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A method for (nearly) interaction-free measurement (IFM) specifies
the design of a quantum optical sensing system that is able to determine
with arbitrarily high likelihood if  an obstructing body has been inserted
into the system, without moving or modifying its optical components, and
uses at most an arbitrarily small multiplicative factor of the input intensity
to do  the sensing when the obstructing body  is present. Kwiat et  al.
(1995, Phys. Rev. Lett. 74, 4763-4766) have given a method for IFM.
We give a precise mathematical formulation of  IFM and as an example,
we use this formulation to specify the IFM method of  Kwiat at al. We
similarly define (nearly) interaction-free sensing (IFS),  except that we
impose an upper bound on the intensity to do the sensing (which again
is an arbitrarily small multiplicative factor of the input intensity) whether
or not the obstructing body is present. A quantum optical method for IFS
(but not IFM ) may be used to do I/O with bandwidth reduced by an
arbitrarily small multiplicative factor of the bandwidth required for con-
ventional optical or electronic I/O methods (i.e., without using quantum
effects). We prove that there is no method for IFS with unitary transfor-
mations. Hence we conclude that I/O bandwidth can not be significantly
reduced by such quantum methods for sensing. This is one of relatively
few known proofs of  the non-existence of  a class of  quantum devices
(e.g., for instantaneous communication and EPR) and apparently the first
for a quantum device relevant to computational I/O bandwidth. We use
an interesting proof method, where we first show that no unitary transfor-
mation can do  quantum amplification detection: that is , significantly
increase the amplitude on detection of a small amplitude basis state. Then
we show that the existence of a method for IFS implies a unitary quantum
amplification detection method, which is impossible.
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1. I NTRO DUCTI O N

1.1. Quantuni Sensing Systems

A (quantum optical) sensing system is a quantum optical system that is able to
determine if an obstructing body has been inserted into the system, without moving
or modifying the optical components (e.g., components such as mirrors and lenses)
during sensing. I f  the obstructing body has been inserted into the system, then it is
always inserted in the same way, forming obstructions in the same locations. Such
a sensing system should be explicitly specified by providing unitary matrices (which
may be infinite dimensional) defining the unique unitary transformations done by
the sequence o f  individual quantum optic components comprising the sensing
system. For any g, g
o
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system be a quantum optical sensing system that provides output that determines,
with likelihood „>,1 —E, i f  an obstructing body has been inserted into the system,
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repeated sensing is done when the obstructing body is not present), and otherwise
if the obstructing body is present, sends at most a multiplicative factor E
l o f  t h einput intensity into the obstructing body.

A met hod f o r  (nearly ) interact ion-free measurement ( I FM)  specifies f o r  any
arbitrarily small g, g
i
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Kwiat et al., [KWZ95] (see also [KWZ96]) gave an ingenious method for 'FM,
using the "quantum Zeno effect" t o  do  the sensing in  multiple stages. Their
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Kwiat et al. [KWZ96] claim applications of their IFM method to photography.

However, the definition of IFM imposes no upper bound on g
o
;  t h a t  i s ,  t h e r e  i s  
n o

required upper bound on the intensity to do the sensing if  the obstructing body is
not present. I n  particular, the (E, g
o
, E
l
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based on the quantum Zeno effect. Thus I FM can have applications such as
photography only in the quite restricted case where the sensing can be repeatedly
done when the obstructing body is not present (e.g., transmissive photography with
a large number of repeated transmissions).

1.2. I / O Bandwidth Applications of  Quantum Sensing

The recent interest in quantum effects by computer scientists has centered on the
use of quantum parallelism for cryptography (see [BBE92] for a survey) to quickly
solve problems (e.g., factoring large numbers [  S94, S97]) otherwise considered
intractable in  conventional models o f  computation. However, the existence o f  a
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device for IFS may have major applications in computer science that would con-
ceivably outstrip even those quantum computing applications. The I/O bandwidth
is a critical issue for many computer systems, including:

• memory systems, such as for disk and tape drives,

• pad-limited VLSI systems, and

• communication systems on bandwidth limited parallel networks.

For I /O bandwidth applications, we can associate 1 with  the case where the
obstructing body is present and associate 0 with the case where the obstructing
body is not present. The I/O bandwidth is determined by the total amplitude of the
sensed bits, where the cost of sensing a bit is charged the same, whether or not it
is 0 or 1. Since I FM provides only bounds on the sensing used to detect 1 but
provides no bound on the sensing used to detect 0, IFM does not seem to be useful
for decreasing I /O bandwidth. Thus there remained the question o f designing a
sensing system with also small g
o
.

A method f or (nearly) interaction-free sensing ( I FS) specifies the design o f  an
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method for IFS may be used to do I/O, where the receiver uses the sensing system
to obtain the data from the sender. As discussed at the end of Section 4, IFS allows
reduction o f  the bandwidth b y a  multiplicative factor o f  max(g
o
, g , )  o f  t h e
bandwidth required for conventional methods (i.e., without using quantum effects)
for optical or electronic I/O.

1.3. Our Results

We provide a  precise mathematical definition o f  a quantum sensing system,
specifying how the sequence of unitary transformations, corresponding to optical
components and sensing, are to be composed (the previous papers on I FM did
not do this explicitly), and so formulate the I FM and IFS problems in mathe-
matical terms. As an example, we briefly explain how the experimental quantum
optical system of [KWZ95] for I FM can be described in  our mathematical for-
mulation for a quantum sensing system, and further explain why it  is not an IFS
system.

Our paper resolves the question of existence of IFS by a proof that there is no
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dimensional), i f  e <  min(1, (,/1  — E — , I T ; )
2
)/ 2 .  T h i s  
c o n d i t i o n  
h o l d s  
f o r  
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g i v e n

e < 1/2 and sufficiently small g
o
,  s o  t h e r e  
i s  n o  
m e t h o d  
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I F S  
w i t
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formations. This is one of relatively few known proofs o f the non-existence of a
class of quantum devices (e.g., for instantaneous communication and EPR). The
only known previous negative result relevant to computational I/O bandwidth was
that o f  Holey° [H7 3 ]  (also see Fuchs and Caves [FC94]),  who proved that
quantum methods cannot increase the bandwidth fo r transmission o f  classical
information.
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We use an interesting proof method. We first show that no unitary transforma-
tion can do quantum amplification detection
2
: t h a t  i s ,  
s i g n i f i c a n t l y  
i n c r e a s e  
t h e

amplitude on detection of a small amplitude basis state.
Our proof then assumes, for the sake of contradiction, the existence of a method

for IFS for appropriate choice of parameters E, g
o
,  a n d  p r o c e e d s  
b y  
t r a n s f o r m i n g

the given (g, c,  )-sensing system in to  a  single unitary transformation that
does quantum amplification detection, which we have already proved cannot be
done.

1.4. Organizat ion o f  This Paper

In Section 1, we discuss previous work, our new results, and the organization of
our paper. In Section 2, we give preliminary definitions. In Section 3, we prove that
amplification detection of quantum amplitudes is generally not possible by use of
unitary transformations. In Section 4, we give a precise mathematical definition of
a quantum sensing system, and in particular of IFM and IFS. As an example, we
use our definition to  describe the I FM method o f  [  KWZ95 ]. We also discuss
applications of IFS to decreasing I/O bandwidth. In Section 5, we show that IFS
implies a method for quantum amplification detection. Hence we conclude that IFS
cannot be done by use of unitary transformations. Section 6 concludes the paper. In
the Appendix (Section 7), we give a proof of the initialization of certain unitary
transformations for our simulation of sensing.

2. P RE L I MI NA RY  DE FI NI TI O NS

The magnitude of a complex number z is denoted I z I and the intensity the square
of its magnitude. Hereafter in this paper, we assume a fixed orthonormal basis to
describe the states via superpositions. We use the term basis state to denote a
member of this particular chosen orthonormal basis, and use the Dirac notation Is>
to designate a basis state. Each quantum system considered in this paper is assumed
to have a (possibly infinite) set of basis states S. At a given time, the superposition
state of the quantum system is a linear superposition of basis states given by a map-
ping a from S to the complex numbers, such that 1 = Els> Es loc(s)1

2
, t h a t  
i s ,  
t h e

intensities o f  the amplitudes o f all the elements o f S sum to 1. Each basis state
Is>e  S is thus assigned by a a complex number a(s) which we call its amplitude.
The Dirac sum notation E
l s >  E s  a ( s )  
I s >  
i s  
u s e d  
t o  
d e n o
t e  
a  
l i n e
a r  
s u p e r
p o s i t
i o n

of basis states. The suml s >  Es ( s )
2

of the intensities o f  the amplitudesE l a 1
2 Brassard et al. [  BH98, BHT98] show that quantum amplification is possible if  a small amplitude

basis state always exists, whereas in quantum amplification detection as defined here, we also need to
detect that a small amplitude basis state does not exist. Note also that the term quantum amplification
has other definitions in  other distinct contexts (e.g., quadrature amplification and photon number
amplification) but the relation of quantum amplification and the uncertainty relation seems to have been
well worked out in those other contexts only in the case where we do not also need to detect that a small
amplitude basis state does not exist.
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of the elements of S remain invariant due to the application of a unitary transfor-
mation.'

