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1 Introduction

The design of efficient algorithms is a complex and creative task, requiring sophis-
ticated knowledge both of general-purpose algorithm design techniques and of
special-purpose mathematical facts related to the problems being solved. While
the process of algorithm discovery is certain to be exceedingly difficult to mech-
anize in general, there is much to be learned—both about algorithms and about
programming—from the study of the structure of derivations of complex algo-
rithms.

Program manipulation techniques provide a natural way of both explaining
and reasoning about algorithms. Conventional proofs may succeed in convincing
a reader of the correctness of an algorithm without supplying any hint of why
the algorithm works or how it came about. A derivation, on the other hand, is
analogous to a constructive proof—it takes a reader step by step from an initial
algorithm that also serves as a specification of the problem to an efficient im-
plementation that may be complex and structurally opaque. Our approach is to
explicate algorithms by making design decisions explicit as derivation steps, even
when they may have no obvious structural manifestation in the code. A long-term
scientific goal is to understand the relative explicatory merits of derivation steps
and structural abstraction. Consideration of this goal may lead, for example, to
better abstractions with respect to to the derivation steps themselves.

Specifications and Algorithms. In this paper we demonstrate how program
transformation techniques can be used to derive efficient graph algorithms from
intuitive mathematical specifications. These specifications are simple combina-
torial definitions that are executable. That is, we choose to interpret them as
algorithms, even though—as algorithms—they might be inefficient. To illustrate
how simple these specifications can be, we give here our specification of the path
predicate for directed graphs.

Let G = 〈V,Adj 〉 be a directed graph with vertices V and adjacency-set
function Adj : V → P (V ). We define the predicate path(u, v) to hold when
there is a path in G from vertex u to vertex v. Leaving the graph G as an
implicit parameter, we can write:

path(u, v) ⇐false (u = v) or (∃w ∈ Adj(u))path(w, v))

There is a path from u to v if they are the same or there is a vertex adjacent to
u from which there is a path to v.

This is a closure definition. Closure definitions are made with respect to an
accumulation operation, which is a semilattice with identity over a finite domain.
In this example, the semilattice is disjunction; the identity is false, and the finite
set is the two truth values. Intuitively, whenever a “recursive call” to path(u, v)
is made for a pair 〈u, v〉 that has already been calculated or is already being
calculated, then the identity false should be the result value. Since the set of
vertices is finite, this assures termination of all evaluations of path. (Details on
the semantics of closure definitions are in the next section.)
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With this definition, we obtain a straightforward specification of the strongly-
connected components of a directed graph. Two vertices r and s are in the same
strongly-connected component if there is a path from r to s and a path from s
to r. The strongly-connected components of G are thus the elements of the set
strong . Again leaving the graph as an implicit parameter, we have:

strong ⇐ { {s ∈ V |path(r, s) ∧ path(s, r)} | r ∈ V } .
Taken naively, these two definitions are a cubic-time algorithm for computing
the strongly-connected components of a directed graph.

Outline of Paper. In Section 2 of this paper we derive a series of simple
algorithms leading to a family of depth-first search algorithms. These are gener-
alized and utilized in quite different ways in the strong-connectivity algorithms
of Section 3 and in the biconnectivity algorithms of Section 4. These algorithms
were discovered by Hopcroft and Tarjan and are presented in [20] and [1] in
conventional fashion. The variant of Tarjan’s strong-connectivity algorithm that
we derive in Section 4 is attributed to Kosaraju and is similar to the algorithm
sketched in [2]. (Similar techniques can be used to derive the almost-linear-time
algorithms of [21] for flow-graph reducibility.) In the conclusion we discuss fur-
ther the implications of this work. Features of the algorithmic language we use
and the various program manipulation techniques are presented along the way.

Combinatorial Lemmas and Program Transformations. The derivations
suggest ways in which programming and algorithm-design techniques separate
from domain-specific knowledge. While the depth-first algorithms we derive de-
pend on deep combinatorial properties of depth-first spanning forests, this knowl-
edge can be expressed in the form of a small number of lemmas. These lemmas
are used to justify initial specifications of program components and to estab-
lish preconditions in later program derivation steps. It is theoretically possible
to prove the lemmas entirely in the language of a programming logic, but the
resulting account of the algorithms would likely be awkward and unnatural. We
have thus sought an appropriate balance in our use of facts from graph the-
ory and our use of general-purpose program derivation techniques. We could
hypothesize that, in many algorithm derivations, much of the difficulty comes
from the diversity of this domain-specific knowledge and its employment, rather
than from the diversity of programming-specific knowledge. That hypothesis is
supported by these derivations in the sense that a relatively small set of pro-
gram manipulation rules suffices for most of the steps. But these small steps are
generally used in aggregates, and the variety of aggregates can be large.

Because we seek to demonstrate how derivations, clearly presented, can lead
to a better understanding of the algorithms derived, the emphasis in this paper
is primarily on the conceptual structure of the derivations and only secondarily
on the actual formal transformation techniques. We make use of transformations
for realizing complex recursive control structure as explicit data structure that
are similar to those described in [18], [23], and [5]. These transformations are
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used to transform closure definitions, such as specification of path above, into
more conventional definitions.

In addition, we make use of the transformations of [19] (which are similar
in spirit to those described in [6], but for which there is a guarantee of strong
equivalence—see [17], [22]) in order to specialize function definitions and to ef-
fect the merging or “jamming” of loops. Discussion of loop jamming techniques
appears in [13]. (This paper is self-contained—no prior knowledge of the details
of the above is required to follow the derivations.)

The programming language we use is an ML-like applicative language with
imperative features to allow sequencing and explicit management of state. Be-
cause it is difficult to reason about and manipulate programs that are overly
committed with respect to order of computation and data representation, we
have sought to keep the programming language as abstract as possible in these
respects. In order to allow derivations to be more perspicuous, certain features
are included in the language of programs that may be difficult to implement effi-
ciently, though they have clear semantics. Examples of such features include (1)
closure definitions (of path, for example), (2) expression procedures (see below),
and (3) a generous syntax for iteration. Intermediate programs in the derivation
process may make extensive use of these features, but the programs that are
the end results of the process generally do not. This means that, while precise
meaning must be defined, these language features do not necessarily need to be
implemented efficiently, or even at all. We explain the unusual features of the
language as they are encountered.

We expect that the program derivation techniques such as those refined and
applied here and elsewhere may ultimately be of practical use in mechanical
refactoring aids designed to help the programmer in his or her daily activity.

As in [11] and [12], we are deriving a family of related algorithms. Even
though the algorithms we derive here do not all have the same specifications, the
strong relations between them become manifest in the explicit structure of their
derivations. Indeed, it appears that reasoning by analogy may play an important
role in the automation of these techniques. Other examples and approaches to
program derivation are described in [8], [3], [10], and [4], among others.

2 Depth-First Search

We start by deriving a family of simple depth-first search algorithms. These
derivations and the algorithms that result will be used, either directly or by
analogy [9], in the later derivations.

The development in the first part of this section is identical for directed
and undirected graphs. We carry out the development for directed graphs and
consider undirected graphs as a special case.

Let G = (V, E) be a finite directed graph with adjacency list representation—
for v ∈ V , Adj(v) is the set of vertices adjacent to v. Thus 〈u, v〉 ∈ E if and only
if v ∈ Adj(u). For undirected graphs v ∈ Adj(u) if and only if u ∈ Adj(v).
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Paths. We consider first a simple combinatorial definition of a path in a graph.
Let u and v range over vertices.

path(u, v) ⇐false (u = v or (∃w ∈ Adj(u))path(w, v)) (1)

As noted above, this is a closure definition, which is a definition that specifies
an accumulation of values. The accumulation operation in this case is disjunction,
and the “values” accumulated are pairs 〈u, v〉 for which path is true. A useful
operational intuition is that infinite recursions in the computation of path(u, v)
are avoided by replacing all redundant calls by the identity of the accumulation
operation, which for disjunction is false. This replacement is made even when
the redundancy is with a call in progress.

