the preconditioned matrix A’ is SPD, by use of a base iterative
method such as conjugate hradient or the Chebyshev semi-iterative method, with 3 = 1/2 the
total work for an approximate PI algorithm is Pg + O(m + Wg)+/k(A’)log(k(A")k(A)/€), to
compute an e-solution to the given linear system Az = b.

3. BOUNDING PRECONDITIONER
CONDITION BY
SUPPORT MAPPINGS

In the following, we define a network to be a graph with each edge e labeled by a nonnegative
real number weight w{e). Given two networks G, G’ with the same node set, a support mapping
from G to G’ provides a mapping f from each edge ¢ = (4,j) of G to a path f(e) from i to j
in G'. The edges of the path f(e) in G’ supports edge e in G. The supported weight of edge €
of G is EeEE(G).e‘Ef(e) w(e), that is, the supported weight of €’ is the sum of the weights mapped
to paths on G’ containing edge e’. The dilation of edge e of G is the number of edges of the
longest path f(e) appearing in the support mapping. The congestion of an edge €’ of G’ is the
ratio of the supported weight of e’ to the weight of ¢’ in G'. We define the support number of
the support mapping to be maximum, for any edge e of G and any edge e’ of G’ supported
by e, of the product of the dilation of e times the congestion of e’. A weight partitioning of a
network G consists of a set of networks Gi,...,Gy such that the weight of each edge e of G
is the sum of the weights of e in the networks Gi,...,G and there is no edge appearing in
networks Gi,..., Gy that does not appear in G. (Note that the nodes and edges of G may be
repeated in the networks G, ...,Gk.) We define the support o(G, G’) of network G by G’ to be
the minimum number ¢ > 0 which upper bounds the support number of each fi, ..., fi for some
weight partitioning G1, ..., Gx of network G and some weight partitioning G, ..., G}, of network
G', for some support mappings f; from G; to G}, for i = 1,..., k. Recall that the sparsity graph
G(A) of a real n x n symmetric matrix A = {a;;} is a graph (V, E) with node set V = {1,...,n}
and edge set E = {(4,7) | a;,; # 0}. We will augment the sparsity graph with the nonnegative real
value |a; ;|. For compactness of notation, we will intentionally confuse notation and also denote
the resulting network G(A). Given two matrices, A, B of the same size, we define the support
(A, B) of A by B to be 0(G(A),G(B)). Recall that a Laplacian matrix is a real symmetric
DD matrix where each off-diagonal element is nonpositive. Laplacian matrices are known to be
equivalent to resistive matrices associated with resistive networks of electrical circuits [39,40],
and have been investigated in the determination of the expected length of a random walk in
resistive network [40]. Let B < A if A, B have the same size, say n x n, and for each i, 7 we have
|bs,j] < |as ;|- In this case, note that o(B, A) = 1. The following Lemma 3.1 is a known result,
which seems to be first due to Vaidya [1].

LEMMA 3.1. For any Laplacian n x n matrices A, B,x(B~'A4) < O(o(A, B)o(B, A)), and if
B < A, then k(B~'A) < O(c(A, B)).

A full proof of Lemma 3.1, and further enlightening discussions of support mappings and re-
sistive networks, appears in the recent Ph.D. thesis of Gremban [4] (his statement of Lemma 3.1
appears without reference to the prior work of Vaidya [1], but may be considered to be an im-
provement, since it does not require constant factor, due to a redefinition of the mapping o). The
previous results of Vaidya [4] bounding condition numbers were generally restricted to Laplacian
matrices.

Fix an n x n real symmetric matrix A. Let A* be the n x n matrix derived from A by setting
to 0 all negative off-diagonal elements. Let A~ be the n x n matrix derived from A by setting
to 0 all positive off-diagonal elements. Let D(A) be the n x n matrix consisting of the diagonal
elements of A, where D(A) has 0 value at the off-diagonal elements. Define the 2n x 2n matrix
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A= [D({)AtA_ D(;)A: A‘] ‘

Then A[ %] = [_A:x] for any n-element vector z, since A = D(4) + AT + A”.

Gremban has shown Proposition 3.1 [4, Lemma 7.2].

PROPOSITION 3.1. A has eigenvalue A if A has eigenvalue A.

The following provides an extension of Lemma 3.1 to symmetric DD matrices.

LEMMA 3.2. For any symmetric DD matrices A, B, where B < A, k(B~!A) < O(c(A, B)), and
K((B~1A)T(B~'4)) < O(a(4, B)?).

ProOOF. By Propaosition 3.1, A has all the eigenvalues of A. Note that each off-diagonal element
of A is nonpositive. If A is symmetric and DD, then A is a Laplacian matrix.

Our proof of Lemma 3.2 uses an interesting argument, where we show by a graph embedding
argument using support mappings, that a(fi, é) can be upper bounded by O(c(A, B)), for two
Laplacian matrices A, B derived from A, B, with «(B -14) < x(B~14), and then we apply Lemma
3.1, thus bounding x(B~14) < O(o(A, B)). This implies x(B~1A4) < s(B1A) <0(c(4,B)) <
O(o(A, B)), as claimed.

Let A, B, be nonsingular symmetric DD matrices where B < A. Let A, B be the Laplacian
matrices derived from A,B as defined above. Then B~'Az = Az, if B4 [_zx] = A [_Ix]
Hence, A has eigenvalue X if A has eigenvalue A. Thus we conclude B~1A4 has all the eigenvalues
of B-14, so x(B~1A) < k(B~1A).