As in the IFM apparatus of the paper [KWZ95], we assume that the observa-
tion of the final output of the quantum system triggers a quantum projection (also
sometimes known as a quantum collapse) to a single output basis state, chosen
with probability equal to the intensity of its output amplitude. (This assumption
does not limit  the generality o f our results, since Bernstein and Vazirani [B93,
BV97] showed that all observation operations can be pushed to the end o f  the
computation, by repeated use of a quantum XOR gate construction.)

3. Q U A N T U M  A MP L I FI CA TI O N DE TE CTI O N IS NO T POSSIBLE

3.1. Definition o f  Quantum Amplification Detection

Fix some real d ,  f i,  I I ' ,  fo r 0  < <  1 and 1 < d  1 / f i .  L e t  a  quantum
, fi')-amplification system be a unitary transformation defined as follows:
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S initially have amplitude O. In  Dirac notation, the initial superposition state is
a  P OWE R 1
S  
P O W E
R >  
+  
a  
T E
S T I
S  
T
E
S
T
>  
•

• There is also a  distinguished basis state I ,
S 
O
U
T
P
U
T
> 
;

let a  OUTPUT be the
amplitude of Is OUTPUT> on output.

• We  require that any quantum (d ,  /I, )-amplification system satisfy the
following restrictions:

I f a POWER—1a n d a
T E
,
T
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( s o t
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p o s i t i
o n s
t a
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1 I S  P OWE R> ) , t h e n  l a, O U T P U T 1  - 1
—

, .  Hence in  this case, i f  we observe the basis
state of the system on output to be Is>, P ro t *  OUTPUT — S) 11'•
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observe the basis state of the system on output to be Is>, Prob(s- OU TP U T — S)  e
C
I  1
6  •

For example, a quantum (4 ,  f i)-amplif ication system essentially amplifies, by
a factor epi, the likelihood of observing a given basis state.

3.2. Impossibility of Quantum Amplification Detection

THEOREM 3.1. There  is no unitary transformation that does quantum ( d „  6, fi')-
amplification, i f

for 0< fi, IT <1 and 1 < d

—(
1
—  
)
6
)  
)
6
7  
)
6
1
>  
I
,

For example, a class of unitary matrices, known as permutation matrices, have exactly one I  on every
row and column, with all other entries O. Also, the following 2 x 2 unitary matrices are sometimes known
as rotation matrices: r
s
V ,  -
c
:
s
n
a
( )
] .  W e  
w i l l  
f r e q u e
n t l y  
u s
e  
t h
e i r  
g e n e
r a l i z
a t i o
n  
t
o  
a r
b i t
r a
r y  
s
i
z
e  
u n
i t
a r
y

matrices that have a submatrix which is a rotation matrix applied to a pair of basis states, and with the
remaining portion of the transformation being an identity map on the other basis states.
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Proof G ive n  the  linear property o f  unitary transformations, a  oUTPUT —
Cla POWER+ C 2a TESTI for fixed constants e
l
,  c
2
.  B y  t h e  
d e f i n i t i o n  
o f  
a  
q u a n t u
m

/3')-amplification system, we have:

• I f a  POWER= I and  a  TEsT= 0 then l a OUTP UT1 N  S O  C  1 =  a  OU TP U TI

a  P O W E R
=  a  
O U T
P U T  
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d

• Also, if  a powER= 1 —
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• On  the other hand, if  we set a POWER — 0 and a TEsT — I, then

OUTP UT1 —  l a  P O W E R +  C 2 a  TE S TI =
I C  2 1  ? ;  —  
-  )
6 )  
r f i l •Thus, the output intensity is l a  OUTPUT1

> 1  i f  0
2 1  0 1  
r f i l  
>  
I .  
W e

have set the summed intensity of the input amplitudes of all basis states to be I and
have shown that the output intensity can be >  I for these settings of )
6 ,  d .  S o  w econclude that for these settings, there is no unitary transformation that does quan-
tum (V,  /I, /0-amplification. I

There are many amplitudes for )
6 '  s u c h  
t h a t  
V s /  —
1 ( 1  
—  
M p g  
L e
t

/1*(d) be the minimum real where 0 < fi* < I and 1.,/.4 —,
N
/ 1  —  >  1 .  T h u s ,
there is no unitary transformation that does quantum (V ,  fi, fi)-amplification, for
0 < /Mc" ) / J .  Note, for example, since — , 6 , < „  I, there is unitary transformation
that does quantum (4, )
6 ,  / 1 ) -
a m p l i f i c a t i o
n  
f o r  
a n y  
0  
< f
l  
< 1
.

4. QUANTUM SENSING SYSTEMS

Informally, a (quantum optical) sensing system is a quantum optical system that
is able to determine if  an obstructing body has been inserted at a given location
into the system. One of the contributions of our paper is a mathematically precise
definition of this concept and of interaction-free sensing. This section shows that
any given quantum sensing system can be precisely specified by a sequence o f
unitary transformations of its individual quantum optical components.

4.1. A  Precise Specification o f  a Quantum Sensing System

We will first give a terse, but complete, definition of an (E, g
o
,  E
l
) - s e n s i n g  s y s t e m .

This definition will be motivated and explained in the subsection to follow.

DEFINITION. A n  (r:, g
o
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,  
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a

sequence of n unitary transformations U
l
,  U , ,  o v e r  
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a m p l i t u d e s  
o f  
a  
b a s i s

state set S such that:
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elements of S.

• I n  the in it ia l superposition, the amplitude o f  I ,S INITIAL> is  1  and the
amplitude of all other elements of S is O.

• Case CLEAR (see Fig. 1):

I f weapplythesequenceo f unitarymapsU
, , f o r j = 1 ,
n
+ I ,
t h e n t
h e

intensity of the final amplitude ofIs t : ,  andOUTPUT> is
t h e s u mL
1 a
1
2 i
s u
p p
e r
b o
u n
d e
d
b
y
e
o
,
w
h
e
r
e
e
a
c
h
a
/
i
s
t
h
e

amplitude of Is i
>  j u s t  
b e f o r
e  
t h e  
j t
h  
s t a
g e .

• Case OBSTRUCTION (see Fig. 2):

I f weapplythesequenceo f unitarymapsU
, i m m e d i a t e l y f o l l o
w e d b y
P
i
,

for j =  1, n ,  and finally apply U„
H
_  ,  t h e n  
t h e  
i n t e n s i t y  
o f  
t h e  
f i n a l  
a m p l i t
u d e  
o f

IS OUTPUT> iS •?; I
T h e s u mE
i 2amplitude of i

>  j u s t  
b e f o r
e  
t h
e  
j t
h  
s t a
g e .

4.2. Comparison between I FS and I FM

Recall that we have defined IFM and IFS as follows:

• A  method for Ifs provides for the design o f  an (e, e
,  0 - s e n s i n g  s y s t e m ,given for any arbitrarily small t:, e

,  t :  > 0  
( e . g . ,  
b y  
a p p r o p r i a t
e l y  
c h o o s i
n g  
a  
l a r
g e

enough number of sensing stages /7). Observe that IFM imposes:
a n upperboundo n t:,(tha t is,thereis n o upperboundo n theintensity

to do the sensing if  the obstructing body is present), but
no upper bound on e, (that is, there is no upper bound on the intensity

to do the sensing if  the obstructing body is not present).

I M POSSI BI L I TY O F  I N T ER AC T I ON -F R EE Q U A N T U M  SEN SI N G 7

P
j

FI G. 1 . T h e  un ita ry maps applied in  case C L EAR .

is upper bounded by t:,, where each o
-
i
'•  i s  t h e

P2

•  •  •

—
V

•  •  •  E
l
t
)

F I G. 2 . T h e  un ita ry maps applied in  case OBSTR U C TI ON .

File: W I  288007 By :XX Date:23:08:00 Time:13:30 LOP8M. 178.B. Page 01:01
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• A  method for IFM provides for the design of an (E, E
0
, , ) - s e n s i n g  s y s t e m  
f o r

some >  0, for any arbitrarily small E, e
i
>  O .  I n  
c o n t r a s t ,  
o b s e r v e  
t h a t  
I F S  
i m p o s e
s :

a n upperboundo n botha n d E
0
( t h a t i s , t h e
r e i s
a n u p
p e r b o
u n d
o
n

the intensity to do the sensing whether or not the obstructing body is present).

4.3. Physical Explanation o f Our Definition o f a Quantum Sensing System

This subsection will provide a detailed physical explanation of our terse mathe-
matical definition of an (E, E
o
, 1  ) - s e n s i n g  
s y s t e m ,  
a s  
g i v e
n  
i n  
S u b s e
c t i o n  
4 .
1  
( a
n d

this will be followed in  the next subsection by an example of how it  can used to
model an experimental quantum optical system). Each part of our definition will be
motivated and precisely formulated from the perspective of our intended quantum
optical sensing applications o f  IFS, in  particular to decreasing the input/output
(I/O) bandwidth. (Also, more recently, Gacs [698] has developed a similar mathe-
matical formulation of sensing systems.)