More generally, closure definitions are of the form

f(x) ⇐i h(x) ⊕
⊕

z∈g(x)

f(z), (2)

where x is an element of a finite domain D, computation of h and g does not
involve f , and ⊕ is a semilattice operator with identity i in which infinite sums
are defined (that is, the partial order induced by ⊕ is a complete partial order).
Intuitively, the identity is the minimal element of an accumulation. In the case of
path, ⊕ is disjunction and the identity is false. (The existential quantification is
over a finite set, and so is equivalent to a finite disjunction.) Another semilattice
operation commonly used in these derivations is set union with the empty set,
typically over the finite sets of vertices or edges.

Closure definitions have a fixed-point semantics in which f is always defined
as a limit of an ascending chain of sets:

h(x)

h(x) ⊕ ⊕
z1∈g(x) h(z1)

h(x) ⊕ ⊕
z1∈g(x)(h(z1)⊕

⊕
z2∈g(z1)

h(z2))

· · ·
Closure definitions are analogous to memoization, which is a class of tech-

niques (attributed to Donald Michie) for retaining previously computed values
to avoid redundant computation. The key differences between closure defini-
tions and conventional memoization are (1) all redundant invocations return the
same identity value, and (2) subsidiary but identical invocations are considered
redundant even before the main ancestor invocation completes.

The Finite Closure Transformation. Closure definitions are transformed
into conventional definitions by introducing explicit mechanism to track redun-
dant calls (including calls in progress) and committing to order of evaluation.
Closure definitions are related to “closed-world” database techniques such as
described in [7] and [15].
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We carry out these transformations by introducing implicit state change into
our language of recursive definitions. In the case of path, this involves introduc-
ing explicit data structure to record vertex pairs as they are considered. When
path(u, v) is to be computed and 〈u, v〉 is already marked, then false is the cor-
rect return value. State changes can be made either implicitly (by introducing
imperative operations) or explicitly (by adding a new “memo” parameter to f).
Regardless, it is difficult to manipulate programs involving state, so it is best to
delay the transformation whenever possible. In our derivation of simple depth-
first search, we preserve the closure formulation until the next transformation
step is complete.

Specialization Using Expression Procedures. Nearly all of the program
derivation steps in our derivations are based on the expression-procedure tech-
nique. This technique is presented in detail and proved correct in [18] with im-
provements by Sands [17] and Tullsen [22]. We provide sufficient details here for
this paper to be self-contained. This technique provides a straightforward way
to specialize both recursive program definitions and (we assert without proof)
closure definitions. We describe this technique here informally by means of an
example involving the path definition.

Suppose we want to collect vertices v ∈ V reachable from a given vertex u.

{v ∈ V | path(u, v)}
This set comprehension suggests that the value of the set can be calculated
by enumerating all vertices v and testing path(u, v) for each. This method is
inefficient because it requires multiple traversals of the same graph. We therefore
consider specializing the definition of path to the computational context of the
set abstraction. That is, we use the definition of path to develop an algorithm
for computing {v|path(u, v)}. This will enable application of finite closure on
the reachability sets rather than on individual paths.

The transformation has three steps. First, both sides of the definition of path

path(u, v) ⇐false (u = v or (∃w ∈ Adj(u))path(w, v))
are substituted into the set expression, forming the definition,

{v|path(u, v)} ⇐∅ {v|(u = v or (∃w ∈ Adj(u))path(w, v)}. (3)
This definition is called an expression procedure. Intuitively, it denotes a proce-
dure for computing values of instances of its left-hand side. It can be given precise
meaning within the framework of a substitution-based operational model, for ex-
ample. (This substitution operation, called composition, has certain soundness
restrictions, which are described in the above-mentioned references.)

The second step of the transformation is to simplify the right-hand side
of the new definition until an instance of the left-hand side appears. This is
accomplished by distributing the set abstraction inward and simplifying.

{v|path(u, v)} ⇐∅ {u} ∪
⋃

w∈Adj(u)

{v|path(w, v)} (4)
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As a result of this simplification, an instance of the left-hand side appears on
the right. This means that the definition could be evaluated either by calling
path or by calling itself (the expression procedure) recursively. (Note that this
is still a closure definition over the semilattice of finite set union, with identity
∅ = {v|false}.) Unfolding and procedure abstraction can be done on the basis
of the expression-procedure call. The operational intuition is that this definition
makes exactly one recursive call for each w, rather than one (to path) for each
w and v pair, as in the earlier version.

The third and final step of the transformation is to rename all instances of
the set expression to a new function name with appropriate parameters. This
renaming operation is done in two steps. The entire body of the expression
procedure first is abstracted into a definition for a new name, dfs . The only free
variable in the expression is u, so we obtain:

{v|path(u, v)} ⇐∅ dfs(u)
dfs(u) ⇐∅ {u} ∪ ⋃

w∈Adj(u){v|path(w, v)}
We can “unfold” the expression procedure call in the second definition using
the first of these definitions. (Observe that with expression procedures multiple
execution pathways exist, but all yield identical results when transformation
operations are sound.)

{v|path(u, v)} ⇐∅ dfs(u)
dfs(u) ⇐∅ {u} ∪ ⋃

w∈Adj(u) dfs(w) (5)

As an aside, because

path(u, v) = v ∈ {v|path(u, v)}, (6)

we can substitute to obtain

path(u, v) ⇐ v ∈ dfs(u) (7)
dfs(u) ⇐∅ {u} ∪ ⋃

w∈Adj(u) dfs(w).

Observe that this definition accomplishes a frequency reduction for path(u, v)
with respect to u.

Finite Closure Revisited. At this point we can make the finite closure trans-
formation that was postponed earlier. Note that ‘∪’ is the “accumulator” for
this semilattice of finite sets and ∅ is the identity. The transformation entails
making explicit the replacement of redundant calls to dfs by ∅. The definition
below illustrates one of several possible ways to accomplish this. We first define
an explicit array of booleans indexed by the vertices of the graph:

visit : V → bool

The first action before calling dfs is to initialize the entire array to false.
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path(u, v) ⇐ v ∈ dfs(u)

dfs(u) ⇐ begin
visit[V ]← false ;
dfs ′(u)

end
(8)

dfs ′(u) ⇐ begin
visit[u]← true ;
{u} ∪ ⋃

w∈Adj(u)(if visit[w] then ∅ else dfs ′(w))
end

Our convention is that imperative statements are always enclosed in blocks, and
the value of a block is the value of the last expression. In this example, we treat
the visit array as a variable that is bound in some outer scope that includes the
two definitions above.

In this program, we have made use of implicit state (i.e. imperative opera-
tions on global data structure) to keep the “memo” set, representing it in its
characteristic-function form by the array visit. The definition of path has been
modified to initialize the memo set by storing false in every element of the array;
this indicates that initially no vertices have been visited.

More generally, a definition of the form

f(x) ⇐i h(x) ⊕
⊕

z∈g(x)

f(z),

can be transformed to

f(x) ⇐ begin
visit[D]← false ;
f ′(x)

end
f ′(x) ⇐ begin

visit[x]← true ;
h(x) ⊕ ⊕

z∈g(x)(if visit[z] then i else f ′(z))
end

where D is the finite universe of ⊕.
In spite of the dependence of intermediate values of visit on the choice of

computation ordering (which is only partially committed above), it is a property
of the finite closure method that the ultimate value of visit (and, of course, dfs)
is independent of the order of evaluation of both the binary union and the
quantified union. Sequential evaluation of the outer union results in the natural
depth-first search ordering.

As noted above, the same effect could be achieved using a purely applicative
program. The imperative program has the advantage, however, of using a nota-
tion that avoids commitment to a particular order of doing the accumulation,
and thus is more clear for our purposes.
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Distributivity and Finite Closure. A useful property of finite closure is that
the initialization of the visit array can be distributed across ⊕. That is,

f(x)⊕ f(y) ⇐ begin
visit[D]← false ;
f ′(x) ⊕ f ′(y)

end

More generally,
⊕

z∈g(x) (begin visit[D]← false; f ′(z) end)
⇐⇒

begin visit[D]← false;
⊕

z∈g(x) f ′(z) end

Connected Components of Undirected Graphs. We can now derive a
linear-time program for collecting the connected components of an undirected
graph.

comps ⇐ { {v ∈ V |path(r, v)} | r ∈ V } . (9)

As an aside, we note two other ways to notate this “comprehension of compre-
hensions.” The first is a union of singletons, which is concise but perhaps less
perspicuous than the formula above.