Fix a path p = ey, ..., €; in G(A) where ¢; = (ui—1,u;) for i = 1,...,j. Then we can construct
a path p = é&;,...,€; in G(A) starting at node up with the same edge weight magnitudes: the
weight of e; in G(A) has the same magnitude as the weight of &; in G(A), fori =1,...,7. Let
P, be the number of positive entries, Ae,, > 0, that are indexed by the edges e;,1 <4’ < 4,
preceding edge e; on the path p. To construct p, we let fori = 1,...,7j its edges be & = (¥;—1, U;)
where ii; = u, if P; is even, and otherwise %; = u; + n. We can also similarly construct a path
p=¢,. . .,&in G(A), with the same edge weight magnitudes, that starts instead at node up+n

where for i = 1,...,j its edges are & = (i_,, ), where 4! = u; + n if P; is even, and otherwise

U, = u;.

Consider a support mapping f from G(A) to G(B), with dilation (f) congestion (f) = o.
For each edge e = (u,v) of G(A), consider the path p = f(e). If p has an even number of
negative edges, then let f(u,v) be the path $ in G(B) defined above and let f(u+n,v+n) be
the path ¥ also defined above. If p has an odd number of negative edges, then let f(u,v +n) be
the path p in G(B) defined above and let f(u + n,v) be the path ' also defined above. Thus,
dilation(f) < O(dilation(f)) and congestion( f) < O(congestion(f)). Thus, we can construct a
support mapping f, from G(4) to G(E) with the product dilation( f)congestion( f)=0(0). The
support o(G(A), G(B)) of network G(A) by G(B) is the maximum of the support number of each
fi,-- ., fi for some weight partitioning G, ..., G, of network G(A) and some weight partitioning
Gj,...,Gj of network G(B), for some support mappings f; from G; to G}, fori =1,...,k. We
have just shown that for each i = 1,... ,k we can construct a support mapping f; from G(/i)
to G(B) with dilation (f;) congestion (f:) < dilation (fi) congestion (f;) < O(o(G(A), G(B))).
Thus, the support a(G(A),G(I?)) of network G(A) by G(B) is O(d(A, B)). By Lemma 3.1,
k(B-14) < O(c(4, B)). Hence, k(B~14) = k(B~14) < O(a(4, B)) < O(c(4A, B)).

Since A, B are symmetric, (B~14)T = AT(B~!)T = AB™!, s0 k((B1A)T) = k(AB™1).
The proof techniques of Lemma 3.1 also imply k(AB~') < O(o(A, B)), and hence, we have
K((B~*4)T(B~*A)) < O(0(4, B)?). ]
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4. IMPROVED ALGORITHMS
FOR APPROXIMATE SOLUTION
OF SPARSE LINEAR SYSTEMS

GooD PRECONDITIONERS. Given a symmetric DD matrix A, our main goal is to find a precon-
ditioner B, where

(i) the resulting preconditioned matrix A’ is SPD and has O(1) condition number,
(ii) where B is constructed in Pg = O(n) work,
(iii) the work Wg to compute an approximate solution of a linear system over B is O(n).

If we can find a such a preconditioner, the resulting approximate PI algorithms have linear total
work to find an e-solution to the given linear system. (Note: in the following, we first let the
preconditioned matrix be A’ = B! A, but if the iterations do not converge as stated, then we
conclude B! A is not SPD, so we instead redefine A’ = (B~!'A)T (B! A) which is always SPD.)

Ovur RESULTS. We show that we can construct good preconditioners for a number of cases,
including the important case of grid graphs with nonzero entries of bounded magnitude (here we
use multigrid preconditioners). While we certainly build on the work of Vaidya [1] and Gremban
et al. [2-4], we also improve on these previous techniques:

(i) our condition number bounds on the preconditioned matrices are smaller than those of
[1], which grow as n7, for v > 0, and those of [2-4], which are O(n!/?),

(ii) our arithmetic bounds are smaller than those of (1] which grow as n'*”, for ¥ > 0, and
those of [2-4] which grow as n!'5 in many cases (for example 2D grid graphs).

See further comments on the relation with previous work of [1] just after the statement of Corol-
laries 4.3 and 4.4.

4.1. Our Results for y-Bounded Matrices

We have a number of results for matrices where the off-diagonals elements have bounded
magnitude. The results given by Corollaries 4.1 and 4.2 are the best known to date for solution of
certain systems of linear equations derived by higher dimensional PDEs with bounded coefficients.
Corollary 4.1 has wide application to the solution of such PDEs, which are often discretized as
regular d-dimensional grids with bounded coefficients (see also the description in Section 1.8 of
previous work). The further result of Corollary 4.2 has application to the solution of stochastic
PDEs discretized as irregular d-dimensional grids with small separators. Let a matrix A be u-
bounded if the nonzero off-diagonal entries of A have magnitude at most a factor u more than
the smallest magnitude off-diagonal nonzero entry. A is thus O(1)-bounded if it is u-bounded for
p = O(1). Note that we can assume without loss of generality (by use of a diagonal preconditioner
matrix diag(ai7, ... ,a;!)) that each diagonal element of a u-bounded A is 1. Let B be the matrix
derived from A by substituting for each nonzero off-diagonal element the smallest magnitude
nonzero off-diagonal of A, and with the same diagonal elements as A, so B is DD assuming A is
DD. The preconditioner matrix B is thus computed in Pg(n) < O(n) work.

