
Parallel Output Sensitive Algorithms

for Combinatorial and Linear Algebra Problems

John H. Reif 1

Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129

E-mail: reif@cs.duke.edu

This paper gives output sensitive parallel algorithms whose performance

depends on the output size and are signi�cantly more e�cient than pre-

vious algorithms for problems with su�ciently small output size. Inputs

are n � n matrices over a �xed ground �eld. Let P (n) and M(n) be the

PRAM processor bounds for O(log n) time multiplication of two degree

n polynomials, and n � n matrices, respectively. Let T (n) be the time

bounds, using M(n) processors, for testing if an n� n matrix is nonsingu-

lar, and if so, computing its inverse. We compute the rank R of a matrix

in randomized parallel time O(log n + T (R) logR) using nP (n) + M(R)

processors (P (n) + RP (R) processors for constant displacement rank ma-

trices, e.g. Toeplitz matrices). We �nd a maximum linearly independent

subset (MLIS) of an n-set of n-dimensional vectors in time O(T (n) log n)

using M(n) randomized processors and we also give output sensitive algo-

rithms for this problem. Applications include output sensitive algorithms

for �nding: (i) a size R maximum matching in an n-vertex graph using

time O(T (R) log n) and nP (n)=T (R)+R M(R) processors, and (ii) a max-

imum matching in an n-vertex bipartite graph, with vertex subsets of sizes

n1 � n2; using time O(T (n1) log n) and nP (n)=T (n1) + n1M(n1) proces-

sors.

Keywords: parallel algorithms, randomized algorithms, linear systems, maxi-

mum linear independent subset, matrix rank, structured matrices, Toeplitz matri-

ces, displacement rank, output sensitive, bipartite matching.

List of symbols:

O |'oh`

0 | 'zero`

` | 'ell`

1 | 'one`

� | 'kappa`

K | 'upper case kay`

k | 'lower case kay`

� | 'times`

n | 'en`

1



2 JOHN H. REIF

F | ' cal F`

NC | ' cal NC`

RNC | ' cal RNC`

� | 'delta`

� | 'pi`

� | 'upper case Sigma`


 | 'upper case Omega`

1. INTRODUCTION

1.1. Assumptions and Preliminary De�nitions

De�nition of M(n); P (n) and T (n): We assume a �xed ground �eld F . Our

complexity bounds (time and number of processors) are stated for the arithmetic

randomized PRAM model, where in one time step each processor may execute

a test for equality, perform an operation (+;�;�;�) over the �eld F , or draw

a random element from (a speci�ed subset of) F . Recall that in the abstract, we

de�neM(n) to be the number of arithmetic processors for multiplying two matrices

of size n� n in O(log n) time; currently, M(n) is known to be O(n2:376), see [12].

P (n) denotes the number of arithmetic processors for multiplying two degree n

polynomials in O(log n) parallel time. It is known that P (n) = O(n) if the �eld F

supports an FFT of size n but is otherwise P (n) = O(n log logn) [9]. Also, recall

that T (n) is the time bound, using M(n) processors, for testing if an n� n matrix

nonsingular, and if nonsingular, computing its inverse. The best known bounds for

T (n) depend on the characteristic char(F) and cardinality card(F) of F ; they are

([23]) T (n) = O(log2 n) if char(F) = 0 or char(F) � n, and otherwise ([24]) T (n)

remains polylog (in particular, for 0 < char(F) < n, T (n) = O(log4 n)= log char(F)

if card(F) � n, and otherwise T (n) = O(log5 n)=(log char(F) log card(F))).

Parallel Complexity Classes and Bounds. NC is the class of problems

solvable in polylog time with a polynomial number of deterministic processors and

RNC is the class of problems solvable in polylog time with a polynomial number

of randomized processors. The simplest versions of our randomized algorithms are

usually Monte Carlo algorithms with a one-sided failure probability of 1=c, where

c is a constant. To improve the failure probability to 1=nk, where k is a constant,

we run (k logc n) replicates of the parallel algorithm; the overall computation fails

i� all the replicates fail; although the processor requirements increase by a factor

of (k logc n), the parallel time remains the same.

For some of our parallel algorithms, the processor requirements are stated using

Brent's slowdown theorem: for a slowdown s � 1, a parallel algorithm running in

time T with P processors runs in time dsT e with dP=se processors.

Frequently, we will need to solve a problem by sequentially executing two parallel

algorithms, the �rst with time T1 and processor bound P1, the second with time

T2 and processor bound P2. It is obvious that if T1 � T2, then we can, by a factor

of T2=T1, slow down the �rst algorithm to T2 time and thus decrease the processor

1Supported by Grants NSF/DARPA CCR-9725021, CCR-96-33567, NSF IRI-9619647, and

ONR contract N00014-99-1-0406.



PARALLEL AND OUTPUT SENSITIVE ALGORITHMS 3

use by the �rst algorithm by a factor of dT1=T2e: Otherwise, if T2 � T1, then we

can do a similar slowdown of the second algorithm.

Proposition 1.1. We can sequentially execute two parallel algorithms, the �rst

with time T1 and processor bound P1, the second with time T2 and processor bound

P2; by appropriate slowdown, in time T1 + T2 and �T1;T2(P1; P2) processors, where

�T1;T2(P1; P2) = P1(dT1=T2e) + P2 if T1 � T2, and otherwise �T1;T2(P1; P2) =

P1 + P2(dT2=T1e):

Note that �T1;T2(P1; P2) � P1 + P2, so this slowdown never yields an increased

processor bound; for our results, the time bounds are of the form T1 = O(logn) and

T2 = O(logcR): Note that if R = O(1); then the reduced processor bounds after

constant slowdown, given by �T1;T2(P1; P2), are P1 + P2= logn; and if R = O(n�);

for � > 0; then the reduced processor bounds are P1=(log
c�1 n) + P2: Thus the

improvement given by �T1;T2(P1; P2) over P1+P2 can be polylog. (To avoid unduly

complicating the statement of our results, we dropped these more exact bounds from

the abstract.)

