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In this paper, we consider the problem of comelational learning and
present algorithms to determing correlated abjects.

1. INTRODUCTION

Correlational learning, a subclass of unsupervised
learning, aims to identify statistically correlated groups of
attributes. In this paper, we consider the following correla-
tional learning probiem due to L. G. Valiant {1985, 1988):
We have a sequence of »n random light bulbs each of which
is either on or off with equal probability at each time step.
Further, we know that a certain pair of bulbs is positively
correlated. The problem is to find efficient algorithms for
recognizing the unique pair of light bulbs with the maxi-
mum correlation. Some preliminary results in this direction
are reported in Paturi, (1988).

In this paper, we consider a more general version of the
basic light bulb problem. In the general version, we assume
that the behavior of the bulbs is governed by some unknown
probability distribution except that the pair with the largest
pairwise correlation is unique. Qur goal would be to find
this unique pair. We also consider the extension of the
problem to k-way correlations.

Mathematically, we can regard each light bulb /, at time
step ¢ as a random variable X! which takes the values *1.
Wecall (X!, X%, ..., X.) the tth sample. We also assume that
the behavior of the light bulbs is independent of their past
behavior. In other words, the samples are independent of
each other. We would like to find the desired object
(k-tuples with the maximum correlation} with high proba-
bility. The complexity measures of interest are sample size
and the number of operations.

Before we proceed further, we introduce some definitions
and facts from probability theory.

We define the correlation of an (unordered) pair {/, j} of
light bulbs /; and /,as P[ X,= X;]. In general, for any k = 2,
the correlation of the unordered k-tuple {i,i,....i.} of
light bulbs is defined as P[ X, = X, = ... = X, ]. Observe
that these definitions differ somewhat from the standard
definition of the correlation. However, in the special case of
each bulb having the +1 value with equal probability, if p is
the correlation according to the definition in this paper, then
2p — 1 is the correlation according to the standard definition.

In the following, we present estimates of the probability
of the sum of independent random variabies deviating
from its mean. Although such large deviation probability
estimates have been known before, for the sake of complete-
ness, we derive these results using moment generating func-
tions. More information can be found in Alon, et al. (1992).

Let =y, 23, . 2, be (0, 1}-valued independent random
variables such that P[z;=1]=p,for | <j<m.

Let S"=3" 2, and let the expectation of S™ be
u=ES"=37_, p;. We are interested in the probability
that § is above or below its expectation. The following
lemama bounds the probability that $™ is below its mean. Let
#' < be any lower bound of 4.

Lemva 1. For 0<T<p <p, P[S™ < T] e~ ~TH &,
Proof. We use the moment generating function Ee*™.
Since the random variables -; are independent, we get
PLS"<T1=P[e™ "> 1]
S Eer‘r—s”’r
m
=e1‘: H EGA 4
J=l
for any > 0.
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We select t=(u'—T)/u’'<1. We obtain Ee 7' =

1 —p;+ pe™’ §{ —p(p — T + TH(2(u'))) <
e P = DU+ TV2WD sing this upper bound, we get
P[S"<T]< W T g— ' = Thige' + TY STl 20 )

— (g — T2
<e “ ) 4

which is the desired inequality. |

The following lemma bounds the probability that S™ is
above its mean. Let 4’ = u be any upper bound on p.

LemMMA 2. For P[S”" 2 T] <

T — (3

u<sp <T <2,
e

Proof. We use the moment generating function Ee®™.
Due to the independence of the variables involved, we get

P[szT]=P[eS’"t—Tl>1]

Smr — Tt
< Ee

m
=evT1 1_[ Ee:jl

i=1

for any 1> 0.
Following Raghavan (1986), we select 1 =1In(7/u'). We
now obtain

Ee?'=1—p,+pe' =1+p,(T—p")u <er T+
Using this upper bound, we get

P[Sm > T] <e —- T In{ Tr';fl')e‘T*’l"iZT’:ll’/y"/"
Ty — Tin(Th'
LT+ n( 7/u')

<e \('rf,;')?/(sy').

The last inequality follows since (7 — u')/u’ <1 and (T —
# =TT/ )/ = (T—p')u' —TIn(1+(T—p')p')u')
isless than —1/3for O0<(T—pu' )’ <1. )

We say that a statement holds with high probability, if it
holds with probability 1 —n~* for some a > 1.

2. A QUADRATIC-TIME ALGORITHM

We now present an algorithm called algorithm Q which
samples each pair of bulbs O(In n) times to determine the
pair with the largest correlation. We first develop some
definitions that will be used in our algorithms.