PROPOSITION 4.1. k(B~'A) < O(u) and s((B~1A)T(B~14)) < O(12).
PROOF. Recall matrix A is p-bounded if the nonzero off-diagonal entries of A have magnitude
at most a factor u more than the smallest magnitude nonzero off-diagonal entry, and we can
assume (by premultiplication of a diagonal matrix) that all the diagonal elements have the same
value. Each edge of G(A) can be supported by the same edge of G(B) with dilation 1 and
congestion at most x. Thus, the support number ¢(A, B) is the product of these bounds on
dilation and congestion, namely 4. By Lemma 3.2, it follows that k(B~1A) < O(u). Furthermore,
by Lemma 3.2, s((B~14)T(B~1A)) < O(c(A4, B)?) < O(u?). 1
In the following, fix 7 = log(x(A)/€). By the use of a multigrid preconditioner, we obtain the
following Theorem.
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THEOREM 4.1. Given a symmetric DD and u-bounded matrix A of size nxn with a sparsity graph
which is an n node regular d-dimensional grid, for constant d, we can compute a preconditioner
matrix B in Pg = O(n) work, resulting in the preconditioned matrix A’ of condition number
k(A') < O(1), and such that Wg = O(nr).

PrOOF. Fix a symmetric DD O(1)-bounded n x n matrix A, with a sparsity graph which is
n node regular d-dimensional grid, for any constant d. We use Proposition 4.1 to obtain the
preconditioner B. If B~1A4 is PD, we let A’ = B~ A be the preconditioned matrix of condition
number (A’) < O(p), and otherwise let A’ = (B=14)T (B~'A) be the preconditioned matrix of
condition number x(A’) < O(u?). Assuming p = O(1), then in either case k(4’) < O(1). We
use multigrid to compute (via approximate PI), in work Wg(n), an approximate solution to a
linear system with matrix B from a given approximate solution with relative error O(e//k(B)).
By construction, B is symmetric DD with a sparsity graph which is a regular d-dimensional
grid, for any constant d, and where every off-diagonal element has the same fixed value. We
have defined ¢’ = ¢/(k(A')k(A)), so 1/e’ < (k(A')k(A))/e, and hence, 1/¢’ < (us(A)) /e, if
B~'A is PD, and otherwise 1/¢’ < (u*s(A))/e. It is known [25-27] that multigrid methods ob-
tain this relative error in a number of multigrid iterations bounded by O(/k(4’) log(k(A’)/€))),
which is < O(\/ulog(u/€')) < O(\/mlog(ux(A)/e)), if B~1A is PD, and otherwise we have
< O(/k(A') log(k(A')/€})) < O(ulog(p/e')) < O(ulog(uk(A)/e)) multigrid iterations. Since
each multigrid iteration takes O(n) time, Wg(n) < O(n,/klog(us(A)/e)), if B~'A is PD,
and otherwise Wp(n) < O(nulog(us(A)/e)). In either case, Wg(n) < O(nlog(s(4)/¢)) =
O(nm), for p = O(1). This completes the proof of Theorem 4.1. ]

COROLLARY 4.1. The arithmetic work is O(nn?) to compute an e-solution to a linear system
with an O(1)-bounded symmetric DD matrix A of size n X n with a sparsity graph which is an
n node regular d-dimensional grid, for any constant.d.

PROOF. By the upper bound on Wg(n) given by the above proof of Theorem 4.1, Lemma 2.1
implies that the approximate PI algorithm costs work in this case,

P + O(0(m) + Wg)/x(A") log (R(A'):(A)>

< (O(n) + Ony/nlog (E@)) (\/_1 (#K(A))>
<0 (n;tlog2 log (@)) ,

if B—1A is PD, and else
K{A’ )n
Pg + O(O(m) + Wg)y/x(A’) log

< (O(n) + Onyplog (&E‘Q)) 0 (y log ( (A)))
<0 ('n,u,2 log® (H—%—A—))) .

In either case, the total work is < O(nlog®(k(A)/e)) = O(nn?), for p = O(1). Thus, Theorem 4.1
immediately implies Corollary 4.1. ]

Also, we have some further results for stochastic matrices. A matrix is stochastic if all diagonal
entries are 1 and all off-diagonal entries are negative and their magnitudes sum to 1. A matrix is
weakly stochastic if all diagonal entries are 1 and for each row, the magnitudes of the off-diagonal
entries of the row sum to 1.
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THEOREM 4.2. Fix an n node sparse s(n)-separable graph G. Also, fix a certain preconditioner
matrix B with sparsity graph G and with a precomputed sparse LL " -factorization. Then given
any SPD DD, weakly stochastic, O(1)-bounded matrix A of size n x n with sparsity graph
G(A) = G we can compute a preconditioned matrix A’ with condition number x(A") < O(1),
where Pg = O(n) and Wg = O(n + s(n)?).

PROOF. As in the proof of Theorem 4.1, we use Proposition 4.1 to obtain the preconditioner B.
Since we have assumed A is SPD, the preconditioned matrix A’ = B~! A is SPD and has condition
number k(A4’) < O(u) < O(1), for u = O(1). Use of the precomputed sparse LL " -factorization of
B [10] allows us to solve a linear system Bz = r, for any n-vector r, in work Wg = O(n + s(n)?).
Since the LLT-factorization of B is fixed and precomputated (without cost), the initialization
cost is Pg = O(n). 1

COROLLARY 4.2. Fix a sparse s(n)-separable graph G. The arithmetic work is O((n + s(n)?)7)
to compute an e-solution to a linear system with an O(1)-bounded SPD DD weakly stochastic
matrix A of size n x n. Thus, the arithmetic work is O(nm), if s(n) < O(y/n).

ProoOF. Lemma 2.1 implies that the preconditioned iteration algorithm has work in this case
”(A) 2
Pg + O(0O(m) + Wg)\/k(4") log <O ((n+s(n)?)
A
log(’g(e ))zO((n+s(n ) n). ]

4.2. OQur Results for Sparse Matrices with Unbounded Magnitude

In Section 5 we will prove Theorem 4.3.