For two integers i and j, we use [i; j] to denote the interval of integers (i; i +

1; : : : ; j � 1; j). For a matrix A, let A([i; j]; [k; `]) denote the submatrix formed

by the rows whose indices are in [i; j] and the columns whose indices are in [k; `].

Let Ai;j denote the i; j entry of A; this use of double subscripts to denote matrix

elements will be applied to all matrices considered in the paper. For our notational

convenience, the use of single subscripts will be separately and distinctly de�ned

though out this paper for speci�c matrices (i.e., single subscripts will not necessarily

denote a row or column of a matrix).

1.2. Bounded Displacement Rank Matrices

Throughout this paper, we assume indexing of rows and columns of matrices

starts at 1:

A matrix A is called Toeplitz if the matrix entries on each top-left to bottom-right

diagonal are identical, that is

Ai;j = A(i�j)+1;1 if i � j;

Ai;j = A1;(j�i)+1 otherwise.

The transpose AT of a Toeplitz matrix A is Toeplitz, and every block (i.e., con-

tiguous submatrix) of a Toeplitz matrix is Toeplitz. We will compactly represent

an n� n Toeplitz matrix in 2n space by specifying the �rst and last rows.

Kailath and his collaborators ([21, 22]) generalized Toeplitz and Hankel matri-

ces by de�ning various classes of matrices with bounded displacement rank. These

matrices can be stored compactly by representing them by their displacement gen-

erators. We say an n�n matrix has displacement rank � if it can be represented as

a sum of � products of lower triangular Toeplitz matrices Li and upper triangular

Toeplitz matrices Ui, that is as
P�

i=1 LiUi. A displacement rank � matrix can be

compactly represented by specifying the last row of each of the � triangular Toeplitz

matrices L1; : : : ; L� and the �rst row of each of the � triangular Toeplitz matrices

U1; : : : ; U�; we will call these 2� vectors the displacement generator of the displace-



4 JOHN H. REIF

ment rank � matrix (this is sometimes also known as the compact representation of

a bounded displacement rank matrix).

It is very easy, by use of polynomial product, (see [4]) to transform a bounded

displacement rank matrix A =
P�

i=1 LiUi into a sum of �0 = � + O(1) products of

upper triangular Toeplitz matrices U 0
i and lower triangular Toeplitz matrices U 0

i,

that is to rewrite A as
P�0

i=1 U
0
iL

0
i.

Note that any matrix has displacement rank at most n, and a Toeplitz matrix

has displacement rank at most two. Throughout this section, we assume that for

every input matrix with displacement rank at most �, a displacement generator is

also available, so an n� n matrix with displacement rank at most � will be stored

in space 2n�:

As an additional bene�t, the use of displacement generators gave fast algorithms

(see [4, 6, 31, 31, 3, 8, 20]) for basic operations on structured matrices.

Lemma 1.1. (see [4, 6, 32]) (a) The product of an n � n Toeplitz matrix with

an n-vector is computable in parallel time O(logn) with P (n) processors.

(b) The product of two n � n Toeplitz matrices is computable (i.e., represented as

a sum of products of upper and lower triangular (compactly represented) Toeplitz

matrices) in parallel time O(logn) with P (n) processors.

(c) The product of an n � n Toeplitz matrix with an n � n (arbitrary) matrix is

computable in parallel time O(logn) with nP (n) processors.

Proof: see [4, 6, 32].

The next lemma summarizes results on matrices with displacement rank � that

we will be using.

Lemma 1.2.

(a)[4, 6] The product of an n � n displacement rank � matrix and an n � n

displacement rank �0 matrix is computable in parallel time O(logn) using ��0P (n)

processors. The product matrix has displacement rank at most ��0 +O(1).

(b)[33, 32] Testing nonsingularity of an n � n Toeplitz matrix and, if so, com-

puting its inverse can be done in parallel time O(log2 n) using nP (n) processors.

More generally, these tasks can be done for an n�n displacement rank � matrix in

parallel time O(log2 n) using �2nP (n) processors.

1.3. Motivation

One of the main motivations in this paper is to improve on parallel algorithms for

basic linear algebra and combinatorial problems by making them output sensitive,

that is, the complexity of the algorithm is stated as a function of the output as well

as input size. For example, an output sensitive algorithm for computing the rank

R of an n � n matrix may be stated as a function of the output R as well as n:

Our output sensitive algorithms for rank have the property that on matrices with

su�ciently low rank, they are signi�cantly more e�cient than previous algorithms



PARALLEL AND OUTPUT SENSITIVE ALGORITHMS 5

Recent research has shown a surprisingly deep relation between the complexity of

solving important combinatorial problems and the complexity of basic linear algebra

problems, such as computing the rank of a matrix. Indeed, as a consequence of this

relation, combinatorial problems that are not known to be in NC, such as �nding

a maximum matching in a graph, have been solved by RNC algorithms [26]. Our

output sensitive parallel algorithms for problems in linear algebra, such as �nding

the rank of a matrix, will imply output sensitive combinatorial problems such as

bipartite matching.

1.4. Our Results

All our algorithms fail with very low likelood � 1=n
(1): However all our al-

gorithms are Monte Carlo algorithms: they when they fail they may provide no

indication of failure. In contrast, the previous algorithms were Las Vegas algo-

rithms: when they fail, but they provide an indication of failure.