The State Set S and Their Initial Amplitudes. W e  assume that the sensing system
is always provided a single input photon, and to denote this, we use the unique, dis-
tinct initial basis state IsINITIAL> o f unit amplitude in the initial superposition. We
assume that the optical devices of the quantum sensing system are not modified by
this photon. Thus, the other basis states o f  the quantum sensing system simply
provide the subsequent possible locations for this photon within the sensing system.
We define S to be a (possibly infinite size) set of basis states, which are positions
of the photon within the quantum sensing system. Let us enumerate the elements
of S  in  some (arbitrary) fixed order. Thus, unitary transformations o n  the
amplitudes of the elements of S can be specified by unitary matrices' (which will be
infinite dimensional if  I SI is infinite).

Enumerating the elements of S in the chosen fixed order, in the initial superposi-
tion we represent the amplitudes o f  the basis states b y  a  (possibly infinite)
I SI-vector a
o
,  
w h e r
e  
t h
e  
i n i
t i a
l  
b a
s i
s  
s
t
a
t
e  
I
S  
I N
I T
I A
L
>  
h
a
s  
a
m
p
l
i
t
u
d
e  
1  
a
n
d  
a
l
l

elements of S have amplitude O. In Dirac notation, a, gives 1 IsI N I T I A L >

The Unitary Transformations o f  the Quantum Optical Components. A n y  quan-
tum optical system must be specified by a sequence of unitary transformations (i.e.,
unitary matrices), done by the sequence of individual quantum optical components
of their system. We assume that the sensing system uses a fixed number n of sensing
stages (defined by unitary permutation matrices). Strictly between each sensing
stage, there are fixed unitary transformations, done by a sequence of fixed quantum
optic components of the system. Thus, if  an obstructing body has been inserted into
the system, i t  does not change o r modify the individual quantum optical com-
ponents' and instead obscures the  channels a t  specified locations between

For readers not familiar with quantum systems, note that each of  the unitary transformations is
viewed as a unitary matrix product, with the convention of applying the sequence of unitary transforma-
tions from right to left.

5 Note that a sensing system must not modify its optical components during sensing. Hence we cannot
model the insertion of an obstructing body simply by withdrawing a corresponding mirror, for then one
has modified the sensing system during observation.
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consecutive quantum optical components. (Note that the obscuring object is
assumed not to be a quantum object.)

For each j=  1, l e t  U
j b e  t h e  
u n i t a r y  
t r a n s f o r
m a t i o n  
d o
n e  
s t r i
c t l y  
b e t
w e e
n  
t
h
e

j— 1 and jth  sensing stage, and for j =  n+ 1 let U
j  b e  t h e  u n i t a r y  
t r a n s f o r m a t i o n
done strictly after the nth sensing stage (that is, there is no sensing done via U
j
) .
Note that none of these unitary transformations U
j a r e  a f f e c t e d  b y  
t h e  c a s e  
o f  
i n s e r -

tion of an obstructing device, since there is no sensing done strictly between sensing
stages. Also note that to explicitly specify the sensing system, each U
j  m u s t  b efurther specified by a product of a sequence of unitary transformations, correspond-
ing to the individual quantum optical components, used strictly between the j— 1
and jth  sensing stage for 1 j  n ,  o r used strictly after the nth sensing stage for
j =  n + 1.

The Unitary  Transformations Done on Sensing Stages. W e  also need t o specify
the unitary transformations done on each sensing stage. There are two cases:

1. CL EAR:  the obstructing body has not been inserted into the system.
2. OBSTRUCTION: the obstructing body has been inserted into the system.

The unitary transformations done on sensing depend on these two cases. In case
OBSTRUCTION, the obstructing body is always inserted into the system in the
same way, forming obstructions in the same locations.

We define a unique, distinct basis state I s
s e n s
, ,  j
>  t o  d e n o t e  
t h e  
c a s e  
o f  
s e n s i n g  
f o r

the obstructing body at a given fixed location on the jth  sensing stage. We also
define a unique, distinct basis state I,L- absorb, j> to denote the case of absorption of an
input photon by an obstructing body on the jt h  sensing stage. In  both cases
CLEAR and OBSTRUCTION, the  j t h  sensing stage does n o t  change the
amplitudes for any other elements of S other than I s
s e n s
, ,  j
>  a n d  I s
a b t h
,  j
> .

In case CLEAR (where the obstructing body has not been inserted), the jth
sensing stage does not change the amplitudes o f  any elements o f  S, including

j
> 
a
n
d 
I
s
a
b
s
o
t
h
,  
j
>
.  
T
h
u
s
,  
i
n 
c
a
s
e 
C
L
E
A
R
,  
U
j  
i
n 
c
a
s
e 
C
L
E
A
R 
f
o
r 
1 
j
n 
i
s

exactly the unitary transformation done by the sensing system done just after the
j— 1 sensing stage up to and including the jth  sensing stage, and for j =  n+1, U
jis the unitary transformation done just after the nth sensing stage. Also in  case
CLEAR (since the obstructing body has not been inserted), we require that the
input photon can never reach an absorbing basis state IS a
b
s
„
r
b
,  j
>  ( w h e r e a s  i n  
c a s e

OBSTRUCTION, the input photon may possibly reach an absorbing basis state
absorb, j >  ) • Thus, we require that each U

j p r o v i d e  
a n  
i d e n t i t y  
m a p  
o n  
b a s i
s  
s t a t
e s

abs or b,1> 1 •••1 IS  absorb, n >  •

On the other hand, the case OBSTRUCTION (where the photon is absorbed by
the obstructing body on the jth sensing stage), is represented by a transition from
IS sense, j> to IS absorb, j> • This case of absorption is irrevocable and may happen only
in case OBSTRUCTION. (For simplicity and since it is not used by the proposed
method of [KWZ95], we do not allow a more general scheme where the obstruct-
ing body could alter the state of the photon instead of absorbing it.) Hence the jth
sensing stage is given by a unitary permutation matrix P
j t h a t  m a p s  t h e  
s t a t e s
IS sense, j> and I s
a b s o r b
,  j
>  
i n t o  
e a c
h  
o t h
e r  
( t h
e r e
b y  
i n t
e r c
h a n
g i n
g  
t
h
e  
a m
p l
i t
u d
e s  
o
f
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> and I, S absorb, j>)1 and provides an identity mapping on all other elements of
S. Thus, case OBSTRUCTION, for 1 j  n ,  U ; = P
i
U
i  ( t h a t  i s ,  U
j  f o l l o w e d  
b y  P
i
)

is the unitary transformation done just after the j— 1 up to and including the jth
sensing stage, and for j =  n +1, U '
n
„ , =  U  1  
i s  t h e  
u n i t a r y  
t r a n s f o r m
a t i o n  
d o n
e

just after the nth sensing stage.

The Input—Output Unitary  Transformation. T h e  unitary  t ransformat ion by  the
(E, E
0
, 
8
0 -
s
e
n
s i
n
g  
s
y
s
t
e
m
,  
u
p  
t
o  
a
n
d  
i
n
c
l
u
d
i
n
g  
t
h
e  
j  
s
t
a
g
e
,  
w
r
i
t
t
e
n  
i
n  
m
a
t
r
i
x  
n
o
t
a
-

tion, is T
i
=  U
i
U
i
_ ,  
• •
•  
U
,
U
,  
i
n  
c
a
s
e  
C
L
E
A
R
,  
a
n
d  
i
s  
T
i
'  
=  
U
j
i
,  
•  
•  
•  
I
T
,  
I
T
,  
i
n  
c
a
s
e

OBSTRUCTION.
We conclude that the total input—output unitary transformation is T
s
, 1 =  U  „
F
t

U
s
.
.
.  
U
2
U
1  
i
n  
c
a
s
e  
C
L
E
A
R
,  
a
n
d  
i
s  
U
„
'  
,
,
U
'
n  
•  
•  
•  
U
'
,
U
'
,  
i
n  
c
a
s
e  
O
B
S
T
R
U
C
-

TION.
Viewing each of the unitary transformation as matrix products, we can determine

the amplitudes of the elements in S just after the jth sensing stage from the vector
T
i
a
o  
i
n  
c
a
s
e  
C
L
E
A
R 
a
n
d  
b
y  
T
;
a
0  
i
n  
c
a
s
e  
O
B
S
T
R
U
C
T
I
O
N
.