Let ;= [{1 <u<t|X}=X/}| Inother words, S} is the
number of times the bulbs /; and /;, have identical output
when f samples are considered. Let p, be the largest pairwise
correlation and p, be the second largest correlation. If p,
and p, are very close to each other, one would expect to

look at a larger number of samples to isolate the pair with
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the largest correlation. However, we do not know the
separation between p, and p,. Hence we introduce the
accuracy parameter y > 1 as one of the inputs to our algo-
rithms. The parameter y is an estimate of p, /(p, — p,). Our
algorithms, with high probability, output a pair whose
correlation is greater than p,(1—1/y). If p, <p,(1—=1/y),
our algorithms, with high probability, output the pair with
the largest correlation. All our algorithms also have a
certainty parameter « > 1 as their input. Our algorithms
succeed with probability at least | —n >

The algorithm Q relies on the basic fact the value of Sy
tends to be larger if the pair {7, j} is more correlated. Hence,
if we take a sufficiently large ¢, we can guarantee with a high
probability that the pair {i, j} with the largest S}, has the
maximum correlation provided p, and p, are sufficiently
separated. Let T’ = O(»* In n). Each step of the algorithm Q
consists of obtaining a sample and updating S,’s. At step ¢
of the algorithm, for each pair {i, j}, we check whether
S, = T'. If there exists a pair {i, j} such that S,=T', we
output {7, j} and stop. Otherwise, we look at the random
variables X *' at step  + 1 and update S;* ' and repeat the
above computation until we succeed. Each step of this com-
putation takes O(n?) operations, since we examine each of
the O(n?) pairs. Note that this algorithm does not depend
on prior knowledge of the probabilities p, and p,. We show
that with high probability the algorithm outputs a pair
whose correlation is greater than p,(1 — 1/y) and terminates
in O((y*In n)/p,) steps. Hence if p, < p,(1 — 1/y), with high
probability, the algorithm outputs the pair with the maxi-
mum correlation using O((y? In n)/p,) samples and its time
complexity is O((y*n* In n)/p,).

In the following, we give the algorithm and its analysis.

ALGORITHM Q.
Inputs: a1, the certainty parameter, and y > 1, the
accuracy parameter;
. t=1;
2. for each pair {i, j}, S, « {(;f L lcftl)liir:iij
T« 12(2+a)y’ In n;
4, while (TRUE) do
if there exists a pair {7, j} such that S,> T’ then
output the pair {i, j} and stop;
else 7 — r + 1 and, for each pair {i, j},
Vﬁm if X=X/,

S, .
S otherwise

i
The following theorem gives the performance of the algo-
rithm. It should be noted that we used simpler constants

rather than striving for the optimal constants.
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THEOREM 1. For all n = 3, Algorithm Q terminates with
t<(18(2 +a)y* In n)/p, | and outputs a pair whose correla-
tion is greater than p,(1— 1/y) with probability at least
l—n—"

Proof. Let T=| (182 + a)y*’Inn)/p,)=L3T"/(2p,)]
where T’ = 12(2 + a)>° In n. We show that the algorithm Q
terminates with ¢ < 7 outputting a pair whose correlation is
greater than p,(1 — 1/y) with probability at least | —n—*

Let 1= (1+1/(2y))T'/p, J< T. If the pair {i, j} is the
pair with the maximum correlation p,, we then have
E[S;1=p;t2(1+1/(2y))T'— 1. Hence, from Lemma I,
we get P[S| <T']<n"%/2.

On the other hand, we show that, for any pair {/, j}
whose correlation is less than or equal to p,(1 — 1/y), the
probability S, > 7" for any 1 <" <tis small. Let {/, j} bea
pair whose correlation is at most p,(1 —1/y). Since S|, < T’
implies Sjjf< T' for any 1 <¢ <1, we need only consider
the probability that S|, > T" and show that it is small. We
have E[S)]1<p(1-1/<(+1/2y))A-1/p)T" <T"
To apply Lemma 2, we use the wupper bound
max((1 —1/p)1 4+ 1/(23))T", T'/2) for E[S};]. We then get
P[S,>T'1<n ?"* Since the number of the events
[S;,>T'] is at most n*/2, we get that the probability that
St > T’ for some 1 <t < tand a pair {/, j} with correlation
less than or equal to p,(1 — 1/y) is bounded by n’n 2 ~%/2 <
n=*2.