In Section 2, we present an output sensitive randomized algorithm for comput-

ing the rank of a matrix. This is a basic algorithmic problem in linear algebra,

and extensive research has been conducted on parallel algorithms for it. NC

and RNC algorithms are now available [5, 29]. Given an n � n input matrix,

the most e�cient RNC rank algorithms run in T (n) time with M(n) processors

[25, 24]. Let R denote the rank of the matrix. Our RNC algorithm runs in parallel

time O(log n + T (R) logR) using �log n;T (R) logR(nP (n);M(R)) (which is at most

nP (n) +M(R)) processors.

In Section 3, we study the following classical problem: given an n-set of n-

dimensional vectors, �nd a maximum linearly independent subset (MLIS), that is,

a maximum size subset of the input vectors that is linearly independent. This

problem di�ers from the apparently easier problem of �nding a basis for the space

spanned by the input vectors, because a solution for the basis problem may contain

arbitrary vectors from the space spanned by the input vectors, whereas a solu-

tion to the MLIS problem cannot have vectors other than the input vectors. The

importance of the MLIS problem comes from its combinatorial applications (see be-

low). The previous best RNC algorithms for the MLIS problem are the T (n)-time

and nM(n)-processor algorithm of [5, 23] and the O(T (n) log2 n)-time and M(n)-

processor algorithm of [13]. Our new algorithm for MLIS builds on the earlier work

in [13], and runs in randomized parallel time O(T (n) logn) using M(n) processors,

but is not output sensitive.

In Section 4, we present an output sensitive randomized algorithm for �nding

a MLIS of rows in an n � n matrix of rank R that run either in parallel time

O(log n+T (R)) using �log n;T (R)(nP (n); nM(R)) (which is at most n(P (n)+M(R)))

processors, or in parallel time O(T (R) logn) using nP (n)=T (R) +R M(R) proces-

sors, assuming the rank is known (If the rank is not known, then the time bounds

of these algorithms only increase by an additive factor of at most O(T (R) logR),

without increase in the processor bounds.).

The improved e�ciency of our output sensitive randomized algorithms for �nding

a MLIS yields improved parallel algorithms for a number of other signi�cant alge-

braic and combinatorial problems. An immediate application is to the maximum

matching problem for an n-vertex graph with a small matching of size R. We show



6 JOHN H. REIF

that the maximum matching can be computed in the same parallel bounds as our

MLIS algorithm for an n� n matrix of rank R.

Another application is to the problem of computing matchings and 
ows in an

n-vertex bipartite graph G = (U; V;E) with vertex partition U; V . The case when

one vertex subset, say U , is substantially smaller than the other has been studied

by [17] and by [2]. This case arises in a number of applications. For example,

[17] mentioned the following applications and gave improved algorithms, where the

improvements are solely based on the fact that these problems may be modeled by

bipartite graphs having one vertex subset of the bipartite partition substantially

smaller than the other vertex subset: multiprocessor scheduling with release times

and deadlines, a subclass of 0{1 integer programming problems called provisioning

or shared �xed cost problems, and the problems of maximum subgraph density,

and weighted subgraph density. Let n1 = jU j, n2 = jV j, where n1 � n2. Our

Corollary 4.2 shows that a maximum matching can be computed here in randomized

parallel time O(log n+T (n1) logn1) using �log n;T (n1)(nP (n); nM(n1)) (which is at

most n(P (n) +M(n1))) processors, or in randomized parallel time O(T (n1) logn)

using nP (n)=T (n1) + n1 M(n1) processors. This is much improved from the most

processor e�cient RNC algorithm, namely, the O(T (n) logn)-time and nM(n)-

processor algorithm in [16].

Yet other applications are to an output sensitive RNC algorithm for computing

maximum vertex weighted matchings (where the weights may be encoded in binary),

see [26], and to an output sensitiveRNC algorithm for the two-processor scheduling

problem, see [39].

We also consider a frequently occurring class of matrices, namely those with

small displacement rank, and gives substantially more e�cient randomized parallel

algorithms for the rank and MLIS problems on these matrices.

2. OUTPUT SENSITIVE RNC ALGORITHMS FOR RANK

In the rest of the paper, we use L and U to denote a unit lower triangular

n� n Toeplitz matrix, and a random unit upper triangular n� n Toeplitz matrix,

respectively. In particular, L2;1; L3;1; : : : ; Ln;1 are (n� 1) random numbers chosen

independently from any �xed subset of size nO(1) of the �eld, and L is the matrix

with

Li;j = L1+(i�j);1 if i > j

Li;j = 1 if i = j

Li;j = 0 otherwise,

U1;2; U1;3; : : : ; U1;n are (n�1) random random numbers chosen independently from

a �eld, and U is the matrix with

Ui;j = U1;(j�i)+1 if j > i

Ui;j = 1 if i = j

Ui;j = 0 otherwise.

We consider the following RNC algorithm of [25] for computing the rank of an

n�n matrix A: Let L and U be as above. Compute the product H = AL followed

by the product G = UH in time O(logn) with nP (n) processors. Let GR be the

leading principal R�Rminor ofG, i.e., the submatrix of G indexed by rows 1; : : : ; R



PARALLEL AND OUTPUT SENSITIVE ALGORITHMS 7

and by columns 1; : : : ; R. If detGR 6= 0, then clearly rank (A) � R. If detGR = 0,

then with probability � 1� 1=n
(1); A has rank less than R. This follows from the

proof of Theorem 2 of [25], noting that the random elements of L;U are chosen over

over a �xed set of polynomial size, so the Schwartz-Zippel Lemma [40, 38] insures

a failure probability � 1=n
(1).

To �nd the rank, a binary search over i = 1; : : : ; n is executed to �nd the maxi-

mum i such that detGi is nonzero (The binary search can be replaced by quicker

methods, see [25, 24], but these methods do not seem to yield output sensitive

parallel algorithms).