The Out put  Parameters  o f  a  Sensing System. T h e  addit ional bas is  s tate
S OUTPUT> is intended to indicate case OBSTRUCTION. Fix some reals E, E 0, ,

where 0 <E
0 a n d  
0  
<  
E ,  
e
l  
<  
1  
( n
o t
e  
t
h
a
t  
E
0  
m
a
y  
b
e  
a
b
o
v
e  
1
,  
d
u
e  
t
o  
r
e
p
e
a
t
e
d

sensing). We formally define an (e, 8,, E
l
) - s e n s i n g  s y s t e m  
t o  b e  
a  
q u a n t u m  
o p t i c a
l

sensing system that (a) determines, with likelihood 1  i f  an obstructing body
has been inserted at a given location into the system, and furthermore to do this,
(b) sends only a fraction g
o
,  E ,  o f  
t h e  
i n p u t  
i n t e n s i
t y  
t o  
t h
e  
l o c a t
i o n s  
o
f  
t h
e  
o b s
t r u
c t -

ing body in case CLEAR, OBSTRUCTION, respectively. By (a), in case CLEAR,
the intensity of the amplitude of I,'- OUTPUT> just after the final (n +1)th stage is
Also, by (a), in case OBSTRUCTION, the intensity of the amplitude of the basis
state I,L- OUTPUT> just after the final (n +1)th stage is 1  —e. Thus, the (E, E

o
, E
l
) -

sensing system provides output as follows. We make (as is done in the IFM method
of [KWZ95]) an observation of the final basis state Is> after the final (n +  1)th
stage, triggering a quantum projection to a single basis state. Then,

• P r o b ( s  OU TP U T — ' E in case CLEAR, and

• P r o b ( s  OU TP U T — ' S') 1  — e in case OBSTRUCTION.

By (b), in  case CLEAR, n  t h e  sum, for j =  1, n ,  o f  the intensities o f  the
amplitude o f  i
>  j u s t  
b e f o r
e  
t h
e  
j t
h  
s e n
s i n
g  
s t
a g
e .  
A
l
s
o  
b
y  
(
b
)
,  
i
n  
c
a
s
e

OBSTRUCTION, E, t h e  sum, for j =  1, n ,  o f the intensities of the amplitude
of j
>  
j u
s t  
b
e f
o r
e  
t
h
e  
j
t
h  
s
e
n
s
i
n
g  
s
t
a
g
e
.

4.4. The I FM Method of  [KWZ9.5]

We now briefly explain how the experimental quantum optical system o f
[KWZ95] for IFM can be described in our mathematical formulation of quantum
sensing systems (we thank Shor for his assistance here), and also explain why it is
not an IFS system.
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In their system, a photon is sent through a series of optical devices in n stages
of sensing (see the excellent illustrations given in [KWZ96] for a visualization of
the path of the photon). S consists of the set

I
I
S 
I
N
I
T
I
A
L
> 
O
U
T
P
U
T
> 
1 
U 
{
I
S 
s
e
n
s
e
,  
.
f
> 
I
S 
a
b
s
o
r
b
,  
j
> 
I
f  
—
1
1 
n
}

of distinguished basis states of the photon, as described in the previous subsection.
(Note: the quantum optical system of [KWZ95] happens to use polarization to
encode certain basis states, but the details of the actual encoding of basis states is
not critical to our discussion here.) In  the initial superposition, the amplitude of
Is INITIAL> is 1 and the amplitude of all other elements of S is O. This models how
a single photon initially enters the system with the basis state IS INITIAL> •

The unitary matrices U
1
,  d e f i n e d  
b e l o w  
f o r  
j = 1
,  
n ,  
m o d
e l  
h
o  
t
h
e  
s y
s t
e m  
o
f

[KWZ95] executes each stage of sensing. In particular, the photon is sent through
an optical beam splitter and phase rotation filter modeled by the rotation matrix
R  [  e
s ,,
n
s  0
0  —
c o
s i
s
n
0
0
,
,

where 0 = ( F o r  simplicity, at the start of the first stage the
amplitude o f the basis state IsINITIAL> is exchanged with that o f the basis state
IS OUTPUT> .)

• (11 is the unitary matrix which is composed as follows:
i t appliesa unitarypermutationtha tmapsthebasisstatesI s INITIAL>and

IS OUTPUT> into each other (thereby interchanging the amplitudes of IsINITIAL> and
IS OUTPUT> )1

t h e n usesR
o t o m
a p t
h e
p a
i r
o
f
b a
s i
s s
t a
t e
s
I
s
O
U
T
P
U
T
>
I
S
s
e
n
s
e
,
1
>
t
o
t
h
e

pair of basis states ,S OU TP U T>
,  I L

1
> 
(
t
h
e
r
e
b
y  
m
a
p
p
i
n
g 
t
h
e 
p
a
i
r  
o
f  
a
m
p
l
i
t
u
d
e
s  
o
f

IS OUTPUT> 1 I
s  
s e n s e ,
1 >  
t o  
t h
e  
p a
i r  
o
f  
a m
p l i
t u
d e
s  
o
f

,S OU TP U T>  I
S  s e n s e ,  
1 >  
) 1  
a n
d

p ro v id e s a n identitymapo n a l lotherbasisstates.
• Fo r j=  2, n  each I f
/  i s  a  
u n i t a r y  
m a t r i x  
w h i c
h  
i s  
c o m p
o s e d  
a
s  
f o l
l o w
s :

i t appliesa u n it a rypermutationt h a t exchangest h e b a sisstates
IS sense, j —1> and IsSense, j
>  ( t h e r e b y  
i n t e r c h a
n g i n g  
t h
e  
a m p l
i t u d
e s  
o
f  
_  
>  
a
n
d

IS sense 1 j >  )1

then uses R
o  t o  
m a p

pair of basis states IsOUTPUT>
IS OUTPUT> 1 IS sense, j> to the pair

the pair of basis states Is OUTPUT> , IS sense, j> to the
S sense, j
>  
( t h
e r
e b
y  
m
a
p
p
i
n
g  
t
h
e  
p
a
i
r  
o
f  
a
m
p
l
i
t
u
d
e
s  
o
f

o f  a m p l i t u d e s  o f  I s  OU TP U T> 1 I S  sense, j > ) ,  a n d

p ro v id e s a n identitymapo n a l lotherbasisstates.
• (  n _
E
l i s  
t h
e  
i d
e n
t i t
y  
m
a
t
r
i
x  
t
h
a
t  
p
r
o
v
i
d
e
s  
a
n  
i
d
e
n
t
i
t
y  
m
a
p  
o
n  
a
l
l  
b
a
s
i
s  
s
t
a
t
e
s
.

(Note: (  I  was included in our formulation of a quantum sensing system to allow
for more generality, although in this particular method U n _
E
l d o e s  n o t h i n g . )As described in  detail in  the previous subsection, the P

i  m a t r i c e s  a r e  
u s e d  t o

model absorption in  the case o f  OBSTRUCTION. Again, by our definition o f
quantum sensing systems:

• P
i  
i s  
a  
u
n
i
t
a
r
y  
p
e
r
m
u
t
a
t
i
o
n  
t
h
a
t  
m
a
p
s  
t
h
e  
s
t
a
t
e
s  
I
s
s
e
n
s
e
,  
i
>  
a
n
d  
I
s  
a
b
s
o
r
b
,  
j
>  
i
n
t
o

each other (thereby interchanging the amplitudes of I s
se o s
, , ,  j
>  a n d  I s
a b s o r b
,  j
> ) ,  a n d

provides an identity mapping on all the other elements of S.
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This completes our description o f  how we model the optical components o f
the quantum optical system of [KWZ95]. After the final stage, the amplitude of
IS OUTPUT> is observed. I t  is easy to verify that this is an IFM system:

• I n  case CLEAR:

I f weapplythesequenceo f unitarymapsU
j
, t h e n s i n c e
( R
0
)
1
=

R
i
o
,  
i
t  
f
o
l
l
o
w
s  
t
h
a
t  
t
h
e  
a
m
p
l
i
t
u
d
e
s  
o
f  
I
S  
O
U
T
P
U
T
>  
,  
s
e
n
s
e
,  
j
>  
a
r
e  
c
o
s
(  
j
0
)
,  
s
i
n
(  
/
0
)
.

Hence, after the nth stage, the amplitude of ISOUTPUT> is CC
)
S(T C 1 2 )  0 ,  a n d  
s o  a f t e r

we apply U „ ,  1 , the intensity of the final amplitude of IS OUTPUT> is O. Hence, the
system indicates that i t  has detected that there is no obstacle by outputting a
photon which is not in basis state I,S OUTPUT> •

• Case OBSTRUCTION:

I f weapplythesequenceo f unitarymapsU
i i m m e d i a t e l y f o l l o
w e d b y
P
i
,

for j =  1, n ,  then after each j  stage, the amplitude of I,
S 
O
U
T
P
U
T
> 
i
s 
(
c
o
s 
0
)
1
,  
a
n
d

so after we finally apply U „
±
, ,  t h e  
i n t e n s i t y  
o f  
t h e  
f i n a l  
a m p l i
t u d e  
o
f  
I

,
S 
O
U
T
P
U
T
> 
i
s

(cos 0 )
2
n  
1  
—  
0
( 1
)
I n  
(
t
h
i
s  
h
o
l
d
s  
s
i
n
c
e  
c
o
s  
0  
1  
—  
0
2
/
2  
=  
1  
—
O
n
'  
f
o
r  
0  
=
7
E
1
2
n  
a
n
d

c=7 E
2
/4 ,  
a n
d  
s
o  
(
c
o
s  
0
)
2
"  
(  
1  
—  
c
l
2
n
2
)
2
n  
e
—
c
i
n
l
—
c
l
n
)
.  
H
e
n
c
e
,  
t
h
e  
s
y
s
t
e
m

indicates that it  has detected that there is an obstacle by outputting (with high
likelihood) a photon in basis state Is OUTPUT> •

T h e sum,f o r j = 1,n , o f theintensitieso f theamplitudeo f I s
s e n s
, , j
> j u s t

before the jt  sensing stage, is c
i n ( s i n  0 )
2  0 ( 1 / n )  
( s i n c e  
s i n  
0  
0
( 0 ) ,
„  0
( 1 /
n ) ) ,

which can be made arbitrarily small fo r a  large enough n. This bounds the
likelihood of absorption of the photon.