Hence, with probability at least 1 — » 7, the algorithm Q
will output a pair whose correlation is greater than
p,(1—1/y) and terminates with t < 7. |}

COROLLARY 1.  Algorithm Q outputs the pair with the
largest correlation using O((xy>Inn)/p,) samples in time
O((x;*n* Inn)/p,) with probability at least 1 —n"* if
p2<p (L= 1/y). More generally, given m pairs of random
variables, the algorithm Q outputs the pair with the largest
correlation in time O((xy’m Inn)/p,) if p <p(1—1/y).

Can we do better? In the rest of the paper, we present an
algorithm which takes subgquadratic time and extend it to
k-way correlations.

3. ALGORITHM B

To understand this algorithm, consider the special case
with p, = 1. In this case, the problem is reduced to sorting.
We want to determine the pair that produced identical
outputs. This can be done by sorting the strings si=
X!'X?... X' If we consider O(ylnn) samples, with high
probability, we can find a pair whose correlation is at least
pi(1—1/y). The total number of operations in this special
case 1s O(yn In n).

Even in the more general case, we can use the above idea
to reduce the number of pairs to be considered. We classify
the random variables based on their s/=X} .- X!. We say
that two bulbs / and j fall into the same bucket if 57 =s;. We
consider all the pairs {/, j} for i and j in the same bucket. We
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select 7 such that the number of pairs {i, j} of bulbs with
s{=s; is on the average no more than cn for a suitably
chosen constant ¢. On the other hand, if ¢ is not too large,
the maximally correlated pair falls into the same bucket
with a sufficiently large probability. If this process is
repeated for a sufficient number of times, the maximally
correlated pair occurs more frequently than all the others.
We use this frequency count to isolate the pair with the
maximum correlation. In addition to the inputs y and «, the
algorithm B requires an upper bound ¢, on the second
largest pair-wise correlation. With high probability, it out-
puts the pair whose correlation is greater than p,(1 — 1/3).

In the following, we give the algorithm and its analysis.
By a family of buckets of bulbs, we mean a partition of the
set of bulbs.

ALGORITHM B.

Inputs: x>1, the certainty parameter, y>1, the
accuracy parameter, an upper bound ¢, on the second
largest pair-wise correlation;

0. Let T'=1224+a)y*Inn

1. Let PAIRS be the empty list of pairs and their
counts;

2. while (TRUE) do

2.1. Let t+ 0 and F be the family of buckets of
bulbs obtained by placing all the bulbs in one
bucket.

2.2. while (+ <{ (In n/In(1/q,)))) do

2.2.1. Obtain the sample vector (X5*',
X4+, L, XL+ Split the buckets if necessary
so that all bulbs in the same bucket agree on
all the r + 1 sample vectors seen so far. Let F
denote the family of buckets so obtained.

222

2.3. For each bucket of bulbs in F consider all
possible pairs of bulbs from the bucket. Add any
new pairs to the list PA/RS with count initialized
to one. Increase the count of the other pairs by one.
If the count of any pair is at least 7", output the
pair and exit.

t—1t+1

The following theorem gives the time and the sample
complexity of algorithm B. In the analysis, we make use of
the fact that p,, the second largest pairwise correlation, is at
least 1/2—3/(2n). To see this, observe that given any
sequence X, .., X, of binary values, for a random pair
{1, j} other than the pair with the largest correlation, the
probability that X, = X is at least 1/2 — 3/(2n) for all n > 3.
Hence, for any probability distribution, there is a pair other
than the pair with the largest correlation whose correlation
is at least 1/2 —3/(2n) for all n > 3,
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THEOREM 2.  Algorithm B outputs a pair whose correla-
tion is greater than p,(1—1/y) with probability at least
1—n~* and terminates in expected time O((2+a)
yIpt rAnpuine) n2 ny with O((2 +a)y?n"™ 711 92 In? n) expected
number of samples. In particular, if p, < p(1 —1/y), then the
algorithm B outputs the pair with the maximum correlation

3

with probability at least 1 —n ™"

Proof. Consider any invocation of the inner loop (step
2.2). Let F be the family of buckets obtained at the end of
this invocation. We have the probability that the pair with
the largest correlation falls in the same bucket of this family
is pnminttia:) = yy ~Inp1in g Qn the other hand, for any other
pair, the probability that it falls in the same bucket of F is
at most pnintlien = p-tnpine) < /y Hence, the expected
number of pairs obtained from £ is at most 7.