To obtain an output sensitive RNC algorithm for rank (i.e., one whose processor

requirements decrease signi�cantly when the matrix has su�ciently low rank), we

replace the binary search by an \exponential search" with i = 20, 21, 22, 23, : : :,

until we �nd an ` with detG2` = 0. If we do not �nd such an `, then the matrix A

is nonsingular, so the rank is n. If we do �nd such an `, then with probability � 1=c

the matrix A is singular, and has rank < `. Then we do a binary search to �nd

the rank R in the interval 2`�1 to 2`. Each test for zero determinant on an R�R

matrix is done in T (R) time with M(R) processors. For an input matrix with rank

R, ` equals dlog(R + 1)e, so the parallel time for the two searches is O(logR) times

the time for determinant computation. Hence, with constant slowdown, the total

parallel time for the determinant computations is O(T (R) logR) and the processor

requirement is M(R). By Proposition 1.1, we have

Theorem 2.1. There is an RNC algorithm for computing the rank R of an n�n

matrix, with probability at least 1� 1=n
(1), in parallel time O(logn+ T (R) logR)

using �logn;T (R) logR(nP (n);M(R)) processors, and O(n log2 n) random bits.

2.1. Application to Matching

Computing the rank of a matrix has many algebraic and combinatorial applica-

tions. Consider the problem of �nding the cardinality of a maximum matching in

a graph (possibly nonbipartite). Let p be a prime � n2. We employ the method of

[28], and draw m independent random numbers, x1; : : : ; xm, from the �eld Zp, one

number per edge. Then we construct the skew symmetric matrix A with

Ai;j = xe if e = fi; jg and i < j

Ai;j = �xe if e = fi; jg and i > j

Ai;j = 0 otherwise,

and compute its rank. With probability at least 1 � n=p, the rank equals the

cardinality of a maximum matching.

Corollary 2.1. Let G be an n-vertex, m-edge graph, and let R denote the size of

a maximum matching in G. R can be computed, with probability � 1�1=n
(1), by a

randomized PRAM in parallel time O(logn+T (R) logR) using �logn;T (R) logR(nP (n);M(R))

processors with integer arithmetic operations and O(m logn+n log2 n) random bits.

2.2. Improvements for Bounded Displacement Rank Matrices



8 JOHN H. REIF

We now assume the input matrix A to our rank algorithm has size n � n and

displacement rank at most �, so A is given as a sum of � products of upper and

lower triangular (compactly represented) Toeplitz matrices, following our de�nition

of displacement rank given in subsection 1.2. The two n� n matrices required for

our parallel algorithm for rank are AL and G = UH . The matrix AL is obtained

by multiplying the n � n matrix A of displacement rank at most � by an n � n

lower triangular Toeplitz matrix of displacement rank L at most 1. The matrix

G = UH is obtained by multiplying an n � n upper triangular Toeplitz matrix of

displacement rank U at most 1 by the n�n matrix A of displacement rank at most

�.

Recall (see [4]) that polynomial product can be used to transform a bounded

displacement rank matrix A =
P�

i=1 LiUi to a sum of �0 = � + O(1) products

of upper triangular Toeplitz matrices U 0
i and lower triangular Toeplitz matrices

U 0
i, that is to rewrite A as

P�0

i=1 U
0
iL

0
i. By Lemma 1.2, these matrix products

take parallel time O(log n) using �P (n) processors. The product of two lower (or

upper, respectively) triangular Toeplitz matrices is a lower (or upper, respectively)

is a triangular Toeplitz matrix. It follows (following our de�nition of displacement

rank given in subsection 1.2), that the matrix H = AL = (
P�0

i=1 U
0
iL

0
i)L has

displacement rank at most � + O(1), since the lower triangular Toeplitz matrix

L is multiplied with A from the right. It also follows that the matrix G = UH

= H(
P�0

i=1 U
0
iL

0
i) has displacement rank at most �, since the lower triangular

Toeplitz matrix U is multiplied with A from the left.

Also, each of the O(logR) stages of binary search requires a test for a nonsingular

submatrix which costs parallel time T (R) using �2RP (R) processors. Thus the total

parallel time for computing the rank remains O(logn + T (R) logR), but the pro-

cessor requirements are reduced, from �log n;T (R) logR(nP (n);M(R)) in the general

case, to �log n;T (R) logR(�P (n); �
2RP (R)) (which is at most O(�P (n) + �2RP (R)))

in the displacement rank � case.

This implies:

Theorem 2.2. Given an n � n displacement rank � matrix along with a dis-

placement generator of rank �, the rank R is computable in parallel time O(logn+

T (R) logR) using �log n;T (R) logR(�P (n); �
2RP (R)) processors.

3. AN RNC ALGORITHM FOR A MAXIMUM LINEARLY

INDEPENDENT SUBSET OF VECTORS

In this section we describe an improvement to Eberly's RNC MLIS algorithm

for computing a maximum linearly independent subset of an n-set of n-dimensional

vectors [13]. Our algorithm runs in randomized parallel time O(T (n) logn), com-

pared to O(T (n) log2 n) time for the algorithm of [13]; both algorithms use M(n)

processors. For notational convenience, we assume that n is an integer power of

two, that is n = 2j , for some integer j.

The MLIS algorithm of [13] uses a divide and conquer strategy, which can be

described (thanks to Eberly [15] for this succinct description) as follows:

Input An n-set S of n-dimensional vectors.



PARALLEL AND OUTPUT SENSITIVE ALGORITHMS 9

[1] Partition the input set of n vectors into two sets of vectors S1; S2 each of size

n=2.

[2] Linearly transform the set of vectors S2 into a set S0
2 so that all vectors of S2

that linearly depend on the set of vectors S1 are mapped to the zero vector, and

all other vectors of S2 are mapped to nonzero vectors.

[3] Then the algorithm is applied recursively to both sets of vectors S1; S
0
2 in parallel.

Output Those vectors of S that are not mapped to the zero vector (which form a

maximum linearly independent subset of S).