⋃
r∈V {{v | path(r, v)}}

The second is Tarski’s “big-E” notation, which provides a more succinct, but
less widely-known notation for the set.

Er∈V {v | path(r, v)}
In any case, substitution of the improved definition of path above into the defi-
nition of comps and simplification yield

comps ⇐ ⋃
r∈V {begin visit[V ]← false; dfs(r) end}. (10)

This definition performs redundant searches, with worst case running time
O(|V |2). The redundant searches can be avoided by making use of the visit array
used by dfs. We employ the distributivity property of finite closure to initialize
the visit array once for all calls to dfs . This gives the linear-time program:

comps(V )⇐ begin
visit[V ]← false ;⋃

r∈V (if visit[r] then ∅ else dfs ′(r)) (11)
end

dfs ′(u) ⇐ begin
visit[u]← true ;
{u} ∪ ⋃

w∈Adj(u)(if visit[w] then ∅ else dfs ′(w))
end
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The edges traversed by this program form a depth-first search forest whose roots
are the values of r for which dfs ′ is called in the definition of comps . It is easy to
see that this algorithm runs in time linear in the number of vertices and edges in
the graph. This is shown by associating with each vertex and edge of the graph
a constant number of program steps. Note that the particular sequencing of the
union affects intermediate states but not the final result, so we need not commit
ourselves to an order of consideration of the elements of V .

Tree and Tree Traversals. The fast depth-first algorithms rely on combinato-
rial properties of depth-first spanning forests. The depth-first search algorithms
we derive make extensive use of “non-local” properties of depth-first search trees
they induce. In particular, both the biconnectivity and strong connectivity algo-
rithms are based on lemmas that make use of ancestor or descendent orderings
in the search forest. Both of these orderings relate vertices that may be an ar-
bitrary distance apart in the trees. We make derivation steps here that enable
these relations to be computed efficiently.

A tree is a directed graph all of whose vertices have indegree one except the
root vertex, which has indegree zero. A forest is a directed graph whose vertices
either have indegree one or indegree zero. A vertex with zero indegree is called
a root . A vertex with zero outdegree is called a leaf . Other vertices are internal
nodes. We use the notation ‘u→T v’ as shorthand for ‘〈u, v〉 ∈ E’, where E is the
set of edges in the tree.

The set of vertices of a tree can be enumerated without repetitions by travers-
ing the edges of the tree and recursively enumerating subtrees. If r is the root
of the tree T , then trav(r) will cause examine to be called exactly once for each
vertex of T . (The tree T is an implicit argument.)

trav (u)⇐ begin
examine(u) // forpar w st u→T w do trav(w) (12)

end

The symbol ‘//’ indicates explicit avoidance of commitment to computation se-
qeuencing, as does the ‘forpar’ notation. This lack of commitment may be in-
terpreted as parallel or nondeterminstic sequential execution of all the specified
instances of the loop body. By convention, we use this kind of nondeterminism
when all possible executions terminate and yield identical answers, even when
there may inefficient execution paths. By this convention, we can infer that the
final result of Algorithm (12) above is not influenced by the order of calls to
examine.)

Preorder and postorder enumeration are obtained by making differing com-
mitments to computation sequencing in the definition above. Preorder enumer-
ation results, for example, when the instance of ‘//’ is replaced by ‘;’ and when
‘forpar’ is replaced by ‘for’ which, for ordered trees, implies that the loop cases
are evaluated in order of the edges. (Hereafter, this order is assumed implicitly
when ‘for’ is notated.)
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trav (u)⇐ begin
examine(u);
for w st u→T w do trav(w) (13)

end

Relative preorder position can be tested using an instance of Algorithm (13),
but not very efficiently. Both preorder and postorder are (finite) linear orderings,
and so can be represented by sequences of vertices. With this representation, two
vertices can be compared in pre- or postorder simply by examining their relative
positions in the appropriate sequence.

A sequence can be represented as an array mapping vertices to integers rep-
resenting their positions. In the algorithm below, the array pre[V ] below maps
vertices to their preorder numbers. Let r be the root of a tree.

begin p← 0; trav(r); pre[V ] end;

trav (u)⇐ begin
pre[u]← p← p + 1; (14)
for w st u→T w do trav(w)

end

The result of this program is the array pre containing the preorder numbers
assigned to the vertices of the tree rooted at r.

A similar algorithm can be derived for computing the postorder numbering.
By merging Algorithm (14) with this new algorithm, we obtain

begin p← 0; e← 0; trav(r); 〈pre[V ], post[V ]〉 end;

trav (u)⇐ begin
pre[u]← p← p + 1; (15)
for w st u→ w do trav(w);
post[u]← e← e + 1

end .

(Transformation steps are omitted. A more interesting example of loop merging
using the specialization transformation is presented in a later section.)

Tree Orderings. The descendent ordering 
 is the transitive closure of the
ordering represented by the edges of a tree. The notation u 
 v can be read as
“u is a descendent of v.”

u 
 v if and only if there is a path of tree edges from v to u

It is undesirable to compute descendency (or ancestry) using a naive imple-
mentation of transitive closure, since that would require O(|V |3) time. We can,
however, take advantage of the special properties of trees.
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Lemma 1. Let T be an ordered tree with vertices numbered in preorder (visiting
nodes before their subtrees in order) in array pre[V ] and in postorder (visiting
subtrees in order prior to nodes) in array post[V ]. Then

u 
 v if and only if pre[u] > pre[v] and
post[u] < post[v].

That is, u is a proper descendent of v if and only if both u succeeds v in a
preorder traversal and u precedes v in a postorder traversal.

This lemma justifies replacing tests in programs of the form u 
 v by tests
of the form

pre[u] > pre[v] ∧ post[u] < post[v],

As shown in the previous section, both numberings can be computed in linear
time and in a single tree traversal, so we can now test ancestry in constant time
with linear-time precomputation. Note that it is crucial that we traverse tree in
left to right order, as specified in Algorithm (13).

Furthermore, u is to the left of v in T if and only if u precedes v in both pre-
order and postorder. Thus, which of the four possible relative positions held by
two arbitrary tree vertices can be determined by checking their relative positions
in the two orderings.

Depth-First Search Trees. The depth-first search algorithms on graphs de-
rived earlier impose a natural forest structure on the edges of the graph being
searched. That is, the subset of the graph edges that are actually traversed forms
a forest.

We indicate such facts in our programs by writing assertions , which are
expressions enclosed in the special brackets ‘[[ ]]’ and located at points in the
program where the facts are true. (This notation denotes preconditions when it
appears on a left hand side. See, for example, the derivation of Algorithm (21).)
We can annotate the graph traversal Algorithm (8) to obtain

path(u, v)⇐ begin visit[V ]← false; v ∈ dfs ′(u) end
(16)

dfs ′(u)⇐ begin
visit ← true;
{u} ∪ ⋃

w∈Adj(u)(if visit[w] then ∅ else [[u→T w]] dfs ′(w))
end

In the else clause we have asserted that 〈u, w〉 ∈ E is a tree edge. This set of
tree edges forms the depth-first search forest.

We are now ready to develop an algorithm for doing a preorder numbering
of a depth-first search forest of a graph. This is accomplished by deriving a
program that simultaneously computes dfs ′ and trav . That is, we first compute
dfs ′ to identify tree edges, and then trav to follow those tree edges and assign
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preorder numbers. For simplicity, we assume the directed graph is connected,
which means the forest will have a single root r. We accomplish this by writing
an expression procedure for the block:

begin dfs ′(u); trav (u) end

Unfolding the initialization, reordering, and adding some additional structure
yields the following main program. Here r is an arbitrary vertex of G. Note the
slight jerrymander to create an instance of the expression procedure block. Note
also that we ignore the result of dfs ′ and return only the pre array containing
those numbers.

begin visit[V ]← false; p← 0; 〈(begin dfs ′(r); trav (r) end), pre[V ]〉 end

We define the expression procedure by substituting the definitions for the
preorder version of trav (Algorithm (14)) and dfs ′ (Algorithm (16)) into the
block and doing some initial restructuring:

(
begin dfs ′(u); trav (u) end

)⇐
begin

visit[u]← true;
pre[u]← p← p + 1;
{u} ∪ ( begin


⋃

w ∈ Adj(u)
¬visit[w]

[[u→T w]] dfs ′(w)





for w st u→T w do trav(w); (17)
end )

end

We assert u→ w because it is true just when w ∈ Adj(u)∧¬visit(w). This implies
that the two loops range over the same set. Because they do not interact, they
can be merged—combined into a single iteration.