We will show that the count of the maximally correlated
pair with high probability exceeds T’ before the count of
any other pair whose correlation is at most p,(1 — 1/y) does.
Let f{ denote the count of the maximally correlated pair at
the end of the first j iterations of the outer loop. Let & be the
smallest integer such that E[f’,"] Z(1+1/(2y))T’, where
T'=12(2+a)y*In n. Since in any iteration of the outer
loop the pair with the largest correlation falls in the same
bucket with probability n -9 we have k<1+
(1 +1/(2y)) T'a™rina Since the iterations of the outer
loop are independent, we get, applying Lemma I,
Plfi=T']21-n""2

Let p, be the correlation of any pair with p, <p (1 — 1/y).
Let /] be the maximum count for this pair at the end of the
first j iterations of the outer loop. Clearly, E[ f4]<
Jen ~Hnpiiingn o [1 + (14 1/(2%) T'nmei/in “7n —{npyfln g2y
But we have nln 2n g X n—(lnp:/ln q2) <n —{In(1 — 1/5)/1n 423 Since
g.=p>>1 for all n=5, we have that n =0 -1 ¢
(1—1/y) for all n>5. This implies that E[f5]<
(1 =11+ /2N T' + 0o(1). To apply Lemma 2, we use
the upper bound max((1—1/y)(1+ 1/2yN T’ +o(1), T'/2)
for E[ f5]. We then get P[ /5> T7"]<n *"* Since there
are at the most n?/2 pairs, we get that the probability is at
most n~*/2 that for some pair whose correlation is at most
p(1 —1/y) the count will be at least 7" at the end of the first
k iterations of the outer loop.

Hence, after at most (1 + (1 +1/(2y))T'n™P"4 jtera-
tions of the outer loop, with probability at least 1 —n ™2, the
count for the maximally correlated pair exceeds T’ before
the count of any other pair whose correlation is at most
p.(1—1/7) does.

In order to obtain the expected run time of the algorithm,
observe that the expected number of iterations of the outer
loop is O(T'n™r/42) since using Lemma 1 we get that
P[ f{ < T'] decreases exponentially in j, where /= jk. In
each iteration of the outer loop, the expected number of
pairs considered is O(n). Each iteration of the outer loop on
the average requires O(nlnn) time steps and O(ln n)
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samples since ¢,=p,>1/2—3/(2n). Combining these
estimates, we get that Algorithm B terminates in expected
time O((2+a)y?n'* e n2 ) and the expected
number of samples used is O((2 + x) y*n™ 7™ 42 In? ). |

The previous theorem gives a bound on the expected run
time and the number of samples of the algorithm. With an
additional log factor, we can show that the time and the
sample bounds also hold with high probability. We use the
following fact for this purpose. See also Karp (1991) for a
generalization of this technique.

LEMMA 3. For any ¢ 20, if a randomized algorithm </
produces the correct answer with probability at least 1 —n >
and runs in expected time T, then there is a randomized algo-
rithm that with probability at least 1 —(cn™ *log,n+n~°)
runs in time O(cT log, n) and produces the correct answer.

Proof. We use the following algorithm to achieve the
time bound mentioned in the theorem. Run ¢ log, n copies
of the algorithm independently in parallel. Stop as soon as
one of the copies outputs a pair and this pair will be the out-
put of the algorithm. (If two or more copies produce their
outputs simultaneously, select one of them arbitrarily as the
output of the algorithm).

The probability that all the ¢log,n copies produce
the correct answer is at least 1 —cn~*log, n. Moreover,
using Markov’s inequality, we get that the probability
that .o/ does not output a pair in time 27 is at most }.
Thus, the probability that none of the clog,n copies
outputs a pair in time 27 is at most (1/2)°8" =~
Therefore, the modified algorithm computes the correct
result and runs in time O(¢T log, 1) with probability at least
l—(cn *logon+n ). |

Using the above lemma, we get the following theorem.

THEOREM 3. Algorithm B, with probability at least
(1 —n %), outputs a pair whose correlation is greater than
Pl — 1/y) and terminates in time O({2 + a)ay>n' +!pring)
In*n) with O((2+x)ay’n™"™ 10 ny samples. In par-
ticular, if p,<p,(1—=1/y), then with probability at least
I —n =" the algorithm B outputs the pair with the maximum
correlation.

4. BOOTSTRAP TECHNIQUE

Algorithm B uses a large number (O((2 + «)ay?n'nri/n e
In? n)) of samples. We can reduce the sample size to O(ln n)
using the bootstrap technique (Diaconis and Efron, 1980;
Efron, 1979, 1982).