THEOREM 4.3. Given a sparse symmetric nonsingular DD matrix A, we can compute a pre-
conditioner matrix B and its Cholesky LLT -factorization in Pg = O(n + (n')*) work, resulting
in the SPD preconditioned matrix A’ = B~!A, of condition number x(A’) < O((n/n’)?), and
Wg < O(n + (n')?).

Let m; = log(nx(A)/e) = m +logn. Theorem 4.3 implies that use of a preconditioned iteration
(in this case, without need of approximate PI) applied to such a sparse matrix A, requires at
most \/m(A’ log(k(A")k(A)/€e) < O(n/n')m, iterations, each with work O(n).

Setting n’ = (n?m;)/“*!, and applying Lemma 2.1, Corollary 4.3 follows.

COROLLARY 4.3. We can compute an e-solution to a linear system with a sparse symmetric DD
matrix A of size n X n in arithmetic work

O(n(m + log n))«/«+1,

Note that our work is < O(nm)'® for w = 3 and is < O(nm)*4%® for w = 2.376 [5]. In
contrast, Vaidya [1] gave a bound of O(nm1)Y™ for this case.

Let p = 1 — 2/w (note that p = 1/3 for w = 3 and p = 0.15825 for w = 2.376 [5]). By the
recursive use of preconditioners, we will prove Theorem 4.4 in Section 5.

THEOREM 4.4. Given a symmetric DD matrix A of size n x n, with a sparsity graph in a
family of graphs with constant size forbidden graph minors (for example, planar graphs), let
#(n) be any increasing function. We can compute a preconditioner matrix B in Pg = O(n)

work, resulting in the preconditioned matrix A’, of condition number k(A') = O(wfd’(")), with
Wg = O(nl+(e/6(n)=0(1) 5 O)),

Lemma 2.1 and Theorem 4.4 imply the recursive PI algorithm requires work
Pg + 0(O(m) + Wg)/k(A")m < O (n1+"/¢(")“o(”7rf“)) 0 (nf('”“)

=0 (nﬂflogn/(logm)(¢(n)—0(1))+¢(n)+1+0(1)) '
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To minimize our work bounds, we set ¢(n) = y/plogn/logm + o(1), and obtain the work bound
O('mr;+2 Vplogn/log 1r1+O(1)). Since m; = 7 + logn, in the case that log # = f(logn) (that is when
both log m < O(logn) and logn < O(log 7)), then our work bound is

0 ( 1+2¢/plog n/ iog1r1+o(1)) -0 ('n(7r +logn)o(1))

nm,

In the case logn = O(log 7), our work bound is

0 <n1r1+2\/p]ogn/logm+o(1)> <0 (n(ﬂ' +log n)l+o(1)) ]

Furthermore, for the case log 7w = O(logn), our work bound is

o (mri+2,/plogn/ log7r1+o(1)) 0 (n1+2,/1og —p lognﬂ_i-ﬁ-o(l))
< O(n(7 + logn))+oM),

Summarizing our results, we have Corollary 4.4.

COROLLARY 4.4. If A is a symmetric nonsingular DD matrix of size n X n with a sparsity graph
in a family of graphs with constant size forbidden graph minors, the arithmetic work to compute

1+24/plogn/log 1r1+o(1))

an e-solution of a linear system with matrix A is O(n= , which Is

e O(n(m + logn)®W) in the special case that logm = 6(logn), and more generally is
e O(n(m + logn)*+°W) if logn = O(log ), and
e O(n(m + logn))+°M) if logm = O(logn).

NOTE. In comparison, previously Vaidya [1] gave for this case a bound of
O (n(x +logn))'*7, for v > 0.

Also note that these iterative methods are much faster than direct methods (for example nested
dissection) that compute a sparse LLT -factorization; in contrast the work bound of nested dis-
section [10,11] is lower bounded as ©(n“/2) for SPD matrices with planar sparsity graphs.

5. PROOF OF OUR RESULTS FOR SPARSE
MATRICES WITH NO MAGNITUDE BOUNDS

5.1. Reduction from Sparse to Bounded Degree Matrices

Let A be a symmetric nonsingular DD (and thus SPD) n x n matrix with m = O(n) nonzeros.
The degree of a node of G(A) is the number of adjacent nodes. Let the degree of A be the
maximum degree of any node of G(A).

PROPOSITION 5.1. We can expand an n x n matrix A with m nonzeros into a matrix A of size
fi x i where A < 2n such that the degree of A is < max(3, m/n), and such that after Gaussian
elimination of the added subtrees, the resulting linear system is equivalent to A.

PROOF. Fix a sparse linear system Az = b with matrix A = {a; ;} of size n x n with m nonzero
coefficients. We now describe a reduction to an equivalent linear system of size 2n x 2n with
a sparsity graph that has degree < § = max(3,m/n). This reduction will done by expanding
each vertex of degree §' > § in the sparsity graph into a tree of at most 1 + §'/(6 — 1) nodes
of degree < é such that the resulting expanded linear system is equivalent to the original linear
system after Gaussian elimination of all but the root of that tree. This expansion can be done
in, at most, ' /(6 — 1) stages, where on each stage we decrease the degree by § — 1 and add a new
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variable and linear constraint to the linear system. A vertex of degree 6’ > 6 will correspond to
a variable, say zj, with the linear constraint: ax s + Zf;l Gk j,Tj; = b, where ax j,, ..., axj,,
are the nonzero off-diagonal elements of the k*® row of A.