Also in case CLEAR, it  is easy to verify that the sum, for j=  1, n  of the inten-
sities o f  the amplitude o f  I s
s
, , , ,
se
,  j
>  j u s t  
b e f o r e  
t h e  
j t h  
s e n s i
n g  
s t a g
e ,  
i
s

c
o
=  
(
s
i
n
(
j
0
)
)
2
,
>
,  
c
'
n
,  
f
o
r  
a  
c
o
n
s
t
a
n
t  
c
'  
>  
O
.  
H
e
n
c
e
,  
d
u
e  
t
o  
t
h
e  
r
e
p
e
a
t
e
d  
s
e
n
s
i
n
g

on the stages, c
o  g r o w s  
l i n e a
r l y  
w i t
h  
n
,  
a
n
d  
s
o  
t
h
e  
m e
t h
o d  
o
f  
[
K
W
Z
9
5
]  
i
s  
c
e
r t
a i
n l
y

not an IFS system.
However, this method o f [KWZ95] is only a single quantum system. Might

another quantum optical system exist that simultaneously has small E, E
o
,  a n d  c
l
?

That is impossible, since Section 5 will prove that, in  fact, there can be no IFS
system.

4.5. The Reduced Bandwidth for 1/0

A quantum optical method for IFS may be used to do I/O, as follows. We can
assume woloo.g. that the I/O is originally bit serial (if  it is in fact k-bit parallel, then
the sensing system is simply replicated k times), using a conventional optical or
electronic I /O method, without the use of quantum effects. The receiver uses an
(E, c
o
,  
8
0 -
s
e
n
s i
n
g  
s
y
s
t
e
m  
t
o  
o
b
t
a
i
n  
t
h
e  
d
a
t
a  
f
r
o
m  
t
h
e  
s
e
n
d
e
r  
b
i
t  
b
y  
b
i
t  
i
n  
s
e
r
i
a
l

fashion. The cost of sensing a bit is charged the same, whether or not it  is 0 o rl.
Let us also assume w.l.o.g. that the CLEAR case is used to encode the bit 0 and
the OBSTRUCTION case is used to encode the bit 1. Then when we transmit a 0
bit by use of the IFS system, the probability of actually sending the 0 bit over the
I/O channel (i.e., o f sensing in the CLEAR case) is reduced to c
o
.  A l s o ,  w h e n  w e
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transmit a 1 b it  by use of the IFS system, the probability of actually sending the
1 bit over the I/O channel (i.e., of sensing in the OBSTRUCTION case) is reduced
to E
l 
H
e
n
c
e
,  
t
h
e  
p
r
o
b
a
b
i
l
i
t
y  
o
f  
s
e
n
d
i
n
g  
e
a
c
h  
b
i
t  
o
v
e
r  
t
h
e  
I
/
O  
c
h
a
n
n
e
l  
i
s  
r
e
d
u
c
e
d

by a multiplicative factor of at least max(E
0
, E
l
)  b y  u s e  
o f  t h e  
s e n s i n g  
s y s t e m .  
T h u s

I/O bandwidth is reduced by a multiplicative factor of max(E
0
, E
l
)  o f  t h e  b a n d w i d t h

required for conventional I/O.

5. A  Q U A N T U M  SENSING SYSTEM TH A T I MPLI ES Q U A N T U M
A MP L I FI CA TI O N DE TE CTI O N

5.1. Assumptions of  the Reduction

For the sake of contradiction, we now assume an (8, 8
0
,  E
l
) - s e n s i n g  s y s t e m ,  
f o r

0 < E
0 
<  
1 /
2  
a
n
d  
0  
<
E  
<  
1
.  
L
e
t  
(
z
i  
b
e  
t
h
e  
a
m
p
l
i
t
u
d
e  
o
f  
t
h
e  
b
a
s
i
s  
s
t
a
t
e  
I
s
s
e
n
s
e
,  
j
>  
j
u
s
t

before the jth  sensing stage in the case CLEAR. By the definition of an (e, 8
0
,  E , ) -
sensing system, we have E
i
' L
l  1 0
-
J
1
2  
W i t h o u t  
l o s s  
o f  
g e n e r
a l i t y ,  
w
e  
a s s
u m e

Eo = E
J
7
- 1  
k i
2
.

5.2. Goals of  the Reduction

We construct from the (E, E
o
, E
l
) - s e n s i n g  
s y s t e m  
a  
u n i t a r
y  
t r a n s f o
r m a t i o n  
t h
a t

does quantum (9/, /I, )-amplification, for .4  = (1 — E)/2E
0
, =  1  —  1 / ( 1  
+  2 E
0
( 1  —

2 E
0
)),  
a
n
d  
/
I
'  
=  
(
1  
-
-  
2
E
0
)  
E
.  
T
o  
p
r
o
v
i
d
e  
t
h
e  
c
o
n
t
r
a
d
i
c
t
i
o
n
,  
w
e  
l
a
t
e
r  
f
u
r
t
h
e
r  
r
e
s
t
r
i
c
t  
E
0
,

E to  provide amplitudes o f  d ,  , 6 '  t o  those fo r which quantum ( d ,  / 1 ' ) -
amplification is impossible.

5.3. The New State Set S' and Their Init ial Amplitudes

Let S be the basis set defined in Subsection 4.3. We introduce distinct new basis
states I l• POWER> , TEST> and f ix U

P O W E R ,  a  
T E S T ,  
r e s p e c t i v e
l y ,  
t o  
b e  
t h e i
r  
i n i t
i a l

amplitudes. We also augment the basis state set with distinct new basis states
IS test, j> , IS power, j> for each,/ = 1, n ,  initially with amplitude O. Thus, the new basis
state set is

= S POWER>1 U TEST>1 11S power, j> 'IS test, .f> 1
1 1 •
• • •Let y = 1  — 2E

0
. L e t  5 .
0  b e  
a n  
I g l -
v e c t o
r  
p r o
v i d
i n g  
t
h
e  
i n
i t
i a
l  
a s
s i
g n
m e
n t  
o
f  
t
h
e

amplitudes o f the element so S so that a POWER
— y
l  a n d  a  T E S T  
O .  L e t  
c  b e  
a n

Igl-vector providing the initial assignment of the amplitudes of the elements of S' so
that U
P O
W E
R
=  
—

7
1 
a
n
d 
a 
T
E
S
T 
— 
,
/
2
e
0
.  
W
e 
a
s
s
u
m
e 
t
h
a
t
o
'
c
o
,  
p
r
o
v
i
d
e 
a
m
p
l
i
t
u
d
e 
0 
t
o

all other elements of g. (Note that the total input intensity in these cases is >  I;
later we will lower this total input intensity to 1.) Thus, in Dirac notation, 6c
o g i v e sPOWER> + IS TEST> and 5

1 g i v e s  -  
I

,L POWER> + 0  IS TEST> • Note that in 5.0
(and also in o i
l
),  t h e  
s u m  
o f  
t h
e  
i n t e
n s i t
i e s  
o
f  
t
h
e  
a m
p l i
t u
d e
s  
d
o  
n
o
t  
s
u
m  
u
p  
t
o  
1
;

but the amplitudes will later be renormalized by Lemma 5.3.
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5.4. The Init ializat ion of  Unitary Transformations J r  Simulat ion o f  Sensing

In the Appendix (Section 7), we prove a technical lemma:

LEMMA 5.1. F o r  E
o
<  1 / 2 ,  
t h e r e  
i s  
a  
u n i t a
r y  
t r a n s
f o r m a
t i o n  
t
o  
s
u
c
h  
t
h
a
t  
i
n  
t
o
i
o
,

each I s
t e s t
,  j
>  
h a
s  
a m
p l
i t
u d
e  
a
j
,  
a
n
d  
i
n  
t
o
i
l
,  
e
a
c
h  
I
s
t
e
s
t
,  
j
>  
h
a
s  
a
m
p
l
i
t
u
d
e  
O
.  
F
u
r
t
h
e
r
-

more, basis state IsINITIAL> has amplitudel in both t
o
i
o  a n d  t
o
i
l
.