Assume that we are given a data set (ie., a random
sample of size d) D= {x, x5, .., x,} from an unknown
distribution, and we want to estimate some statistic, say 6.
The idea of the bootstrap technique is to generate a large
number of new data sets from D and estimate 6 on each one
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of the generated data sets to obtain a better estimate of 6.
A data set is generated by drawing samples independently
with replacement from D with each element in D being
equally likely.

In the following, we explain how one can reduce the num-
ber of samples to O(ln »n) by increasing the time complexity
of the algorithm B. We first make dIn n observations for
some constant ¢ 2 1. Our new probability distribution D’ is
obtained by drawing the data sets with uniform probability
from among the d In n samples obtained.

If d is chosen to be large, we show that, with high
probability, the separation between the largest correlation
and the second largest correlation in the sample data does
not decrease significantly in the distribution D', Let p and
p5> be the largest and the second largest correlations in D’
For n>35 and d>2407%(2 +x), we will show that with
probability at least 1 —»n "%, p) is at least (1 — 1/(2;)) p, and
paisatmost (14 144(y—1))) ps.

Let {i j} be the largest correlation pair in the
original probability distribution. Let f, be the number
of samples among the dIn#»n samples for which / and
/ have the same value. Then E[f,]=p,dInn Hence
PLA<(I=U/(2y)p,dlnn] <n %2, using Lemma [.

Let {/, /} be any other pair. Let f, be the number of
samples among the JIlnn samples for which / and j
have the same value. We have E[ f,] =p.dInn. Hence
for n=5, using Lemma 2 with E[ f,] upper bounded by
max(p,dInn, (1 +1/(4(y—1))) p.dInn/2), we get P[ £, =
(14+1/(4(y—~ 1)) padIinn] <n—2"%2, since p,> 1. Since
there are at most n’/2 pairs, we have that the probability
that one of the pairs other than the one with the largest
correlation agrees on more than (1 + 1/(4{(y—1))) p.dlnn
samples is at most n~ */2.

Finally, we run Algorithm B with the inputs «' =a,
v =4y and ¢5=(1+1/(4(y—1)))g, using the distribution
D'. Using the bounds on p} and p3, we conclude that
Algorithm B, with probability at least 1 —n ' * outputs
a pair whose correlation is greater than p (1 — 1/(2y))
(1 —1/(4y)) and terminates in time O((2 + )
w,,znx + [InCptl — 1290 In{gar 1 + 1i4(3 — 1)1 ] 1n3 I’l) using dln 7
samples for d = 2407%(2 + a).

5. k-WAY CORRELATION

We can modify Algorithm B to detect a k-tuple with the
largest k-way correlation. The run time of the algorithm
would then be O((k + a)(k — 1)xy?n' +k ~Diinping) fn3 5y
In the following, we present Algorithm B, to detect the
k-tuple with the largest k-way correlation.

ALGORITHM B,.

Inputs: o >0, the certainty parameter, y> 1, the
accuracy parameter, an upper bound ¢, on the second
largest A-way correlation;

191

0. Let T'=12(k+a)y*Inn

1. Let k-TUPLES be the empty hist of k-tuples and
their counts;

2. while (TRUE) do

2.1. Let <0 and F be the family of buckets of
bulbs obtained by placing all the bulbs in one
bucket.
2.2, while {(r <[ (k—1)¥In n/ln(1/g,))}) do
22.1. Obtain the sample vector (X!*',
X+ Xi+1). Split the buckets if necessary
so that all bulbs in the same bucket agree on
all the 1 + | sample vectors seen so far. Let F
denote the family of buckets so obtained.

222 te—1t+1

2.3. For each bucket of bulbs in F consider all
possible k-tuples of bulbs from the bucket. Add any
new k-tuples to the list k-TUPLES with count
initialized to one. Increase the count of the other
k-tuples by one. If the count of any k-tuple is at
least 7", output the k-tuple and exit.

THEOREM 4. Algorithm By, with probability ar least
(1 —n"%), outputs a k-tuple whose correlation is greater
than p,(1 —1/y) and terminates in time Ok +x)
(k — Doy n! * k- Dinpingd 103 0y yeith O((k + a)(k — 1)
ay’nk - mrined it 0y samples. In particular, if p,<
PV —1/7), then the algorithm B, outputs the k-tuple with the
maximum correlation with probability at least (1 —n~*).

Proof. The analysis of Algorithm B, is similar to that of
Algorithm B and hence is omitted. ||

Open Problem. s there an O(n In n) algorithm for deter-
mining the pair with the maximum correlation ?
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