Choose some ¢ such that if |ax x| > Zf_’__l lak,; |, thenl < ¢ < |ak,k|/2fl=1 lak,;;| and else ¢ = 1.
Let us define ag ny1 =c¢ Zf=1 lak,j,;_,_,|» and let ax s = 0 for s # n+1. We will introduce the new
variable Zn41 (Tn4+1 corresponds to a new interior node of the tree with children corresponding
to variables T _s41,...,Ls ) and replace the linear constraint

s
Gk Tk + ) Ah,iTj = b
i=1
with two linear constraints: ag xTk + Gkn+1Tnt+1 + Zf:l&_l @k, Zj; = bk, and Ty = (Zf=1
kg1 Lisr—iy)/Gkin+1. Note that the resulting linear system is of size (n + 1) x (n + 1), has
the same solution for the variables z,,...,x, as the original system, and on this stage we have
decreased the degree of the sparsity graph to 8’ — 6 +1 = §'— (6 —1). If A is DD, then by definition
ksl > o, lakz.l, 50 for k < 1, Jakkl > akns1 + Tiy’  aksl < ¢S k| < 1, and
hence, the resulting linear system is also DD. Also, it is easy to verify that if A is symmetric and
nonsingular, then the resulting linear system is also symmetric and nonsingular. After repeated
stages at all applicable vertices, the resulting equivalent linear system has degree < § and is of
size at most fi x 7i, where i <n +2m/§ < 2n. ]

5.2. Maximum Spanning Tree Preconditioners

By Proposition 5.1, we will assume, without loss of generality, that the input matrix A has
maximum degree not more than max(3,m/n). We will execute (and later improve upon) the
following Marimum Spanning Tree (MST) preconditioner procedure due to Vaidya [1].

Input n X n symmetric nonsingular DD matrix A, and number n’ < n.

[1] Compute a maximum spanning tree T of G(A).

[2] Compute a partitioning of T' into n’ node-disjoint trees T7, ..., T, each of at most 2n/n’
nodes. Let E' initially be the empty set.

[3] For each 7,5 where 1 <1 < j < k, if there is an edge (u,v) in G(A) such that u is in T;
and v is in T}, then add the maximum weight such edge (u,v) to E’.

[4] Output the preconditioner matrix B represented by the network G(B) consisting of
the union of E’ and the edges of the trees Ty,...,T,/, and also all loop edges of G(A)
(corresponding to the diagonal elements of A).

Using the linear work minimum spanning tree algorithm of [41] the work bound to construct
the preconditioner matrix B is O(|E’| + m). By use of support mappings, we prove:

PROPOSITION 5.2. k(B~1A4) < O(nm/(n')?).

PROOF. We shall show that there is a support mapping f from A to B with support number
< O(nm/(n')?). Consider any edge e = (u,v) of G(A). If u,v are in the same tree T}, then e can
be supported by f(e) = the tree path p of T; from u to v of length at most 2n/n’. Note that the
weight of e is upper bounded by the weight of each edge of this tree path p, or else the tree T is
not a maximum spanning tree (otherwise, we could have created a more weighty spanning tree
by inserting instead the edge e). Otherwise, if u,v are on distinct trees T;,T; then let (u’,2’)
be the edge of E’ such that v is in T; and v’ is in T}, and let e be supported by a path f(e)
constructed as follows:

(i) the tree path p; of T; from u to u’ of length at most 2n/n/,
(ii) the edge (v/,v’),
(iit) the tree path p; of T; from v’ to v of length at most 2n/n’.
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Note that the weight of e is upper bounded by the weight of each edge of the first p; and last p,
portions of this path or else the tree T is not a maximum spanning tree, and also by construction
of E’ the weight of e is upper bounded by the weight of edge (u’,v’). Hence, the dilation of the
support mapping is the length of path f(e) = p1(u/, v')p2, which is at most 4n/n’ + 1. Since the
degree of G(A) is assumed to be at most max(3,m/n), and each tree T; is of size at most 2n/n/,
and the weight of e is upper bounded by the weights of all the edges of the support path f(e),
the congestion is at most max(3,m/n)(2n/n’) < O(m/n’). Thus, the support number is the
product of these bounds on dilation and congestion, namely (4n/n’ + 1) max(3,m/n)(2n/n') <
O(nm/(n')?). By Lemma 3.2, it follows x(B~'A) < O(a (A4, B)) < O(nm/(n')?). 1

The resulting B is nonsingular symmetric DD, since A is nonsingular symmetric DD. Hence,
B is SPD. For each T, let T} be the forest derived from T; by deleting the nodes that appear
at the ends of edges in E’. To solve a linear system with preconditioner matrix B, we first
compute a sparse partial LL-factorization of B, (which exists since B is SPD) resulting in a
reduced matrix B*, where the sparsity graph G(B*) is derived from the sparsity graph G(B)
by collapsing each connected component (which will be a tree) of T into a single node, for
i =1,...,k. Note that this can be done in O(n) work since the eliminated nodes are all within
the trees T3, ..., T, (it is well known [10], that since a tree is O(1)-separable, computing a sparse
LLT-factorization costs linear work). The resulting matrix B* is of size (¢'n’) x (¢n’), where ¢’ is
a constant multiple of the average degree of G(A), and the number of edges of G(B*) is O(|E"|).

5.3. The Sparse Preconditioned Linear Solver Without Recursion

We will assume a sparse SPD and DD matrix A, with m = O(n) nonzeros. We apply Proposi-
tion 5.1 and so assume, w.l.0.g., that the input matrix A has constant maximum degree not more
than max(3, m/n) = O(1). We execute the above MST preconditioner procedure. By Proposition
5.2, k(B71A) < O(nm/(n')?) < O(n/(n’)?). The work bound to construct the preconditioner
matrix B is O(|E’| + m) < O((n’)? + n). Using a technique similar to domain decomposition, we
compute a sparse Cholesky LLT-factorization of B (where L is lower triangular) in two stages:

(a) first in O(n) time, we compute an incomplete Cholesky LLT-factorization of B, resulting
in a reduced matrix B*, as previously described, then
(b) we compute a Cholesky LLT-factorization of the O(n’) x O(n') matrix B”.