At this point, we make two further simplifications. First, we rename the
block being defined to the simple name dfs(superseding the previous use of this
name—this bad habit will continue throughout the derivation below). Second,
we observe that if pre[V ] is initialized to 0, then

visit[u] = false if and only if pre[u] = 0,

and we can eliminate the visit array and use pre instead.
Because the dfs ′ results are unused, simplifications eliminate calculation of

the set union. The following shorter program results after unfolding, renaming,
and eliminating the expression procedure:
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begin p← 0; pre[V ]← 0; dfs(r); pre[V ] end

dfs(u) ⇐
begin

pre[u]← p← p + 1 ; (18)
for w st w ∈ Adj(u) ∧ pre[w] = 0 do dfs(w)

end

The ordering represented by pre is called a depth-first-search ordering of the
vertices of the graph.

By a development similar to that for pre and a merge step similar to the one
just complete, the post ordering can be computed as well.

begin
p← 0; e← 0; pre[V ]← 0; post[V ]← 0;
dfs(r); 〈pre[V ], post[V ]〉

end

dfs(u) ⇐
begin

pre[u]← p← p + 1 ; (19)
for w st (w ∈ Adj(u) ∧ pre[w] = 0) do dfs(w)
post[u]← e← e + 1;

end

Depth-First Search in Undirected Graphs. We now consider the special
case of depth-first search in undirected graphs. In this case, the depth-first search
divides the edges of a graph into two sets, tree edges , the edges actually traversed
during search, and the other edges, which are called fronds . While the tree edges
are directed edges, we leave the fronds undirected (for the moment). We use the
notation u↔: v to indicate fronds, and, as before, u→T v to indicate tree edges,
where u is the parent node of v. Thus, every edge 〈u, v〉 is either a tree edge, a
reverse tree edge, or a frond.

We will occasionally need to distinguish the fronds explicitly during search.
With respect to Algorithm (8), we observe that the fronds are exactly those
edges 〈u, v〉 for which the visit[w] test is true but (since the graph is undirected)
such that w is not the parent of u in the search tree. As before, we recycle the
name dfs .

dfs ′(u)⇐
begin

visit[u]← true;
{u} ∪ ⋃

w∈Adj(u)(if visit[w] (20)
then [[if w →T/ u then u↔: w]] ∅
else [[u→ w]] dfs ′(w))

end
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Here we have decorated Algorithm (8) with assertions distinguishing the two sets
of edges. The assertion in the thenclause states that if the already-seen adjacent
node is not the immediate parent node of u, then the edge being traversed is a
frond. In order to classify all graph edges, the test within the assertion needs to
be computable. Observe, however, that the parent of u is known whenever dfs ′

is called. We can use the specialization technique to introduce a new parameter
to dfs that will be the parent of u in the depth-first-search tree being generated.
We do this by forming an expression procedure for

[[v →T u]] dfs(u).

Recall that in an expression procedure name an assertion denotes a precondition.
The additional information provided by the assertion allows us to introduce a
case analysis on the parentage of u into the then clause, transforming

[[if w →T/ u then u↔: w]] ∅
into

if w �= v then[[u↔: w]] ∅
else [[w →T u]] ∅

After renaming (v is the parent of u) and reorienting the nested conditionals,
we obtain the definition:

dfs(u, v)⇐
begin

visit[u]← true;
{u} ∪ ⋃

w∈Adj(u)(if ¬visit[w] then [[u→ w]] dfs(w, u) (21)
else if w �= v then [[u↔: w]] ∅
else [[w→ u]] ∅)

end.

In order to use this definition, one exceptional case must be considered, which
is the initial call when u is a root. To handle this case we can either unroll the
recursion one step, introducing an additional auxiliary dfs ′′ definition, or we can
add a special non-vertex value Λ to denote a phantom parent node for the root
case. From a derivational point of view, these are equivalent, and, in the interests
of simplifying the presentation, we select the latter case.

Finally, we carry through the transformation steps described earlier to obtain
an algorithm similar to Algorithm (19).

begin p← 0; e← 0; pre[V ]← 0; dfs(r, Λ); 〈pre[V ], post[V ]〉 end

dfs(u, v) ⇐
begin

pre[u]← p← p + 1 ; (22)
for w st (w ∈ Adj(u) ∧ pre[w] = 0)

do (if pre[w] = 0 then [[u→ w]] dfs(w, u)
else if w �= v then [[u↔: w]] ∅
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else [[w → u]] ∅);
post[u]← e← e + 1;

end

A Further Specialization. In the biconnectivity algorithm derivation, we will
need to classify fronds into forward fronds and reverse fronds . Observe that
when u ↔: w in a depth-first search tree, then either u is a descendent of w or
vice-versa. If u 
 w then 〈u, w〉 is a reverse frond, notated u→: w; otherwise the
edge is a forward frond, and we write w ←: u.

Lemma 2.1 provides a fast method for distinguishing forward and reverse
frond. It is an immediate consequence of the lemma that

pre[u] < pre[w] implies u �
 w.

and analogously for post. Therefore, if it is known that two vertices are related by
the descendency relation, but it is not known in which direction, then it suffices
to check either the preorder or the postorder numberings.

On the basis of this fact, we slightly reorganize the Algorithm (21) above
to obtain the following undirected depth-first search algorithm. This algorithm
fully classifies the undirected graph edges into directed tree edges and fronds
(though it does not make use of this information).

dfs(u, v) ⇐
begin
pre[u]← p← p + 1 ; (23)
for w st (w ∈ Adj(u) ∧ pre[w] = 0)

do (if pre[w] = 0 then [[u→ w]] dfs(w, u)
else if w = v then [[w → u]] ∅
else if pre[u] > pre[w] then [[u→: w]] ∅
else [[w →: u]] ∅)

post[u]← e← e + 1;
end

Observe that the four cases can be distinguished in constant time (given the
concurrent linear-time computation of the pre array).

This classification of cases will be useful when we merge this algorithm with
other algorithms obtained in the derivations for biconnectivity in Section 4,
below.

3 Strongly-Connected Components

In this section we derive an interesting linear time algorithm for strong con-
nectivity that is attributed to Kosaraju and based on the work of Tarjan and
Hopcroft. Let G = (V, E) be a directed graph and let u and v range over the
vertices V . Recall the original definition of path,
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path(u, v) ⇐false (u = v or (∃w ∈ Adj(u))path(w, v)). (24)

The path relation holds between u and v just when there is a directed path in
G from u to v.

Two vertices u and v in a graph are strongly connected if path(u, v) and
path(v, u) both hold. A maximal set of strongly connected vertices is called a
strongly connected component . To find the strongly connected component as-
sociated with a particular vertex r, it suffices to collect all vertices u such that
path(r, u) and path(u, r). For, if both v and w have this property with respect to
r, then the transitivity of the path relation implies that v and w are themselves
also strongly connected. The strongly-connected components thus partition the
vertices of a directed graph. This leads us to take the following definition as our
starting specification of the strongly-connected components.

strong ⇐ { {s ∈ V |path(r, s) ∧ path(s, r)} | r ∈ V } . (25)

If path requires time linear in the number of vertices, then this definition, eval-
uated naively, requires O(|V |3) time.

First Steps. Our strategy for improving this definition is to focus on the inner
set and develop a method for calculating its value efficiently. A natural first step
is to specialize the definition of path to the context

{s | path(r, s) ∧ path(s, r)}
but the specialization transformation does not produce useful results for this
formulation of the definition because the recursions do not naturally merge. A
natural response to this failure is to generalize, separating either the r or s pairs
of parameters into distinct variables. We separate the two instances of r into two
distinct variables, u and r. (Generalization is a common heuristic for obtaining
inductive proofs and has been incorporated into several automatic systems; [11]
describes examples.)