In step [2], all linear combinations of the vectors in S1 are annihilated by the

linear transformation being applied to S2. (So, for example, if S1 consists of two

linearly independent vectors, x1 and x2, and S2 consists of two vectors x3 and

x3 + x1, where x1; x2 and x3 are linearly independent vectors, then the linear

transformation being applied to S2 will map both vectors in S2 to the same vector.)

Computing this linear mapping in step [2] requires computation of the rank of an

n�n matrix, computation of the inverse of an n�n matrix, �nding a median vector

in the �nal maximum linearly independent subset, and partitioning the input set

using that vector. Then the algorithm is applied recursively to both halves in

parallel, with an O(log n) depth of the recursion. Each level of the recursion runs

for O(T (n) logn) time, giving an overall time of O(T (n) log2 n). For a �xed level

of the recursion, say level k 2 [0; O(logn)], let ni be the number of nonzero vectors

in the ith block of the partition, where i 2 [1; 2k]. There are two bottlenecks in the

computation of [13] at level k in the computation that resulted in a running time

of O(T (n) logn):

(1) computing the rank of a matrix, and

(2) binary searching for the median vector in the �nal maximum linearly inde-

pendent subset.

The �rst bottleneck does not a�ect our algorithm since we use the T (n)-time

M(n)-processor rank algorithm of [25, 24]. We circumvent the second bottleneck

by not computing the median vector. Instead, we simply partition the input set

(at the (top) level 0 of recursion) into two blocks by putting the �rst n=2 input

vectors in the �rst half, and putting the last n=2 input vectors in the other half.

Again, for each i 2 [1; 2k], let ni be the number of nonzero vectors in the ith block

of the partition at level k in the computation and let ri be the rank of that ith

block. Consequently, at level k of our recursion, the resulting 2k di�erent blocks

of the partition of the input vectors may have widely varying ranks ri (i 2 [1; 2k]),

i.e., each ri may have any value from zero to n=2k. However, we claim that the

number of processors required at the kth level of the recursion is still M(n). This

follows because the sum of the number of vectors over all blocks of the partitions,

is
P2k

i=1 ni �
P2k

i=1 n=2
k � n, hence the total processor bound is

2kX

i=1

M(ni) � 2kM(n=2k) �M(n):

The remaining computations at level k (partitioning the input set using that vector,

and inverse of an n� n matrix) run in time at most T (n) using
P2k

i=1O(M(ni)) �

O(M(n)) processors. By constant slowdown, we have:



10 JOHN H. REIF

Theorem 3.1. Given an n-set of n-dimensional vectors, the lexicographically

�rst maximum linearly independent subset (MLIS) is computable by a randomized

parallel algorithm in time O(T (n) logn) using M(n) processors.

4. OUTPUT SENSITIVE RNC ALGORITHMS FOR A

MAXIMUM LINEARLY INDEPENDENT SUBSET OF VECTORS

To �nd a maximum set B of linearly independent rows in the matrix A, the

RNC algorithm of [5] computes the ranks R(k) of the n submatrices A(k) of A,

where A(k) consists of the �rst k rows of A, and the algorithm adds row k to B i�

R(k) > R(k�1). Note that B is the lexicographically �rst maximum independent

set of rows.

We improve the processor e�ciency of this algorithm and make it output sensi-

tive. Recall that for any matrix A, we let Ai;j denote the i; j entry of A. First, we

construct the random triangular n� n Toeplitz matrices L and U , as in Section 2.

Let H = AL and let H(k) be obtained from H by replacing rows (k + 1); : : : ; n by

zero rows. For k = 1; : : : ; n, we need to compute G(k) = UH(k). Consider the i; j-th

entry of G = G(n); this entry equals the inner product of the i-th row of U and the

j-th column of H . Let V i;j denote the n-vector whose `-th entry is Ui;`H`;j . Let

Si;j denote the n-vector of pre�x sums of V i;j , that is the k-th entry of Si;j equals

the sum of the �rst k entries of V i;j . For each k = 1; : : : ; n, notice that the i; j-th

entry of G(k) equals
Pk

`=1 Ui;`H`;j = the sum of the �rst k entries of V i;j ; which is

the k-th entry of Si;j , that is:

Proposition 4.1. For k = 1; : : : ; n, for each 1 � i; j � n; the i; j-th entry of

G(k) equals the k-th entry of Si;j :

For a �xed pair i; j, we compute V i;j in parallel time O(logn) using n= logn

processors, and the pre�x sum Si;j can also be computed in parallel time O(logn)

using n= logn processors, by the algorithm of Ladner and Fischer [27] (also see Reif

[36] and J�aJ�a [19]).

Assume that the rank R of A is known. (Otherwise, it can be computed using

the algorithm of Section 2.) Let G
(k)
R be the R� R principal minor of G(k). Since

for each k = 1; : : : ; n, all the larger principal minors of G(k) are singular, we need

to focus only on computing G
(k)
R : Hence, we need to compute V i;j and Si;j only

for the pairs i; j with i 2 [1; R] and j 2 [1; R]. These Si;j give us all the principal

minors G
(k)
R , for k = 1; : : : ; n.

Next, for each k = 1; : : : ; n, we compute the rank R(k) of each submatrix G
(k)
R

in parallel, using the T (n)-time and M(R)-processor algorithm of [24]. The max-

imum independent set of rows B will contain row k i� R(k) > R(k�1). A parallel

time of O(T (R)) is achieved by the above computation with nM(R) processors, by

running n copies of the R-rank algorithm in parallel. In addition, we must do the

multiplication of A by Toeplitz matrix L, which takes O(logn) time using nP (n)

processors. By Proposition 1.1 and constant slowdown, we have total parallel time

O(log n+ T (R)) using �logn;T (R)(nP (n); nM(R)) processors.