5.5. The New Unitary  Transformations between and during Sensing Stages

For each j =  1, n +  1, let U
1  b e  t h e  
u n i t a r y  
t r a n s f o r m
a t i o n s  
o f  
t h
e  
q u a
n t u
m

optical components of the given sensing system (as defined in Subsection 4.3). Also,
let U
1  
b
e  
d
e r
i v
e
d  
f
r
o
m  
U
j  
b
y  
e
x
t
e
n
d
i
n
g  
t
h
e  
t
r
a
n
s
f
o
r
m
a
t
i
o
n  
t
o  
t
h
e  
a
m
p
l
i
t
u
d
e
s  
o
f  
t
h
e

elements o f S'; this is done by defining the transformations on the amplitudes of
S to be identity maps. For each j=  1, l e t  Q
j b e  t h e  u n i t a r y  
t r a n s f o r m a t i o n ,

reversing the amplitudes of basis states Is„„„,  j
> ,  j
> ,  a s  
d e f i n e d  
b y  
t h e  
u n i t a r y

permutation matrix

I/ 0 1 1
Li 0_1

Let Q
i 
b e  
e x
t e
n d
e d  
t
o  
t
h
e  
r
e
m
a
i
n
i
n
g  
e
l
e
m
e
n
t
s  
o
f  
g  
—  
1  
I
s
s
e
n
s
e
,  
j
>  
'
I
S  
t
e
s
t
,  
j
>  
b
y  
d
e
f
i
n
i
n
g

the transformations to be identity maps. Let M  be any unitary map that does not
affect basis states I s
s e
„ „ ,  j
> ,  I s
t e s t
,  j
> .  
B y  
L e m
m a  
5 .
1  
a n
d  
t
h
e  
d e f
i n i
t i o
n  
o
f  
Q
i
,  
w
e

have:

• I f  initially - I,sPOWER> (so a POWER
— y
l  a n d  a  
T E S T  
0 ,  
a s  
g i v e
n  
b y  
i
o
) ,  
t h
e n

in 2
/
M t
0
5 .
0  
t
h
e  
a
m
p
l
i
t
u
d
e  
o
f  
I
s
s
e
n
s
e
,  
j
>  
i
s  
a
j
.

• I f  initially IPOWER> + , /2 e
0

s' TE S T> ( s o  a  P O W E R
—  y
l  a n d  a  
T E S T  
—

as given by t h e n  in g
i
M t
o
i
l
,  t h e  
a m p l i t u
d e  
o f  
I s
s e
„
s e
,  i
>  
i s  
O
.

Thus, we have shown:

PROPOSITION 5.1. T h e  amplitude o f  Is sense
, i
>  i s  a
j  i n  g
i
M  t i
c
,  a n d  
i s  
0  
i n

gim1
-
06c,5.6. The New Total Input—Output Unitary  Transformation

The composition of the new total unitary transformations up to the jth  stage
gives

=
Q
1
Q
1
U
1
Q
2
U
2
Q
1
U
1
T
0
.

This can be recursively defined as T h u s ,  the total input—output
unitary transformation due to the new unitary transformations is

+  1 n  - P I M
/  n Q  n  
—  1
( 7  
n  
— 1  
•  
•  
•  
Q 2
0  
2 Q
1 0
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5.7. Proof of the Simulation of Quantum Amplification Detection

LEMMA 5.2. L e t  S' = S — Ils absorb, j> 11 T h e n  t
j
o ' c
o  p r o v i d e s  t h e  
s a m e

amplitude to the elements o f  S' as does T
i
o c
o
,  a n d  a l s o  T
i
o ' c
i  p r o v i d e s  
t h e  
s a m e

amplitude to the elements of S' as does T
0
. Proof W e  provide a proof by induction on j.

Recall from Subsection 4.3 that the unitary transformation by the (E, E
0
, E
i
) -

sensing system, up to  and including the j  stage, can be recursively defined as
T
j
=  
i
n  
c
a
s
e  
C
L
E
A
R
,  
a
n
d  
T
;
=
U
;
T
i
L
l  
i
n  
c
a
s
e  
O
B
S
T
R
U
C
T
I
O
N
,  
w
h
e
r
e  
T
o
,

T'
o 
a
r
e  
t
h
e  
i
d
e
n
t
i
t
y  
m
a
p
,  
a
n
d  
U
j
'
=
p
i
(
l
i
,  
a
n
d  
w
h
e
r
e  
P
i  
i
s  
a  
u
n
i
t
a
r
y  
p
e
r
m
u
t
a
t
i
o
n

matrix defined in  Subsection 4.3 that interchanges states Is i
>  a n d  i
>
(thereby interchanging the amplitudes of j
>  a n d  I s
a b b
,  i
>  ) ,  
a n d  
p r o v i d e s  
a n

identity mapping on all elements of :S' except j
>  a n d  I

, S absorb, j >  • A l s o  r e c a l l
that •a., is defined in Subsection 4.3 to be the input amplitudes of basis states of the
sensing system in both the case CLEAR and OBSTRUCTION.

The basis case holds by Lemma 5.1. For our induction hypothesis, we assume
that 5 . ,  provides the same amplitude to the elements of S' as does 1  oc
o
, a n d
also that 1  6c, provides the same amplitude to the elements of S' as does T
i
L
By definition, /
i
i
o  =  
1  
i
o  
p r o v
i d e s  
t
h
e  
s
a
m
e  
a m
p l
i t
u d
e  
t
o  
t
h
e  
e l
e
m
e
n
t s  
o
f  
S
'

as does I f
/  T
j
_  a
o
,  
a n
d  
a l
s o  
I
J  
=
U
/
/
l
l  
p
r
o
v
i
d
e
s  
t
h
e  
s
a
m
e  
a
m
p
l
i
t
u
d
e  
t
o  
t
h
e

elements of S' as does U
i
T '
f
_  1  a
o
.  T h e n  
t h e  
d e f i n i t
i o n  
o f  
Q
.  
a n
d  
I
/  
=  
Q
i

• Proposition 5.1 ensures that from T
1
0
,  t h e  
a p p l i c a t i o n  
o f  
m a p p i n g  
Q
i

provides the amplitude a
/  t o  I s v
s e n s
, ,  j
> ,  
w h i c h  
i s  
t h e  
s a m
e  
a
s  
i
n  T
i
a
o
;

• Proposition 5.1. also ensures that in t
l
,  t h e  
a p p l i c a t i o n  
o f  
m a p p i n g  
Q
i

sets the amplitude of Is i
>  t o  0 ,  
w h i c h  
i s  
t h e  
s a m
e  
a s  
i n  
T  
; a
0
;  
a n
d

• furthermore, the amplitude of no other elements of S' is modified.

Hence we have that i "
i
5 c ʻ
o  
p r o v i d e s  
t h e  
s a m
e  
a m p l i
t u d e  
t
o  
t h
e  
e l e
m e n
t s  
o
f  
S
'  
a
s

does T
i
a
o
,  
a n
d  
a l
s
o  
t
h
a
t  
p
r
o
v
i
d
e
s  
t
h
e  
s
a
m
e  
a
m
p
l
i
t
u
d
e  
t
o  
t
h
e  
e
l
e
m
e
n
t
s  
o
f  
S
'

as does T,'-a
o
.5.8. Renormalization of the Amplitudes

LEMMA 5.3. Suppose that the unitary transformations U
i
,  j =  1 ,  . . . , n  + 1 ,  
d e f i n e

an ( E , E
0
, E , ) -
s e n s i
n g  
s y s
t e m
.  
L
e
t  
.
4  
=  
(
1
—  
E )
1
2
E
0
,  
)
8 =
1 -
1 1
( 1
+ 2
E
0
( 1 -
2 E
0
) ) ,  
a
n
d

)
8
'  
=
(
1
-
2
E
,
) 
E
.  
T
h
e
n 
u
n
i
t
a
r
y 
t
r
a
n
s
f
o
r
m
a
t
i
o
n 
t
„
±
,  
i
s 
a 
q
u
a
n
t
u
m 
(
4
,  
f
i
,
1
1
'
)
-
a
m
p
l
i
t
i
c
a
t
i
o
n

systenl.

Proof W e  need to renormalize the initial amplitude vectors for i ' ,
1  s o  t h a t  t h etotal input intensity in each case is 1.
Recall that i
o  
g i v e s
-  
I s

y
l 
,  
P
O
W
E
R
> 
+ 
0 
y
E
s
p
> 
,  
t
h
a
t  
i
t  
p
r
o
v
i
d
e
s 
t
h
e 
i
n
i
t
i
a
l  
a
s
s
i
g
n
m
e
n
t

of the amplitudes of the elements of s o  that a powER= f o r  y = ,71 — 2E
0
, a n d
a TEST O.  Let b e  an g-vector providing the initial assignment of the amplitudes
of the elements in s o  that a powER= 1 and a pEsT= 0, and provides amplitude 0
to all other elements in I n  Dirac notation, oc
o g i v e s  1

I-POWER> ( )  IS TEST> • In the
case CLEAR for the (E, E
o
, E
l  ) - s e n s i n g  
s y s t e m ,  
b y  
d e f i n i
t i o n  
i t  
p r o d
u c e s  
o u t
p u t
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T „
±  
a
,  
w
h
e
r
e  
t
h
e  
i
n
t
e
n
s
i
t
y  
o
f  
t
h
e  
o
u
t
p
u
t  
a
m
p
l
i
t
u
d
e  
o
f  
b
a
s
i
s  
s
t
a
t
e  
I

,
S 
O
U
T
P
U
T
> 
i
s

Lemma 5.2 implies that f „ ,
t
i
o  p r o v i d e s  
t h e  
s a m e  
o u t p u
t  
a m p l i
t u d e  
t
o  
I s O U
T P U T
>

as does T
n ± i
l
o
,  
s o  
i n  
t
h
e  
i n
t e
n s
i t
y  
o
f  
t
h
e  
o
u
t
p
u
t  
a
m
p
l
i
t
u
d
e  
o
f  
b
a
s
i
s  
s
t
a
t
e

IS OUTPUT> is also E .  By linearity, t- 11-Fl
OT 0  
p r
o v i
d e
s  
a  
f
a
c
t
o
r  
y  
=  
v
/
1  
—  
2
E
,  
l
e
s
s  
t
o

the output amplitude o f  IsouTpuT>, so the intensity is a factor y '  = 1 — 2E
0 l e s s .Thus, in t h e  intensity of the output amplitude of basis state ISOUTPUT> is

( I  —  2 E
0
)  =  
1 3 '
.