The work to compute a Cholesky LLT-factorization of B* is at most O((n')*) work. Thus,
Pg(n) < O(n+ (n)*). Once this Cholesky LL-factorization of B* has been computed, a linear
system with matrix B* can be solved in Wg(n) < O(n + (n')?) work, using the well known
back-solving procedure.

5.4. The Sparse Preconditioned Linear Solver With Recursion

We will prove Theorem 4.4 by the use of recursive PI, as described in detail in Appendix 7. To
construct the preconditioners, we make recursive application of the MST construction. ( Vaidya [1]
previously proposed a similar use of recursion for a more restrictive class of matrices, but he was
unable to reduce the condition number below O(n?), for v > 0.) We assume that we are given a
symmetric nonsingular DD (and hence also SPD) n x n matrix A, with a sparsity graph G(A)
contained in a family F of graphs with constant size forbidden graph minors. It is known [8,9]
that G(A) is sparse, with m = O(n) edges. Observe, [8] that F is closed under edge contractions
(that is, if we apply a sequence of edge contractions to a graph of F, the result is a graph in F ).
Recall the separator bound for planar graphs [42] is O(/n) and [9] provides O(y/n) bounds on
separators for any graph family with constant size forbidden graph minors.

We will construct a sequence of preconditioners By = B, ..., By, for matrices Ag=A4, A,,..., AL
such that By is a preconditioner matrix for A, and for £ = 0,..., L A, is an ng X ng matrix (which
will be derived from B,_; by a partial Gaussian elimination of certain subtrees followed by the
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constant degree reduction) and ng < O(ne-1/H(n)), for a positive function H(n) > 2. The
sparsity graphs of the matrices A, ..., AL of the recursive subproblems will be derived by edge
contraction, and so will be also in 7. The symmetric, nonsingular DD properties (and hence also
SPD) are inherited in matrices Ay, ..., AL of the recursive subproblems.

We can compute a sparse LL-factorization of Ay, by direct methods within work s(ny)* <
n‘}j/ 2 since s(n) = O(y/n) is the separator bound for the family F and we have defined n“ to be
the cost for n x n matrix multiplication. Hence, we can terminate the recursion when the work
n‘}:/ 2o compute a sparse LLT-factorization of Ay is < n < the total work bounds for all the
iterations. Thus, we terminate the recursion when we on that level £ = L where n; < n?/«.

Now we give the details of the recursive preconditioner procedure. Let ¢’ be the constant
defined in the MST preconditioner procedure. Following the definitions of Section 4.2, recall is
¢(n) > 1 any positive, monotonically increasing function, and m; = log(nk(4)/e) = 7 + logn.
Let H(n) = (4c'm;)*™),

We will execute the above MST preconditioner procedure, where we fix here n’ = n/H(n). We
assume, w.l.o.g., the diagonal elements of A are positive. We will apply Proposition 5.1 and so
assume, without loss of generality, that the input matrix A is sparse with constant maximum
degree no larger than max(3, m/n) = O(1). (This reduction to constant degree will need to be
done on each recursion.)

The MST preconditioner procedure given A yields a preconditioner matrix B. Let A’ = B~14
be the preconditioned matrix. Since we have assumed that A is symmetric nonsingular DD (and
so SPD), it follows that B is also. By Proposition 5.2, K(A’) < O(d(4, B)) < O(nm/(n’)?) <
O(H?(n)). We first compute, as described above, a sparse partial LLT-factorization of B of
the subtrees T7, ..., Ty, in O(n) time, resulting in the reduced matrix B* of size (¢'n’) x (c¢'n’),
where ¢’ is the constant defined in the MST preconditioner procedure. We apply the constant
degree reduction of Proposition 5.1 to B*, resulting in the n; x n; matrix A;, where n; < 4¢'n’.
The number of nodes in the recursive problem is n; < 4c'n’ = 4¢/(n/H(n)). We will assume n
is above a sufficiently large constant so that H(n) > 8¢’ to insure n; < n/2. Since the resulting
sparsity graph G(A; ) is obtained by edge contraction from G(B), A, is also symmetric nonsingular
DD and so SPD, and G(4;) is also in the same family 7 as G(A). Thus, |E’| < O(n') and the
number of edges of G(4;) is O(|E’|) < O(n’). We recursively compute an ¢'-solution to a
linear system with matrix A; by the recursive PI algorithm, making recursive application of
this MST preconditioner procedure. The work bound to construct preconditioner matrix B is
O(]E'| + m) < O(n’ + n) < O(n). Since precomputation of the preconditioner B requires work
O(n), the recurrence equation for precomputation of all the recursive preconditioners costs work
Pg(n) < Pg,(n1) + O(n) < Pg(n/2) + O(n) so Pg(n) < O(n).

On recursion level ¢, Aj is a ny x ny matrix where ny < 4c¢/(ng—,/H (ne)). We have defined
H(n) = 4c'm*™. so log H(n) = ¢(n)log4c'm;. Also, recall that we terminate the recursion when
we on that level £ = L where n;, < n?“. From this it follows that: L < P08 (n)—o(1) M» Where
p =1-2/w, as defined in Theorem 4.4. Since H(n) = 4c'm*™ 50 log H(n) = ¢(n)logac'n,
we have

plogn
n)logm) —o(1)
Thus, m L < 7 P1e8n/(#(n) log(dc'm))—4c’ < pp/em)—e(l) gnd LL < m oM,
Hence, Proposition 5.3 follows.