We can obtain a time-processor trade o� from the above computation; we can

decrease processors while increasing parallel time. For q = 1; : : : ; R in parallel,



PARALLEL AND OUTPUT SENSITIVE ALGORITHMS 11

we �nd the q-th member of the (lexicographically �rst) maximum independent

set of rows B as follows. We execute a binary search over the submatrices G
(k)
R ,

k = 1; : : : ; n, looking for the �rst k such that G
(k)
R has rank q. For each value of

q, this takes parallel time O(logn log2R) using M(R) processors, with a total of

RM(R) processors for the R values of q; summed over q = 1; : : : ; R. Notice that the

total number of submatrices G
(k)
R that we examine is at most O(R logn), and we

only examine in parallel at most O(R) submatrices G
(k)
R at a time. Hence, rather

than computing all the submatrices G
(k)
R (k 2 [1; n]) in advance, we compute the

required G
(k)
R \on the 
y" in parallel time O(logR) using RP (R) processors per

submatrix, by utilizing precomputed information.

In the precomputation, the submatrixH([1; n]; [1; R]) is row-wise partitioned into

dn=Re distinct R�R submatrices Hi, where Hi = H([(i�1)R+1; iR]; [1; R]). Sim-

ilarly, we column-wise partition the submatrix U([1; R]; [1; n]) into dn=Re distinct

R�R submatricesUi, where Ui = U([1; R]; [(i�1)R+1; iR]), for i 2 [1; dn=Re]:Then

we compute dn=Re distinct R�R submatrices Ei by multiplying the R�R subma-

trices Ui and Hi, to form the product Ei = UiHi. Finally, for i = 1; : : : ; dn=Re, we

compute dn=Re pre�x sums F (i) =
Pi

j=1 Ej of the R�R submatrices Ej . Since the

submatrices Ui in the products UiHi are Toeplitz, computing each of the Ei costs

parallel time O(logR) usingRP (R) processors, and computing the pre�x sums costs

parallel time O(log n) using nR= logn processors, so the overall precomputation

takes at most parallel time O(logn) using nR= logn+(dn=Re)RP (R)� O(nP (R))

processors.

Recall that H(k) is obtained from H by replacing rows (k + 1); : : : ; n by zero

rows, and that row r in Hi corresponds to row r+(i�1)R in H . Hence to compute

G
(k)
R , for any k 2 [1; n], �x i = bk=Rc and construct the R�R submatrix H

(k)
i from

Hi by replacing each row r by a zero row, where r + (i � 1)R 2 f(k + 1); : : : ; ng:

Then we multiply the R � R triangular Toeplitz submatrix Ui by H
(k)
i , and add

the product to F (i�1). Since

G
(k)
R = UiH

(k)
i +

i�1X

j=1

UjHj = UiH
(k)
i +

bk=Rc�1X

j=1

Ej = UiH
(k)
i + F (i�1)

= Ubk=RcH
(k)

bk=Rc + F (bk=Rc�1)

it follows that

Proposition 4.2. For k = 1; : : : ; n, G
(k)
R = Ubk=RcH

(k)

bk=Rc + F (bk=Rc�1).

Computing one submatrix G
(k)
R takes parallel time O(logR) using RP (R) pro-

cessors, and so the total processor bound is R2P (R) for all the O(R) submatri-

ces G
(k)
R that we examine in parallel. This is dominated by the R rank com-

putations on the G
(k)
R , which can be executed in parallel, in time O(T (R)) us-

ing R M(R) processors. The multiplication of A by Toeplitz matrix L has cost

time O(log n) using nP (n) processors. By Proposition 1.1 and constant slow-

down, we have total parallel time O(logn + T (R) logn) � O(T (R) logn) using

�log n;T (R) logn(nP (n); RM(R)) � nP (n)=T (R) + R M(R) processors.



12 JOHN H. REIF

Summarizing these two results, we have:

Theorem 4.1. Let A be an n�n matrix whose rank R is known. (If the rank is

not known, then the time bounds increase by an additive factor of at most O(log3R),

without increase in the processor bounds.) There are RNC algorithms for computing

the lexicographically �rst maximum independent set of rows of A, with probability

at least 1� 1=n
(1) using O(n log2 n) random bits, either

(a)in parallel time O(log n+ T (R)) using �logn;T (R)(nP (n); nM(R)) processors,

or

(b)in parallel time O(T (R) logn) using nP (n)=T (R) +R M(R) processors.

4.1. Combinatorial Applications

The above algorithm has several combinatorial applications. Consider the prob-

lem of �nding the vertex set of a maximum matching in a graph, i.e., a largest

vertex subset B such that the subgraph induced by B has a perfect matching. We

�rst construct the random skew-symmetric matrix A, as described at the begin-

ning of Section 2. Then the vertex set of a maximum matching corresponds to a

maximum linearly independent set of rows of A (see Lovasz's Theorem in [35]) and

hence can be found by the above algorithm.

This algorithm is useful for improving the e�ciency ofRNC matching algorithms

when the size of the maximum matching is substantially smaller than the number

of vertices. We �rst run the above algorithm as a preprocessing step to �nd the

vertex set B. Suppose B is of size jBj = R. Then we run the algorithm of [16]

(which improves [30] ) to �nd a perfect matching on the subgraph induced by B in

parallel time O(T (R) logR) using RM(R) processors.

Corollary 4.1. Let G be an n-vertex m-edge graph, and let R denote the size

of a maximum matching in G. Then a randomized PRAM (with integer arithmetic

operations and O(m log n+ n log2 n) random bits) can compute, with probability at

least 1� 1=n
(1),

(i)the vertex set of a maximum matching of G in parallel time O(logn + T (R))

using �logn;T (R)(nP (n); nM(R)) processors, or in parallel time O(T (R) logn) using

nP (n)=T (R) +RM(R) processors, and

(ii)a maximum matching in parallel time O(logn+T (R) logR) using �log n;T (R)(nP (n); nM(R))

processors, or in parallel time O(T (R) logn) using nP (n)=T (R) +R M(R) proces-

sors.