Also, recall that o'c
l 
g i v e s I
v

,L POWER> N
/ 2 E 0  
I S  
T E S
T >  
a n
d  
t h
a t  
i
t  
p r
o v
i d
e s  
t
h
e

initial assignment of the amplitudes of the elements of s o  that a POWER— y
l a n daTEST — -\ . /
2 8
()•  
T o  
r e n o
r m a l
i z e ,  
w
e  
d e
c r
e a
s e  
t
h
e  
a
m
p l
i t
u
d
e s  
b
y  
a  
f
a
c
t
o
r  
o
f

= 1/,/1/y
2 +  
2 e
0
.  
N o
t e  
t h
a t  
=  
y  
—  
w
h
e
r
e  
)
6  
=  
1  
—  
1
/
(
1  
+  
2
E
0
(
1  
—  
2
E
0
)
)
,  
a
n
d

observe that ), , i2E
0 =  
W e  
l e t  
b e  
a n  
S ' -
v e c t
o r  
p r o
v i d
i n g  
t
h
e  
i n
i t
i a
l  
a s
s i
g n
-

ment of the  amplitudes o f the elements o f s o  that a POWER
— —  ,
N
/  —  f i  a n d

a TEST =  /11, and provides 0 amplitude to all other elements of „S'. In Dirac
notation, oT
i 
g i v e s  
, / 1  
—  
8  
I

, POWER> + I S  TEST> • In  the case OBSTRUCTION
for the (E, E
o
, ) -
s e n s i
n g  
s y s
t e m
,  
b
y  
d e
f i n
i t i
o n  
i
t  
p
r
o
d
u
c
e
s  
o
u
t
p
u
t  
T
n
'  
a
,  
w
h
e
r
e  
t
h
e

intensity of the output amplitude of basis state IsOUTPUT> is 1  — e. Lemma 5.2
implies that f
1
6 c ,  
p r o v i
d e s  
t h
e  
s a
m e  
o u
t p
u t  
a m
p l
i t
u d
e  
f
o
r  
I s
O
U T
P U
T >  
a
s  
d
o
e
s

r
n 
•
(
)
-  
T
h
u
s
,  
i
n 
l
'
1
6
c
1 
t
h
e 
i
n
t
e
n
s
i
t
y 
o
f  
t
h
e 
o
u
t
p
u
t  
a
m
p
l
i
t
u
d
e 
o
f  
b
a
s
i
s 
s
t
a
t
e

IS OUTPUT> is also 1  — e. By linearity, T
1
0
-
c
i  p r o v i d e s  
o u t p u t  
a m p l i t u d e  
t h a t  
i s

a factor 2 less than D
1
,  a n d  
s o  
h a s  
i n t e n s
i t y  
2
2  
l e s
s .  
T h
u s ,  
i
n  
t
h
e  
i n
t e
n -

sity o f the output amplitude o f  basis state IS OUTPUT> is (  1 — e) 22 = (
1  —  E )  ) 6 /(2E0= ,c )
6 ,  
s i n c
e  2
2  
=  
)
6 /
( 2 E
0
)  
a
n
d  
d  
=  
(
1  
—  
E
)
1
2
E
0
.  
H
e
n
c
e  
l
'
„
±
1  
i
s  
a  
u
n
i
t
a
r
y  
t
r
a
n
s
-

formation that does quantum (d ,  fi, )-amplification.

5.9. Proof That Nearly Interaction-Free Sensing is Not Possible

By Theorem 3.1, there is no unitary transformation that does quantum (d ,  / 1 ' )-
amplification, if

d -  )6) ,67161 1
for 0 < <  1 and 1 < 1 / f i .  Set =  (1 — E)/2E
0
, =  1  —  1 / ( 1  
+  2 E , ( 1  
—  2 E
0
) ) ,

and )
6 '  
=  
(
1  
—  
2
E
0
)  
E
.  
N
o
t
e  
t
h
a
t  
(
1  
—  
)
8
)
1
,
6  
=
1
1
2
E
0
(
1
-
2
E
0
)
,  
s
o  
(
1  
—  
)
8
)  
)
W
1
,
6
=
8
1
2
E
0
.  
B
y

Lemma 5.3, there  is  no (E, E
0
, ) - s e n s i n g  
s y s t e m  
i f  
V s !  
— ,
\
/ ( 1  
—
f i )  
)
8 7 , 8
1  
=

I,/(1 — e)/2e, — ,/e/2e
0 >  1 .  
S o l v i n g  
f o r  
E
o
,  
f o r  
E
0  
<  
1 /
2 ,  
w
e  
o b t
a i n  
t
h
e  
c o n
d i t
i o n
:

THEOREM 5.1. I f  E
0  <  m i n
(  1 ,  
( , / 1  
—  —
, / e )
2
) / 2  
t h
e r
e  
i
s  
n
o  
(
E
,  
g
o
,  E
1
) -
s e n
s i n
g

system using unitary transformations (which may be infinite dimensional).

COROLLARY 5 1  There  is no (E, 8
0
,  e
l
) - s e n s i n g  
s y s t e m  
u s i n g  
u n i t a r
y  
t r a n s f o
r m a -

tions, for E< 1/2 and sufficiently small E
o
. T h u s ,  t h e r e  
i s  n o  
m e t h o d  
f o r  
I F S  
u s i n g

unitary transformations.

6. CO NCL US I O N

Our research was motivated by the potential applications of IFS to lower the I/O
bandwidth in computer systems and related applications in complexity theory.
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F - °-  1 — 0-  2
2

2
2

1 +  Gr a  2 (11

There are some further possible extensions of our work. In this paper, we have
assumed that a quantum projection (also sometimes known as a quantum collapse)
is done after the final nth sensing stage, via observation of the output basis state.
This suffices to provide a disproof of IFS, which is the main goal o f our paper.
However, Bernstein and Vazirani [BV93, BV97] showed that a ll observation
operations can be pushed to  the end o f  the computation, by repeated use o f a
quantum XOR gate construction. Thus implies that our proof extends to allow a
quantum projection to be done on earlier stages as well, thus ruling out an even
larger class of proposals for IFS.

For simplicity in  our formulation, we assumed that the entering photon was
either absorbed or not absorbed by the apparatus, and do not allow for a more
general scheme where the obstructing body could alter the state o f  the photon
instead o f  absorbing it. (Such a  scheme was not used by the I F M method o f
[KWZ95].) It is an open question whether this scheme is of benefit, or whether our
impossibility proof techniques can be extended to this scheme.

Subsequent to this paper, two interesting (but less direct) possible alternative
proofs of our impossibility result for quantum amplification detection have been
suggested to us. One of these alternative proofs would use a reduction from a well-
known result that proves that instantaneous communication is not possible by a
quantum system. This alternative proof would show that if  quantum amplification
detection were possible, then it would enable instantaneous communication across
arbitrarily large distances. Another alternative proof would use a reduction to EPR.

APPENDIX

The Init ializat ion of  Unitary  Transformations for Simulat ion of  Sensing

7.1. Quantum Coin Kips

Let E
o
=  E
1
1 _
1  
1
0
: t  
F
.  
L
e
t  
t
t  
b
e  
a
n  
n
-
v
e
c
t
o
r  
w
h
i
c
h  
h
a
s  
1  
a
t  
i
t
s  
f
i
r
s
t  
e
n
t
r
y  
a
n
d  
0  
o
n

the other entries. Let tt' be an n-vector which has amplitude /I; = o
-
i
/
o
,  f o r  e a c h

j =  1, n .  The vector tt can be mapped to the vector Li' by a well-known unitary
transformation known in theoretical computer science as a weighted quantum coin
flip [G96], which we denote by F. For example, in the case n= 2, F  is a rotation
matrix:

For general n > 2, the weighted quantum coin flip can be constructed by a series of
appropriately defined 2 x 2 weighted quantum coin flips.