L < plo _ n <
4 gH(n) o(1) (¢(

PROPOSITION 5.3. The number of levels of recursions is

plogn
¢(n)logm) - o(1)’

L < ploga(ny-oyn < (

Also,
H(n)L < nO(l), ﬂ,L < 7.";:vlog n/(¢(n) logm)-—O(l), and LL < 7.[.O(l)_
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PROPOSITION 5.4. The recursive matrices Ay and preconditioner matrices B; have condition
number £(Ag), k(Be) < O(n®Mk(A)), and the recursive preconditioned matrices A, = B4,
have condition number < O(H?(n)).

ProoF. First, observe that if A,, By are nonsingular, then

K(Be) = | Bell | B
=k (B;')
< (B A4y
<& (B7'Ad k(A7)
<k (B;Ag) K(As),

so
K(Be) < k(B Al) (As).
Since
& (B 'As) < O (H%(n)),
K(Bg) €K (B[lAe) k(Ag)
<O (H*(n)s(Ae)) .

By definition of Ay,
K(Ae) = K(Be-1) < O (H*(n)w(Ar-1)) < O (H*(n)x(A4)).
By Proposition 5.3, H(n)L < n°1)| 50 we can bound
K(Ag) < O ((H(n))*:x(A)) < O (no(l)n(A)) .

Similarly, x(Bg) < O(n®Mk(A4)). By Proposition 5.2, the condition number bound for the
recursive preconditioned matrices A, = B, 1A, is

n 2
k(B Ag) < O (?ifi) <0 (H(n)). '

To complete the proof of Theorem 4.4, we now provide an upper bound on Wpg(n), the work
of the recursive computation of an approximate solution to a linear system with matrix B with
relative error €' /k(B) using the recursively computed preconditioners.

By Propositions 2.4 and 7.1, we do at most

e =0 ( K (A2)1r1€> < O(H(n)m£)

iterations of the chosen base iterative method IMPROVE to achieve the required relative error.
Let 7, = max; 7e,;.
The total number of level ¢ preconditioned iterations we do is < H§=1Tj. If the level £ pre-
conditioned matrix Aj is sparse and of size ng x ny, the cost to do each iteration is O(ne), so
Proposition 5.5 follows.



54 J. H. REIF

PROPOSITION 5.5. The total cost to do all the level £ preconditioned iterations to the required
relative error € ; is O(nell_;7;).

By Proposition 5.5, for each £,1 < ¢ < L, the cost to do all of the level ¢ preconditioned
iterations is

] I3
O (nelll_,7e) <O (n (%) ) O(H (n)mo)"*

< 0 (n(4cd'me)t)
<0 (n (7r1L)L)
<0 (mrl L+O(1))

<0 (n1+p/¢(n)—ou),r1o(1)) ,
since by Proposition 5.5, 71 < nelogn/(#(n)logm)-0(1) ‘and LL < 7OM),

6. CONCLUSION

We have presented preconditioned iterative methods for the solution of sparse linear systems.
For a number of cases, we achieve near linear work bounds. Our methods, building on previous
work, combine the use of algebraic and combinatorial methods for bounding condition number
of preconditioners. It remains an open problem to reduce these work bounds strictly linear in
important cases, for example for the case of linear systems with planar sparsity graphs.

7. APPENDIX: RECURSIVE PRECONDITIONED ITERATIONS

Here we give a detailed definition of the recursive PI algorithm of level £ > 0. On level £ > 0,
we apply an iteration and recurse. Level 0 is the final level of recursion where we apply a direct
method.

ALGORITHM PI,.

INPUT: sparse n X n matrix A, n-vector b, and relative error bound ¢, 0 < e < 1.

[0] If £ = O then apply a direct method to compute and output 4A~'b and exit.
[1] Construct preconditioner matrix B for matrix A. Compute an approximation ¥tob =
B~1b by a recursive call to the algorithm PI,_;. This is to be done with relative error
€' /k(B).
[2] INITTALIZE:
[2.1] i:=1
(2.2] o := 0 and initialize the auxiliary vectors §p as prescribed by the base iteration
method IMPROVE.
[2.3] Also similarly initialize, for the induced linear system over B, its approximate solution
Zp := 0 and auxiliary vectors. ’
[2.4] Let € = ¢/(k(A")r(A)).
[3) WHILE ||A'z - V|| < €||¥'|| DO
Apply one stage of the chosen base iterative method (Z;, §;) := IMPROVE(A’, ¥, %1,
%i—1), which requires an inner product of the preconditioned matrix A’ = B~1A times
an n-vector, say u;. We do not explicitly compute A’. Instead, we compute this inner
product as follows.
[3.1] Compute the inner product r; := Au,.
[3.2] Apply a recursive call to the algorithm PI;_; to compute an approximate solution z;
of the induced linear system Bz; = r;, starting from the zero vector. The computation
of Z; is to be done with relative error ¢, ; = O(¢;/x(B)), where €] = ||A’Z - &) /|V/|.
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[3.3] i:=i+1
oD
[4] T .= B.’f1,

[5] OUTPUT: e-solution & of the linear system Ax = b such that || AZ — b|| < €|{b]|.

The relative error at the it stage of the level 0 preconditioned iteration procedure Ply is at
most
€ "bI“M SNA'Z; —b'llpy

(where M is a fixed matrix depending on the iterative method). Thus €/ is the relative error given
by Z, that is €, = | A’Z — &’||/||’)]. The relative error at the i*! stage of the level ¢ preconditioned
iteration procedure P, is at most €, = O(1 — 1/x(A4’)#)*, where x(A’) is the condition number
of A’ and 3 again depends on the base iterative method (we assume § = 1/2).