Our parallel maximum linearly independent set algorithm also gives improve-

ments for computing maximum matchings in certain classes of bipartite graphs.

Consider an n-vertex bipartite graph with vertex partition (U; V ) where one vertex

set of the partition, say U , is substantially smaller than the other. Let n1 = jU j

� n2 = jV j. Observe that the maximum size R of a matching in G is � n1.

Hence the (n1 + n2) � (n1 + n2) adjacency matrix of a bipartite graph may be

replaced by its upper right n1 � n2 submatrix. Thus we can apply our parallel



PARALLEL AND OUTPUT SENSITIVE ALGORITHMS 13

maximum linearly independent set algorithm to this submatrix, with R = n1; and

the maximum matching can be computed using the algorithm of [16]. Note that

since the adjacency matrix is replaced by its upper right n1 � n2 submatrix, we

reduce the processor bound from nP (n) to n1P (n) to do the multiplication of A by

Toeplitz matrix L, (and the precomputations of our algorithm) in time O(logn):

Thus, with constant slowdown, we can in this case replace nP (n) with n1P (n) and

also substitute n1 in place of R in the bounds of Corollary 4.1, yielding:

Corollary 4.2. Let G = (U; V;E) be an n-vertex bipartite graph with n1 = jU j

� n2 = jV j. Then a randomized PRAM (with integer arithmetic operations) can

compute, with probability at least 1� 1=n
(1),

(i)the vertex set of the maximum matching in parallel time O(logn+ T (n1)) us-

ing �log n;T (n1)(nP (n); nM(n1)) processors, or in parallel time O(T (n1) logn) using

nP (n)=T (n1) + n1M(n1) processors, and

(ii)a maximum matching in parallel time O(logn+T (n1) logn1) using �logn;T (n1)(nP (n); nM(n1))

processors, or in parallel time O(T (n1) logn) using nP (n)=T (n1) + n1 M(n1) pro-

cessors.

4.2. Improvements for matrices with small displacement rank

We now give reduced processor requirements (while keeping the time bounds

the same) for �nding a maximum linearly independent subset of vectors, in the

displacement rank � case. We assume the input matrix A has displacement rank

at most �, so A is given as a sum of � products of upper and lower triangular

(compactly represented) Toeplitz matrices, following our de�nition of displacement

rank given in subsection 1.2. Recall that by Lemma 1.2, testing nonsingularity of

an R�R displacement rank � matrix and, if so, computing its inverse can be done

in parallel time O(log2R) using �2R P (R) processors.

The submatrices of A with consecutive rows and consecutive columns have dis-

placement rank at most �+O(1) (in fact, can be shown to have displacement rank

at most �+4). All the intermediate matrices constructed in the maximum linearly

independent subset algorithm are such submatrices of A, which are in some cases

multiplied on either side by a triangular Toeplitz matrices. Thus all the interme-

diate matrices constructed in the algorithm have displacement rank at most O(�).

Hence these matrices can be stored compactly in O(�n) space, instead of the n2

space required in the general matrix case. Also, we can reduce the processor bounds

for the R�R matrix products and singularity tests to be executed; these processor

bounds reduce, from M(R) in the general matrix case, to �2R P (R) processors for

matrices of displacement rank at most �. We conclude that to �nd a maximum

linearly independent subset of vectors, we can improve on Theorem 4.1 as follows:

1. take time O(log n + log2R) and achieve a processor bound decrease, from

�log n;T (R) (nP (n); nM(R)) in the general matrix case, to �logn;log2 R (�P (n); �2nR P (R))

(which is at most O(�(P (n) + �nR P (R)))) in the displacement rank � case, or

2. take time O((log n) log2R), and achieve a processor bound decrease, from

nP (n)= log2R +R M(R) in the general matrix case, to �P (n)= log2R +�2R2 P (R)

in the displacement rank � case.



14 JOHN H. REIF

This implies:

Theorem 4.2. Given an n�n displacement rank � matrix along with a displace-

ment generator of rank �, a maximum linearly independent subset of the rows is

computable in either

(a)parallel time O(log n + log2R) using �logn;log2 R(�P (n); �
2nR P (R)) proces-

sors, or

(b)parallel time O((log n) log2R) using �(P (n)= log2 R+ �R2 P (R)) processors.

These processor bounds can be further substantially improved by the results of

Reif [37] in the case where the entries of the input matrices are rational numbers

with a bounded number of bits.

5. ACKNOWLEDGMENTS

The problems and applications considered in this paper were proposed by Joseph

Cheriyan and he made invaluable contributions to the presentation of these re-

sults. The author wishes to thank Deganit Armon, Shenfeng Chen, Zhiyong Li,

and Hongyan Wang, insightful edits and comments on the paper, and Ken Robin-

son for excellent editorial assistance.

REFERENCES

1. A.V.Aho, J.E.Hopcroft and J.D.Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

2. R.K.Ahuja, J.B.Orlin, C.Stein and R.E.Tarjan, Improved algorithms for bipartite network 
ow

problems, Tech. Report, Sloan School of Management, M. I. T., Cambridge, MA, 1990.

3. G.S.Ammar and W.G.Gragg, Superfast solution of real positive de�nite Toeplitz systems,

SIAM J. Matrix Anal. Appl. 9 (1988), 61{76.

4. R.R.Bitmead and D.O.Anderson, Asymptotically fast solution of Toeplitz and related systems

of linear equations, Linear Algebra and its Applications 34, (1980), 103{116.

5. A.Borodin, J.von zur Gathen and J.Hopcroft, Fast parallel matrix and GCD computations,

Information and Control 52 (1982), 241{256.