{s | path(u, s) ∧ path(s, r)} ⇐∅
{s| ((u = s) or (∃w ∈ Adj(u))path(w, s)) ∧ path(s, r)} (26)

We have substituted the definition of path in the first instance, but not the
second. We simplify by distributing the conjunction and set abstraction inward.

{s | path(u, s) ∧ path(s, r)} ⇐∅ (27)
{s|u = s ∧ path(s, r)} ∪ ⋃

w∈Adj(u){s|path(w, s) ∧ path(s, r)}
This expression procedure is recursive. Unfortunately, we are forced to test
path(u, r) (on the left side of the union, where u = s) on every iteration. This
predicate is certainly true, for example, on the initial call,

strong ⇐ ⋃
r∈V ({[[path(r, r)]] {s | path(r, s) ∧ path(s, r)}}) , (28)

and appears to be true on the others. To test this latter conjecture, we specialize
the already specialized definition a bit further, to a context in with path(u, r) is
assumed to be true on entry.
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[[path(u, r)]] {s|path(u, s) ∧ path(s, r)} ⇐∅ (29)
{s|u = s ∧ path(s, r)} ∪ ⋃

w∈Adj(u){s|path(w, s) ∧ path(s, r)}
The assumption allows simplification of the left-hand side of the union to the
singleton {u}. The assertion can be established, or not, for the recursive case by
introducing an obvious case analysis.

[[path(u, r)]] {s | path(u, s) ∧ path(s, r)} ⇐∅
{u} ∪ ⋃

w∈Adj(u)

( if path(w, r) then {s|path(w, s) ∧ path(s, r)} (30)
else {s|path(w, s) ∧ path(s, r)} )

The assertion is clearly true in the then clause because it is the test. In the else
clause, where there is no path from w to r, it must follow from the transitivity
of path that there can be no vertices s that satisfy the condition.

[[path(u, r)]] {s | path(u, s) ∧ path(s, r)} ⇐∅
{u} ∪ ⋃

w∈Adj(u) (31)
( if path(w, r) then [[path(w, r)]] {s|path(w, s) ∧ path(s, r)}

else ∅ )

The effect of this transformation sequence is now clear—responsibility for the
path(u, r) test has been shifted to the caller, and the conjecture is not estab-
lished. These small improvements will facilitate later steps.

The final transformation step in the specialization sequence is to rename the
expression procedure for

[[path(u, r)]] {s | path(u, s) ∧ path(s, r)}

to sc(u, r).

strong ⇐ ⋃
r∈V {sc(r, r)}

(32)
sc(u, r) ⇐∅ {u} ∪ ⋃

w∈Adj(u) (if path(w, r) then sc(w, r) else ∅)

path(u, v) ⇐false (u = v or (∃w ∈ Adj(u))path(w, v))

The Reversed Algorithm. The key insight in this derivation can now be
revealed: we observe that the second parameter of the path relation remains
constant on all recursive calls of sc for a particular root r. This suggests that
we should be able to do a single depth-first traversal from r and, if possible, use
the orderings defined in Section 2 to test ancestry. There are two ways we could
obtain this advantage. First, we could use

revpath(u, v) ⇐false (33)
(u = v or (∃w ∈ Adj−1(u))revpath(w, v))
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instead of path, and compute ancestry using its depth-first search tree (since the
dfs realizations of path and revpath both do recursions on the first parameter).
(In the above, Adj−1 denotes the inverse adjacency function such that v ∈ Adj(u)
if and only if u ∈ Adj−1(v).) Clearly, path(u, v) if and only if revpath(v, u).)

Alternatively, we could reverse the directions of the search in sc above (using
Adj−1 instead of Adj), causing the path test parameters to be reversed, and thus
use the path search tree. In either case, we will need to traverse the graph in
both the forward and backward directions.

The situation is symmetrical, and we arbitrarily choose the latter alternative.
By adapting Algorithm (32) to reversed edge direction and applying the finite
closure transformation (as we did in Algorithms (8) and (11)), we obtain

strong ⇐ begin
visit2 [V ]← false ;⋃

r∈V (if visit2 [r] then ∅ else {scr (r, r)})
end

(34)
scr (u, r)⇐

begin
visit2 [u]← true ;
{u} ∪ ⋃

w∈Adj−1(u)(if ¬visit2 [w] ∧ path(r, w) then scr (w, r) else ∅)
end

(We have reserved the name visit for use in the depth-first search tree precom-
putation required for testing path(r, w).)

A Blind Alley. It may appear that we could obtain an acceptable implemen-
tation of Algorithm (34) by replacing path(r, w) with the test w ∈ dfs(r) and
using specialization to factor the dfs calculation out of scr into strong .

strong ⇐ begin
visit2 [V ]← false ;⋃

r∈V (if visit2 [r] then ∅
else begin

visit[V ]← false ;
{scr ′(r, r,dfs(r))}

end)
end (35)

scr ′(u, r, D)⇐
begin

visit2 [u]← true;
{u} ∪⋃

w∈Adj−1(u)(if ¬visit2 [w] ∧ w ∈ D then scr ′(w, r, D − {w}))
end

Unfortunately, the set of roots required for the reverse-search forest is not neces-
sarily the same as that required for forward search, and so the dfs(r) calculation
in strong could do redundant traversals. This algorithm runs in time O(|V |2).
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Strongly-Connected Component Roots. Our ability to use the ancestry
test techniques of Section 2 depends on a crucial lemma. This lemma captures
most of the non-trivial graph-theoretic knowledge required in the derivation of
the algorithms for strongly-connected components.

Lemma 2. Let G be a directed graph with a (forward) depth-first search forest
F that has ancestry ordering 
. For each strongly-connected component S of G
there is a unique vertex r called the root of S such that r = min�(S).

This lemma has several important consequences.

1. The roots of the forest F are roots of strongly-connected components.
2. For each strongly-connected component S and for each v ∈ S and w �∈ S

such that v → w, w is the root of a strongly-connected component.
3. Items (1) and (2) above yield all the strongly-connected component roots.
4. If r is the root of a strongly-connected component and path(w, r) is true in

G, then
path(r, w) if and only if w � r.

The lemma suggests that we try to arrange that scr (r, r) be called (in the
definition of strong) for the strongly-connected component roots and no other
vertices. On the basis of Section 2, we can accomplish this by checking pre.
All the strongly-connected components will still be found, and, by the fourth
consequence above, if we guarantee that r is a root, then the path(r, w) test can
be replaced by the constant-time test w � r.

To find the roots, we must first collect the depth-first-search forest roots,
and then, as we find components, locate the remaining roots. Our first order of
business, then, is to construct the depth-first-search forest, F . This is distinct
from the reverse forest constructed by scr .

forest ⇐ begin
pre[V ]← 0; p← 0; e← 0;
for r ∈ V do (if pre[r] = 0 then [[r ∈ Roots]] dfs(r))

end
(36)

dfs(u)⇐ begin
pre[u]← (p← p + 1);
for w ∈ Adj(u) do

if pre[w] = 0 then [[u→T w]] dfs(w) ;
post[u]← (e← e + 1)

end

We note tree edges as they are found. In the final algorithm, an array parent is
used to track the tree edges in order to refine Algorithm (39).

The Ancestry Test. The fourth consequence of Lemma 2.1, as noted above,
allows replacement of the path test in scr by a test of the ancestry relation, under
the condition that r is always the root of a strongly-connected component. The
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ancestry test, as shown in Section 2, can be accomplished in constant-time by
an examination of the pre and post numberings obtained in Algorithm (36).

strong (R)⇐ begin
visit2 [V ]← false ;⋃

r∈R{scr (r, r)}
end

(37)
scr (u, r)⇐

begin
visit2 [u]← true ;
{u} ∪⋃

w∈Adj−1(u)(if ¬visit2 [w] ∧ (pre[r] < pre[w]) ∧ (post[r] > post[w])
then scr (w, r))

end

We must now focus on the problem of finding the roots required by strong .