A DETAILED DEFINITION OF THE PI; ALGORITHM. As an example, we describe in detail the
PI; algorithm. To INITIALIZE, we construct preconditioner matrix B; for matrix 4; = B.
The recursive preconditioned matrix is A} = By lA;. Also initialize ) := 0 and initialize an
auxiliary vector §jj as prescribed by the base iteration method IMPROVE.

We wish to € ;-solve the linear system Bz; = A;z; = r;, where €1; = K(A41)€,. To do this, we
¢} ;-solve the preconditioned linear system AyZ's = r';, where 7/ = By ly;, and by the proof of
Proposition 2.4, it suffices that
6'1 _ 61‘1; El

= AR (D) ~ (R (AR (D)

We use the zero vector as the starting iterate. (Note that we set Z] ; to 0, rather than to ,_, due
to the possible near-orthogonality of Z; and 2Z;_,.) We then apply to A] the level 1 preconditioned

matrix,
2A Ae
7-1,,-=,/n(A'1)10g<"( 1)";2 e 1,0>

3

iterations of the chosen base iterative method IMPROVE.

[0] Let z;, = 0, and initialize the auxiliary vectors §; ; as prescribed by the base iteration
method IMPROVE.
1] FORj=1,...,7,, DO

(51{,3'7 gzl',j) = IMPROVE( ’1’ F:’ zg,j—l’g:,j—l) :

[2] Let Z = 5,’-,71",, and g: = gz{,‘n,-"

This requires O(7y,;) inner products of the preconditioned matrix A} = By 1A; times an
n-vector. If this is the final level 0 of recursion, we compute these inner products exactly.
Otherwise, we apply the preconditioned procedure recursively to the matrix B;.

We now bound the relative error for the level 1 preconditioned iterations over matrix A]. The

relative error is €'y ; = ||A1Z] — r}||m/||I7}lla, so if we use Z, to approximate the solution of the
preconditioned linear system A}z, = r';, the error at the i*" stage of the level 1 preconditioned
iteration is €14\l = ||A1Z] — 7il|m (where again M is a fixed matrix depending on the

iterative method). We have to show that this relative error is at most €] ; = €;/x%(A4;)K(A}).
Note that if we apply the conjugate gradient or Chebyshev semi-iterative method, the sequence
of iterates %y, Z1, . .., Z; defined above do not necessarily satisfy the usual properties of multistep
iterates generated by these methods (since the 7'; vary depending on i). However, for a fixed 1,
the sequence of iterates 2,(,0, 2,’»'1, e ,Ezf,n", do satisfy the usual properties of multistep iterates
generated by these methods (since the r’; are the same on each of these iterations) and this is
all we need to establish our error bounds. In particular, the known error bounds (see [6, p. 525])
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state that the computation of Z{ = Z; -, ; from Z; o = 0 via 7, ; iterations of the conjugate gradient
or Chebyshev semi-iterative methods with the same 7/; is done with relative error

1 T1,2
’ '
€1:5¢€10| 1l — —/—== .
( K(A'l)>

-1

1
I — 7 ,
%8 (1 \/n(Aa)> NV

2 AW
T1e = 4/ £(A}) log (N (Al)'ZSAx)f 1,0) ’

we have that the relative error for the level 1 preconditioned iterations over matrix A} is at most

Note that

Thus, by definition of

71,8
1 A
€ri=¢ 1 —=—= R
R WV/T0 ) (R (41)w (A7)
satisfying the required relative error bounds for stage 4.

CASE OF MULTIPLE LEVELS OF RECURSION OF AGORITHM PIl,. In the case of multiple levels
of recursion, the error analysis is similar. For each level £ on the i*! stage, we have the recursively
defined matrix A, and we construct preconditioner matrix B,. We use the zero vector as the
starting iterate, and then apply 7 ; iterations of the chosen base iterative method IMPROVE to
the level £ preconditioned matrix A, = B, 1A, Let €, ; be an upper bound on the relative error of
the i*" stage of the iterations over preconditioned matrix A}. Then the corresponding approximate
solution over matrix Ay at the i*P stage has relative error upper bounded by ¢;; < €p,:%(A¢e), s0
by the proof of Proposition 2.4, to preserve the convergence of the iterations at level £ — 1 (that
is, the iterations over the preconditioned matrix Aj_,), it suffices to show that this relative error
over matrix A, is upper bounded by

/
€14

(k(Ae)r (A7)

€0 =

Hence, it suffices to show that the i*! stage of the iterations over A} have relative error < €=
€01,/ (k2(A¢)k(AY)). The error bounds of [6, p. 525] imply that 7; iterations of the conjugate
gradient or Chebyshev semi-iterative methods over the preconditioned matrix A) give relative

error s
€ei <€ (1 - _%A—’)-) :
KA,
Since
lo 1- 1 ES -1
=\ T V@A) T ey
if we define

2 AV
Te,i = \/ K(A}) log (———————K (Aee):—(fg)f e,o) .

then the iterations over matrix A; have relative error at most

€1 =¢€20 1——1—— ‘ z'—i—,
’ ’ x(A}) (k2(Ae)k(4p))

satisfying the required relative error bounds for stage ¢ on level £.
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Suppose
K(Ae), 5(Be) < O (n?k(A)),

then

':
’ €o-1,i

i T (K2 (A) w(A))

>(i)

since

SO

Tei = \/n(Aé) log (%42_))

<0 (futapeog (12Y),

and by Proposition 2.4, Proposition 7.1 follows.

PROPOSITION 7.1. If each
K(Ag), K(Bg) < O (n*k(4)),

then to satisfy the required relative error bound ¢, ; for stage i on level ¢, it suffices to set

Tei <O ( K(Ap)¢log (M)) .

€
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