6. R.P.Brent, F.G.Gustavson, and D.Y.Y.Yun, Fast solution of Toeplitz systems of equations and

computation of Pad�e approximants, J. Algorithms 1 (1980), 259{295.

7. W.S.Brown and J.F.Traub, On Euclid's Algorithm and the Theory of Subresultants, J. ACM

18 (1971), 505{514.

8. J.Chun and T.Kailath, Divide-and-conquer solution of least-squares problems for matrices

with displacement structure, SIAM J. Matrix Anal. Appl. (submitted).

9. D. G. Cantor and E. Kaltofen, On fast multiplication of polynomials over arbitrary rings, Acta

Inf. 28 (1991), 697{701.

10. J.Cheriyan, Random weighted Laplacians, Lov�asz minimum digraphs and �nding minimum

separators, Proc. 4th ACM-SIAM Symposium on Discrete Algorithms (1993), 31{40.

11. J.Cheriyan, Finding minimum digraph X-Y separators and minimum bipartite vertex cov-

ers in randomized O(M(n)) time, Preprint, Department of Combinatorics & Optimization,

University of Waterloo, February 1993.

12. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Sym-
bolic Comp., 9 (1990), 23{52.

13. W. Eberly, E�cient parallel independent subsets and matrix factorizations, Proc. 3rd IEEE

Symposium on Parallel and Distributed Processing, (1991), 204{211.



PARALLEL AND OUTPUT SENSITIVE ALGORITHMS 15

14. W. Eberly, On e�cient band matrix arithmetic, Proc. 33rd Annual IEEE Symposium on

F.O.C.S., (1992), 457{463.

15. W. Eberly, personal communication, (1999).

16. Z. Galil and V. Pan, Improved processor bounds for combinatorial problems in RNC, Combi-

natorica 8 (1988), 189{200.

17. D.Gus�eld, C.Martel, D.Fernandez-Baca, Fast algorithms for bipartite network 
ow, SIAM J.

Computing 16 (1987), 237{251.

18. A. W. Ingleton and M. J. Pi�, Gammoids and transversal matroids, J. Combinatorial Theory

(B) 15 (1973), 51{68.

19. J. J�aJ�a, An Introduction to Parallel Algorithms, Addison-Wesley (1992).

20. T.Kailath and J.Chun, Generalized Gohberg-Semencul formulas for matrix inversion, Op.

Theory: Advan. Appl. 40 (1989), 231{246.

21. T.Kailath, S.-Y.Kung, and M.Morf, Displacement ranks of matrices and linear equations, J.

Math. Anal. Appl. (1979), 395{407.

22. T.Kailath, A.Viera, and M.Morf, Inverses of Toeplitz operators, innovations, and orthogonal

polynomials, SIAM Rev. 20 (1978), 106{119.

23. E.Kaltofen and V.Pan, Processor e�cient parallel solution of linear systems over an abstract

�eld, Proc. 3rd Annual ACM Symposium on Parallel Algorithms and Architectures, (1991),
180-191.

24. E.Kaltofen and V.Pan, Processor-e�cient parallel solution of linear systems II The positive

characteristic and singular cases, Proc. 33rd Annual IEEE Symposium on F.O.C.S. (1992),

714{723.

25. E.Kaltofen and B.D.Saunders, On Wiedemann's method of solving sparse linear systems, in

Proc. AAECC-5, Lecture Notes in Computer Science 536, 216{226, Springer-Verlag, 1991.

26. R.M.Karp, E.Upfal and A.Wigderson, Computing a perfect matching is in random NC, Com-

binatorica 6 (1986), 35{48.

27. Ladner, R.E., and M.J. Fischer, Parallel pre�x Computation, JACM 27(4) (1980), 831{838.

28. L.Lov�asz, On determinants, matchings and random algorithms, Fundamentals of Computing

Theory, L.Budach, Ed., Akademia Verlag, Berlin, (1979).

29. K.Mulmuley, A fast parallel algorithm to compute the rank of a matrix over an arbitrary �eld,

Combinatorica 7 (1987), 101{104.

30. K.Mulmuley, U.V.Vazirani and V.V.Vazirani, Matching is as easy as matrix inversion, Com-

binatorica 7 (1987), 105{113.

31. B.R.Musicus, Levinson and fast Choleski algorithms for Toeplitz and almost Toeplitz matrices,

Internal Report, Lab of Elec., MIT (1981).

32. V.Pan, New e�ective methods for computations with structured matrices, Tech. Report 88{28,

Computer Science Dept., State Univ. of New York at Albany, Albany, NY.

33. V.Pan and J.H.Reif, Some polynomial and Toeplitz matrix computations, Proc. 28th Annual

IEEE Symposium on F.O.C.S., (1987), 173{184.

34. A.Pothen, H.D.Simon and K.Liou, Partitioning sparse matrices with eigenvectors of graphs,

SIAM J. Matrix Anal. Appl. 11 (1990), 430{452.

35. M.O.Rabin and V.V.Vazirani, Maximum Matchings in General Graphs through Randomiza-

tion, J. Algorithms 10 (1989), 557-567.

Reif [36]

36. J.H.Reif, ed., Synthesis of Parallel Algorithms, Morgan Kaufmann (1993).

37. J.H. Reif, E�cient Parallel Factorization and Solution of Structured and Unstructured Linear

Systems, to appear in Journal of Computer and System Sciences, 2000.

38. J.T.Schwartz, Fast probabilistic algorithms for veri�cation of polynomial identities, J. ACM

27 (1980), 701{717.

39. U.V.Vazirani and V.V.Vazirani, The two-processor scheduling problem is in R-NC, Proc. 17th

Annual ACM S.T.O.C., (1985), 11{21.

40. R. E. Zippel, Probabilistic algorithms for sparse polynomials, in "Proc. EUROSAM '79",

Lecture Notes in Computer Science 72 (1991), 216{226.