Finding Some Roots. The first consequence of the lemma suggests that we
collect the roots of the forest F as they are found. We can use forest to collect a
nonempty subset of the final set of roots, namely those vertices where each dfs
is initiated until all of V is preorder numbered.

forest ⇐ begin
pre[V ]← 0; p← 0; e← 0 ; (38)⋃

r∈V (if pre[r] = 0 then begin dfs(r); r end)
end

Finding the Remaining Roots. By the lemma, the remaining roots can be
found by examining strongly-connected components as they are found. If r is a
root then scr (r, r) returns the vertices of its corresponding strongly-connected
component. Let S be a strongly-connected component. The following definition
is a direct realization of consequence (3) of the lemma.

update(S)⇐ (39)
⋃

v∈S

(⋃
w∈Adj(v)(if (¬visit2(w) ∧ v → w) then {w} else ∅)

)

Given a strongly-connected component S, update(S) returns the set of strongly-
connected component roots then are the direct descendants of vertices in S. The
test v → w in this definition needs to be computed. This is accomplished by
making tree edge relationships explicit in a new array parent. The array values
are initialized in dfs . (See Algorithm (42) for details.)

An alternative approach to finding roots (used in [2] but not followed here)
is to rely on a further consequence of the lemma: After zero or more strongly-
connected components have been found, the unvisited (in the reverse search)
vertex with smallest preorder number (in the original forward search) will be
a strongly-connected component root. Initially, this is the first vertex visited
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by dfs . A final algorithm could be obtained by deriving a simple program and
associated data structure that quickly yields the vertex with minimum preorder
number. This would be done by merging a simple minimum-finding program
with scr to keep track of the minimum preorder index as vertices are visited.

In this presentation, however, we retain the update procedure above.

Final Improvements. The near-final algorithm is obtained by merging two
programs. The first, Algorithm (37) derived earlier, finds strongly-connected
components, given a set of roots. The second, which follows directly from the
lemma, is a closure definition of the set of roots.

R ⇐∅ forest ∪ ⋃
r∈R update(scr (r, r)) (40)

A merge of strong with the definition of R gives:

strong (forest)

visit2 [V ]← false

strong (R)⇐
if R = ∅ then ∅

else let r = choose R in (41)
let S = scr (r, r) in
{S} ∪ strong(update(S) ∪R − {r})

(The choose operation picks an arbitrary element of a set. The let construct is
used to bind local names.)

The Strong Connectivity Algorithm. We have resolved the strong connec-
tivity algorithm,

strong(forest),

into two basic phases. First, forest is used to collect the depth-first search forest
roots and to precompute the pre- and postorder numberings used for testing
ancestry. Second, strong is used to do reverse depth-first searches from these
roots, collecting strongly-connected components and new roots along the way.

strong (forest)

var p, e, pre[V ], post[V ], visit2 [V ],parent [V ];

forest ⇐ begin
pre[V ]← 0; parent [V ]← Λ; p← 0; e← 0 ;⋃

r∈V (if pre[r] = 0 then begin dfs(r); r end)
end
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dfs(u)⇐ begin
pre[u]← p← p + 1;
for w ∈ Adj(u) do

if pre[w] = 0 then begin parent [w]← u;dfs(w) end ;
post[u]← e← e + 1

end

visit2 [V ]← false ;

strong (R)⇐ (42)
if R = ∅ then ∅

else let r = choose R in
let S = scr (r, r) in [[S is a strong component]]
{S} ∪ strong(update(S) ∪R − {r})

scr (u, r)⇐
begin

visit2 [u]← true ;
{u} ∪⋃

w∈Adj−1(u)(if ¬visit2 [w] ∧ (pre[r] > pre[w]) ∧ (post[r]< post[w])
then scr (w, r)
else ∅)

end

update(S)⇐⋃
v∈S(

⋃
w∈Adj(v)(if ¬visit2(w) ∧ parent [w] = v

then {w}
else ∅))

This algorithm runs in time linear in the number of vertices and edges in the
graph. As before, we demonstrate this by associating with each vertex and edge
of the graph a constant number of program steps.

The procedure forest is a simple iteration in which each vertex r in V is
considered exactly once. Because of the pre array, dfs is called (by forest and
recursively) at most once for each vertex in the graph. On each call to dfs , the
loop body is executed once for each edge leaving the node of u. Thus, overall,
dfs visits each vertex once and each edge twice.

A similar argument applies to strong and scr . This leaves update, which is
called exactly once for each strongly-connected component. In a given call to
update, each vertex in the complement is examined once in the outer union,
and each edge connected to that vertex is examined exactly twice (overall) in
the inner union. Thus, overall, update examines each vertex once and each edge
twice.

We could continue improving this algorithm by realizing the various implicit
loops, by frequency reduction (e.g., for pre(r) calculation), by eliminating set
operations (e.g., in strong ), and in other ways. At this point, however, the
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structure of the linear-time algorithm is most clearly apparent, so we conclude
the derivation here.

4 Biconnected Components

Let G = (V, E) be an undirected connected graph with no self-loops (i.e., edges
of the form 〈u, u〉). By convention, sets and relations involving undirected graph
edges are assumed to be symmetrically closed. An articulation point is a vertex
whose removal disconnects G. A graph is biconnected if it has no articulation
point. A biconnected component C is a maximal set of edges that contains no
vertex whose removal disconnects the vertices contained in the edges of C.

Our specification for the biconnected components of a graph makes use of a
modified version of the original path definition. Let u, v, and a be vertices in an
undirected graph.

patha(u, v) ⇐false (43)
u = v or (∃w ∈ Adj(u))(w = v or (w �= a and patha(w, v)))

There is a path from u to v that avoids a if u and v are equal or if there is a
path which avoids a to v from a vertex w adjacent to u. (The subscripting of
the parameter a is for syntactic convenience.) Observe that patha is symmetric.

patha(u, v) if and only if patha(v, u).

There is a natural special case of this definition, obtained by an obvious special-
ization step.

[[u �= a ∧ v �= a]] patha(u, v) ⇐false (44)
u = v or (∃w ∈ Adj(u))(w �= a and [[w �= a ∧ v �= a]] patha(w, v))

Two adjacent edges 〈u, v〉 and 〈v, w〉 are biconnected if pathv(u, w). Thus, the
biconnected component associated with a graph edge 〈u, v〉 is a set of edges,

bc(〈u, v〉) ⇐∅ {〈u, v〉} ∪




⋃
〈v, w〉 ∈ E
pathv(u, w)

bc(〈v, w〉)



 . (45)

(The specialized definition of path will suffice in this context.) Observe that by
our various symmetry assumptions, bc(〈u, v〉) = bc(〈, uv〉).

The set bcomps contains the biconnected components of G.

bcomps ⇐ ⋃
〈u,v〉∈E{bc(〈u, v〉)} (46)
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Specialization to Depth-First Search. Our initial goal is to obtain an effi-
cient version of bc that is not a closure definition.

Application of the finite closure transformation induces a depth-first search
forest, as shown in Section 2. Our initial step is to specialize the definition of
bc in order to enable it to be merged with the depth-first search algorithm (i.e.,
the recursions of bc and dfs will be made simultaneous). We start with the
assumption that a depth-first-search forest already exists (and we can cheaply
test edge type). To enable the merge with dfs, we specialize the definition of bc
to traverse tree edges, and in the depth-first search order. By assuming existence
of the forest, we can exploit information about edge type.

Recall from Section 2 that an undirected graph edge can be either a tree edge
or a non-tree edge, and, when it is given direction (in a search), it can be one of
four kinds of edges: a tree edge, a reverse tree edge, a forward frond, or a reverse
frond. The first step is to introduce a case analysis into the body of the union
to distinguish the four cases for an edge 〈v, w〉. Initially all branches of the case
analysis are identical; our intent is to specialize each according to its particular
condition.