7.2. Proof  of Lemma 5.1.

Proof W e  have defined t o  give the in itia l amplitudes o f  the basis states,
where (  is either 0 or 1 depending on the input. In  the following, we will define



18 JOHN REIF

transformations W
o
,  W
,  I / 1 /
1
,  
f o r  
0  
< j  
n .  
W
e  
d e f
i n e  
u n
i t a
r y  
t r a
n s f
o r m
a t i
o n  
D
0  
t
o

be a  composition (written in  matrix fo rm and applied f ro m righ t t o  le ft)
W
n
±
i
W
n  
•  
•  
•  
W
i
T
r
o
W
o  
o
f  
u
n
i
t
a
r
y  
t
r
a
n
s
f
o
r
m
a
t
i
o
n
s  
d
e
f
i
n
e
d  
b
e
l
o
w
.

We have already defined a p
o w
„ ,  a
„ „  t o  
b e  
t h e  
i n i t i a l  
a m p l i t
u d e s  
o f  
b a s
i s

states IS „wER> ,S  TEST> as given in c .  I t  will be useful to introduce notation for
the amplitudes o f  other basis states after those specified transformations. Fo r
j =  1, n ,  let

• a  t e s t
b e  
t h e  
a m p
l i t u
d e  
o
f  
I s
„
s t
,  
j
>  
i
n  
f r
o
i ,
,

,

• a  power, b e  the amplitude of I s
p o
„ „ ,  t
>  i n  W '
o  W
o
i , ,  
a n d

• a
'  
t e
s t
,  
b
e  
t
h
e  
a
m
p
l
i
t
u
d
e  
o
f  
I
s
t
e
s
t
,  
j
>  
i
n  
T
.

Also, we define aINITIAL to be the amplitude of basis state IIL I N I T I A L >  i n  W ' o  W 0
6 •
c e ,which will be the same as in Do , .

DEFINITION OF W
o  L e t  
w
o  
b e  
t h e  
f o l l
o w i n
g  
u n i
t a r
y  
t r a n
s f o r
m a t i
o n :

1. F i rs t  permute the amplitude of I s
T
„
T
>  a n d  I s
t
„
t
,  , > ,  
b y  
u s e  
o f  
t h e  
u n i t a r
y

permutation submatrix

10 1 1
11 0 1  •

2. Th e n  apply the weighted quantum coin flip F  defined above on the basis
states (  I test, 1> , test, 2> •••, IS test, "IA so  that i n  W

o o
,  e a c h  I s t e s t ,  
j >  n o w  
h a s

amplitude a
t e s t
,
i
=  ( o
-
i
/  / k
J
)  
a  
T E
s T
.

3. W
o  
d o
e s  
n
o
t  
a
f
f
e
c
t  
a
n
y  
o
t
h
e
r  
e
l
e
m
e
n
t
s  
o
f  
g
.

DEFINITION OF W
o  L e t  
y '  
= , / 1  
y
2
2 E
0
.  
N o
t e  
t h
a t  
y
2
2 E
0  
<  
1  
s
i
n
c
e  
w
e  
h
a
v
e

assumed E
0 <  
1 / 2 .  
A l s
o  
n o
t e  
t
h
a
t  
( y
/
y '
)
2
<  
1  
s
i
n
c
e  
w
e  
h
a
v
e  
d
e
f
i
n
e
d  
y
2  
=  
1  
—  
2
E
0  
<

1 - 2 E
0
+  
4 E
2
0
=  
1  
—  
(
1  
—
2 E
0
)
2 E
0
=  
(
y
'
)
2
.  
L
e
t  
I
T
'
o  
b
e  
t
h
e  
f
o
l
l
o
w
i
n
g  
u
n
i
t
a
r
y  
t
r
a
n
s
f
o
r
m
a
-

tion:

1. F i rs t  apply the unitary rotation matrix transformation

r y ,  _ ,
N
/ 2 E
0  
Y l

y Y '

on the amplitudes of I,LS POWER> , IS powev, 1> ( note that these basis states initially had
amplitude a powER, 0, respectively), so that IS powER> now has amplitude 'V1

' 
a 
P
O
W
E
R

and IS power, 1> now has amplitude („/2E
0 y )  a  P O W E R  
•

2. Th e n  apply the unitary rotation matrix transformation

' \ /
1  
—  
(
Y
/
Y
'
)
2   
Y
/
Y
'

Y/Y' - \ /
1  —  
( Y /
V )
2 1
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on the amplitudes of II
S 
P
O
W
E
R
> 
I
S 
I
N
I
T
I
A
L
> 
(
n
o
t
e 
t
h
a
t  
t
h
e
s
e 
b
a
s
i
s 
s
t
a
t
e
s 
i
n
i
t
i
a
l
l
y 
h
a
d

amplitude y'apowER, 0 ,  respectively), so  tha t I 1' INITIAL> n o w has amplitude
Y
a  
P
O
W
E
R
•

3. Th e n  apply the weighted quantum coin flip F  defined above on the basis
states ( s
p
„ „ , ,  
1  
>  
,  S
p o w
e r ,  
2
>  
,  
•
•
• ,  
I
S  
p
o
w
e r
,  
n
>  
)
1  
S
O  
t
h
a
t  
a
f
t
e
r  
a
p
p
l
y
i
n
g  
W
'
o
,  
e
a
c
h  
I
s
p
o
w
e
r
,

n o w  h a s  a m p l i t u d e  a power, —  ( f
7  ) ( -  Y a  
P O W E R )  
3
1 i
(   
Y
a  
P O W E
R ) •

4. W ' ,  does not affect any other elements of go

DEFINITION OF W
j
.  F o r  
j =  
1 ,  
n  
l e
t  W
. )
,  
b
e  
t
h
e  
u n
i t a
r y  
t r a
n s f
o r m
a t i
o n  
f
r
o
m  
t
h
e

amplitudes of basis states IS power, ,  IS test, f> to  those of I s
p o  i
> ,  I s
t e s t
,  j
>  d e f i n e d

by the unitary rotation submatrix

1 - 1 ]
L i  - 1 P

and 1/1
7
1 
d o e
s  
n o
t  
a f
f e
c t  
a
n
y  
o
t
h
e
r  
e
l
e
m
e
n
t
s  
o
f

Note that since the amplitude of IS powER> is not changed by W
o
,  i t  h a s  t h e  s a m e

initial amplitude a powER= i n  WO,  as in 6c'
t
. S o  i n  W '
o  W
o  ,  
b a s i s  
s t a t e  
I S I N I T
I A L >

has amplitude a INITIAL — a POWER()
) )  Y '  —  1 .  
S i n c e  
t h e  
a m p l i t u d
e  
o f  
I s
p o w E R
>  
i s  
n o
t

change in  the subsequent transformations W ,  basis state ISINITIAL> also has
amplitude aINITIAL 1  in  both D
o
i ,  a n d  D
o
i
l
.

We have shown that each I s
t e s t
,  j
>  h a s  
a m p l i t u d e  
a
t e s t
,  j
=  
(  
/

, c
-
i ,
-
(
o
) )  
a  
T
E
S
T  
i
n

W
o
' 
W
o
i
,
.  
A
l
s
o
,  
s
i
n
c
e  
a  
p
o
w
E
R
=  
i
n  
W
'
o  
W
O
,  
e
a
c
h  
1
S
p
o
w
e
r
,  
j
>  
h
a
s  
a
m
p
l
i
t
u
d
e

a
p
o
„
e
,  
j
=  
y
a  
p
o
w
E
R
)
=  
a
.  
T
h
e  
a
m
p
l
i
t
u
d
e  
o
f  
t
h
e  
b
a
s
i
s  
s
t
a
t
e  
I

.
S 
t
e
s
t
,  
f
> 
a
f
t
e
r

transformation W
i  •  •  
• 1
/ -
N
/ i
(  
a  
p o
w e
r ,

W'o Wo is  dtest, j
—  
a  
t e s
t ,  
j )  
w h
i c
h  
i
s  
t
h
e
,

same as its amplitude after transformation D
o
e rc
o
o  H e n c e  w e  
h a v e :

• I f  a POWER 7
1  a n d  
a  
T E S
T =  
0  
( a
s  
g i
v e
n  
b
y  
i
o
) ,  
t
h
e
n  
a
p
o
w
e
r
,  
—  
-
\
/
-
2  
a
/  
a
n
d

atest, O .  Thus, in  D
o
i
°
,  e a c h  
I s
t e s t
,  j
>  
h a s  
a m p l i
t u d e  
a '
t e s t
,  
j
=  1
/ , /
( a p o
w e r ,

1 1 ,
\
/  
0
)
-
0
)
=
0
-
i
.

• Also, if  a p
o w E R
=  
a n d  
a  
T E s
T
=  ,
/ a
o  
(
a
s  
g i
v e
n  
b
y  
5 .
1
) ,  
t
h
e
n  
a  
p
p
„
e r
,  
j
=

and a   j
=  u
p  
T h
u s
,  
i
n  
D
o
i ,
,  
e
a
c
h  
I

.
S 
t
e
s
t
,  
f
> 
h
a
s 
a
m
p
l
i
t
u
d
e 
d
t
e
s
t
,  
i
=

1 /  2 ( a p o we r,  a  te st, , r) — 1 1  2 ( ,
\
/ i  2  c
-
i
)  =  
O .
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