[[u→T v]]bc(〈u, v〉) ⇐∅ (47)
{〈u, v〉} ∪⋃

〈v,w〉∈E(if v →T w then (if pathv(u, w) then bc(〈v, w〉) else ∅)
else if u = w then(if pathv(u, w) then bc(〈v, w〉) else ∅)
else if v →: w then(if pathv(u, w) then bc(〈v, w〉) else ∅)
else [[w →: v]] then(if pathv(u, w) then bc(〈v, w〉) else ∅) )

We have distributed the path test into the four cases of this closure definition,
each of which we now consider individually, with the goal of making this a
tightly recursive expression procedure (i.e., meeting the precondition that the
edge 〈v, w〉 is a tree edge). The first case is easy. If 〈v, w〉 is a tree edge, then the
recursive call to bc is already in the specialized form.

In the second case u = w. In this case w is the parent of v and so pathv(u, w)
is trivially true. We must compute bc(〈v, w〉) or, replacing w by u, bc(〈v, u〉).
This is a reverse tree edge, and by symmetry it necessarily leads to redundant
visits, enabling us to replace the call by ∅. To simplify notation, we do a trivial
specialization so bc is passed two adjacent vertices, rather than the edge between
them.

[[u→T v]]bc(u, v) ⇐∅ (48)
{〈u, v〉} ∪⋃

〈v,w〉∈E(if v →T w then (if pathv(u, w) then bc(v, w) else ∅)
else if u = w then ∅
else if v →: w then (if pathv(u, w) then bc(v, w) else ∅)
else [[w →: v]] then (if pathv(u, w) then bc(v, w) else ∅) )

We next consider the third case, of a reverse frond v →: w. In this case, v
is a direct descendent of u and w is an ancestor of u, and so pathv(u, w) is
always true. We must therefore include bc(v, w). Now 〈v, w〉 is not a tree edge,
so this recursive call will not be in the specialized form. We therefore unfold the
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definition of bc in this context and simplify based on the assumptions. Since w
is an ancestor of u and there is an edge adjacent to w already known to be in
the same component as 〈u, v〉, we can (by the assumption of depth-first traversal
order) replace all the recursive bc calls from w by ∅ and retain only the single
reverse frond 〈v, w〉. Observe that this implies all reverse fronds from a vertex
are collected at that vertex.

The final case, w →: v, reduces to ∅. In this case 〈v, w〉 is a forward frond, and
there must be a vertex t such that t is an ancestor of w and such that v →T t has
already been traversed. Now, if 〈v, w〉 is in the same component as 〈u, v〉, then
it will have been found already (by the immediately preceding case and by the
assumption of depth-first order of traversal). If not, then the path test would fail
and the result would be ∅. Thus, the result is ∅ for both possible eventualities.

[[u→T v]]bc(u, v)⇐ (49)
{〈u, v〉} ∪⋃

〈v,w〉∈E(if v → w then (if pathv(u, w) then [[u→T w]] bc(v, w) else ∅)
else if u = w then ∅
else if v →: w then {〈v, w〉}
else [[w →: v]] ∅ )

Because the remaining call to bc is directly recursive, and the call always follows
tree edges, this does not need to be a closure definition.

At this point there are two principal additional steps in improving the algo-
rithm for biconnected components. First, the definition of bcomps is improved
to avoid collecting redundant components—this is done by introducing the ab-
straction of articulation edges (in the next section). Second the path test in bc
is made more efficient through an ancestry test (in a later section).

Articulation Edges. Improvement of the biconnectivity algorithm bcomps
depends on the following lemma.

Lemma 3. Let G be an undirected graph with depth-first-search forest F . Every
biconnected component B contains a unique tree edge u → v, called the articu-
lation edge, such that u is an ancestor of every vertex in the edges of B.

This lemma has two useful consequences.

1. Every tree edge leaving the roots of the trees in a depth-first-search forest is
an articulation edge.

2. If u→T v and v →T w, then

pathv(u, w) if and only if 〈v, w〉 is not an articulation edge.

An immediate application of the lemma is to the original definition of bcomps .
Since every biconnected component has a unique articulation edge associated
with it, bcomps can be modified to call bc for articulation edges only. Let us
inductively assume we can a priori compute the set of articulation edges, which
we call aedges .
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bcomps ⇐ ⋃
〈u,v〉∈aedges [[u→T v]] {bc(u, v)} (50)

Every articulation edge is a tree edge, and the set of biconnected components is
a partition of the set of edges. Therefore, the specialized version of bc can be
applied.

Collecting Biconnected Components. Because articulation edges are tree
edges, we attempt to collect them in a single depth-first search. Again we assume
that the tree edges are already so classified and, in addition, that the predicate
root(r) holds when r is a root in the depth-first-search forest. The algorithm
below reduces the problem to testing individual tree edges using a predicate
aedge.

aedges ⇐ ⋃
root(r)
r →T s

({〈r, s〉} ∪ ae(r, s)) (51)

[[u→T v]]ae(u, v) ⇐ ⋃
w ∈ Adj(v)

v →T w

(if aedge(v, w) then {〈v, w〉} ∪ ae(v, w)

else ae(v, w))

The second consequence of the lemma enables replacement of the condition
‘aedge(v, w)’ by the condition ‘¬pathv(u, w)’ because we know u →T v and
v →T w.

It is now a natural step to merge this search for articulation edges with
the algorithm bcomps for collecting the edges of individual components. The
following algorithm results after an obvious specialization step. Note that the
function ae now returns a set of biconnected components.

bcomps ⇐ ⋃
root(r)
r→T s

({〈r, s〉} ∪ ae(r, s)) (52)

[[u→T v]]ae(u, v)⇐ ⋃
w ∈ Adj(v)

v →T w

(if aedge(v, w) then {bc(v, w)} ∪ ae(v, w)

else ae(v, w))

Merging. It is clear from the structure of the bcomps algorithm that it would
be advantageous to merge the computations of ae and bc. We do this by devel-
oping an expression procedure for the pair

[[u→T v]] 〈bc(u, v), ae(u, v)〉.
The result of this program is a pair of sets. The first is the set of edges of the
current component accumulated thus far; the second is the set of components
accumulated thus far.

In the example below, we introduce notation for the simultaneous accumu-
lation of set. Suppose the function f returns a pair of sets. Then the notation

〈⋃,
⋃〉w∈S (f(w))
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describes a pair of sets and denotes the same result as
〈⋃

w∈S(first[f(w)]),
⋃

w∈S(second [f(w)])
〉

,

where first and second select the corresponding elements of a pair.
After substitution and simplification of Algorithms (49) and (52), we obtain

bcomps ⇐ ⋃
root(r)
r→T s

({B} ∪A where 〈B, A〉 = [[r→T s]]〈bc(r, s), ae(r, s)〉)

[[u→T v]] 〈bc(u, v), ae(u, v)〉 ⇐
〈{〈u, v〉} ∪B, A〉

where
〈B, A〉 = 〈⋃,

⋃〉w∈Adj(v)

(if v →T w then
( if ¬pathv(u, w) (53)

then [[aedge(v, w)]] 〈∅, {B′} ∪A′〉
else 〈B′, A′〉 )

where 〈B′, A′〉 = [[v →T w]] 〈bc(v, w), ae(v, w)〉
else if u = w then 〈∅, ∅〉
else if v →: w then 〈{〈v, w〉}, ∅〉
else 〈∅, ∅〉 ) .

Note that the only appearance on the right-hand side of ae and bc are in a
context where the precondition holds. We rename the pair and its precondition
to a simple name, ba.

bcomps ⇐ ⋃
root(r)
r→T s

({B} ∪A where 〈B, A〉 = ba(r, s))

ba(u, v)⇐
〈{〈u, v〉} ∪B, A, 〉

where 〈B, A〉 = 〈⋃,
⋃〉w∈Adj(v)

(if v →T w then
( if ¬pathv(u, w) (54)

then [[aedge(v, w)]] 〈∅, {B′} ∪A′〉
else 〈B′, A′〉 )

where 〈B′, A′〉 = ba(v, w)〉
else if u = w then 〈∅, ∅〉
else if v →: w then 〈{〈v, w〉}, ∅〉
else 〈∅, ∅〉 ) .

It now remains to derive a method for efficiently testing ¬pathv(u, w).

Finding Articulation Edges. In order to implement the path test efficiently,
we need a second technical lemma.



Deriving Efficient Graph Algorithms 673

Lemma 4. Let G be an undirected graph with depth-first search forest F and
let u→T v and v →T w be edges in F . Then

pathv(u, w)≡ (∃s, t)(u � t ∧ t↔: s ∧ s � w)
≡ (∃s, t)(v 
 t ∧ t↔: s ∧ s � w).

That is, there is a path from u to w avoiding v exactly when there is a frond
extending from a descendent s of w to a proper ancestor t of v.

Our goal is to compute this test efficiently in the course of a single depth-first
search. The key insight at this point is to represent the set of possible values of
t such that t↔: s and s � w by a single value — the most remote ancestor found
thus far. If this ancestor turns out to be a proper ancestor of v, then there is
indeed a path avoiding v from u (the father of v to w (a son of v).

In other words, we seek to compute something like

low (w)⇐ min� ({t | (∃s) s→: t ∧ s � w})
Unfortunately, because the elements of the set are not always pairwise compara-
ble, this minimum is not well defined. It is the case, however, that each element
t of the set is either an ancestor or a descendent of w. Furthermore, all ancestors
of w are themselves pairwise comparable since they are on the tree path from
the root to w. Since v is an ancestor of w and since we are only interested in t
that are proper ancestors of v, descendants of w can be ignored during search.
We implement this improvement by means of a simple modification to the above
specification.

low (w)⇐ min� ({w} ∪ {t | (∃s) s→: t ∧ s � w}) . (55)
The lemma (4.2) immediately implies: v 
 low (w) if and only if pathv(u, w)
(because u →T v). In other words, v →T w is an articulation edge if and only if
low (w) � v.

In order to develop a depth-first search algorithm for computing low , we
separate the computation into two stages.

low (w)⇐ min� ({w} ∪ lowset(w))
lowset(w)⇐ {t | (∃s)s→: t ∧ s � w} (56)

Lowset Computation. We observe first that {s|s � w} is exactly dfs(w).
Modifying Algorithm (23) slightly,

begin p← 0 // pre[V ]← 0; S ← dfs(r, Λ); 〈S, pre[V ]〉 end

dfs(u, v) ⇐
begin

pre[v]← p← p + 1 ; (57)
{v} ∪ ⋃

w∈Adj(u)(if pre[w] = 0 then [[v →T w]] dfs(w, v)
else if w = u then [[w →T v]] ∅
else if pre[v] > pre[w] then [[v →: w]] ∅
else [[w →: v]] ∅)

end
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Since dfs requires a parent parameter, we revise slightly our definition of
lowset .

[[u→T v]] lowset(w)⇐ {t | (∃s)s→: t ∧ s ∈ dfs(u, v)} (58)

As before, we assume u →T v. We also assume that a special value Λ is passed
for u when v is a root.

Direct substitution for dfs in the definition of lowset and preliminary sim-
plification yield the expression procedure,

[[u→T v]]{t | (∃s)s→: t ∧ s ∈ dfs(u, v)} ⇐
begin

pre[v]← p← p + 1 ; (59)
{t | (∃s)s→: t ∧ s ∈ {v}}
∪ {t | (∃s)s→: t ∧ s ∈ ⋃

w∈Adj(u)

(if pre[w] = 0 then [[v →T w]] dfs(v, w)
else if w = u then [[w →T v]] ∅
else if pre[v] > pre[w] then [[v →: w]] ∅
else [[w →: v]] ∅)}

end.

We distribute the set comprehension into the union and conditional and simplify.
In particular, three instances of {t | (∃s)s→: t ∧ s ∈ ∅} simplify to ∅.

[[u→T v]]{t | (∃s)s→: t ∧ s ∈ dfs(u, v)} ⇐
begin

pre[v]← p← p + 1 ; (60)
{t | v →: t}
∪ ⋃

w∈Adj(u)(if pre[w] = 0
then [[v →T w]] {t | (∃s)s→: t ∧ s ∈ dfs(v, w)}

else if w = u then [[w →T v]] ∅
else if pre[v] > pre[w] then [[v →: w]] ∅
else [[w→: v]] ∅)

end.

The one instance of dfs is contained in a recursive instance of the expression
procedure, so we can rename.

lowset(u, v)} ⇐
begin

pre[v]← p← p + 1 ; (61)
{t | v →: t}
∪ ⋃

w∈Adj(u)(if pre[w] = 0 then [[v →T w]] lowset(v, w)
else if w = u then [[w →T v]] ∅
else if pre[v] > pre[w] then [[v →: w]] ∅
else [[w→: v]] ∅)

end.
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We can eliminate the outermost union because of this fact:

{t|v →: t} =
⋃

w∈Adj(v)(if v →: w then {w} else ∅),
We combine this into the third arm of the condition in Algorithm (52).

lowset(u, v)} ⇐
begin

pre[v]← p← p + 1 ; (62)⋃
w∈Adj(u)(if pre[w] = 0 then [[v →T w]] lowset(v, w)

else if w = u then [[w →T v]] ∅
else if pre[v] > pre[w] then [[v →: w]] {w}
else [[w→: v]] ∅)

end

Low Computation. A similar specialization sequence is now used to transform
this algorithm into a program for low (u, v) defined

[[u→T v]] low (u, v) ⇐ min�({v} ∪ lowset(u, v)).

We obtain,

low (u, v) ⇐
begin (63)

pre[v]← p← p + 1
minw∈Adj(v)(min�(v, (if pre[w] = 0 then [[v →T w]] low (v, w)

else if w = u then [[w →T v]] ∞
else if pre[v] > pre[w] then [[v →: w]] w
else [[w →: v]] ∞)) )

end

(Here ∞ denotes a maximal vertex value in the successor ordering; note that v
would do.) An immediate simplification is to distribute the inner ‘min’ into the
conditional.

low (u, v) ⇐
begin

pre[v]← p← p + 1 (64)
minw∈Adj(v)(if pre[w] = 0 then [[v →T w]] min�(v, low (v, w))

else if w = u then [[w→T v]] v
else if pre[v] > pre[w] then [[v →: w]] min(v, w)
else [[w →: v]] v)

end
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Using Preorder Numbers. Recall that according to the lemma, if low (v, w)
is a descendent of v, then v →T w is an articulation edge. Furthermore, it is always
the case that the result of low is an ancestor or a descendent of v, so we can
test the relation using the preorder numbering. This prompts us to specialize
the definition of low to return preorder numbers rather than vertices. After
straightforward transformation, we obtain:

low (u, v) ⇐
begin

m← pre[v]← p← p + 1
for w ∈ Adj(v) do

if pre[w] = 0 then let � = low (v, w) in
begin [[v →T w]] trigger

m← min(m, �);
(if � ≥ pre[v] then [[aedge(v, w)]] )

end
else if w = u then [[w →T v]]
else if pre[v] > pre[w] then [[v →: w]] m← min(m, pre[w])
else [[w →: v]]

end.

We have added an assertion noting when articulation edges are found. Note that
there is no action for two branches of the conditional.

Collecting Components, Revisited. Armed with this efficient method of lo-
cating articulation edges, we revisit the bcomps algorithm derived earlier. That
algorithm simultaneously collects the set of biconnected components and the set
of edges in the current component. We merge algorithm with low to obtain an
algorithm that simultaneously collects edges in the current component, collects
biconnected components, and keeps track of the current low value. The resulting
algorithm, while somewhat complicated, requires time linear in the number of
vertices and edges. We start by substituting to obtain and expression procedure
for the expression 〈ba(u, v), low (u, v)〉. We then combine two conditional cases
and rename.

bcomps ⇐
begin

pre[V ]← 0; p← 0;⋃
root(r)
r →T s

({B} ∪A where 〈B, A, �〉 = balow (r, s))

end

balow (u, v)⇐
begin var m;

m← pre[v]← p← p + 1; (65)
〈{〈u, v〉} ∪B, A, m〉
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where 〈B, A〉 = 〈⋃,
⋃〉w∈Adj(v)

(if pre[w] = 0
then (let 〈B′, A′, �〉 = balow (v, w) in

if � ≥ pre[v]
then begin

[[B′ is component]]
m← min(m, �);
〈∅, {B′} ∪A′〉

end
else 〈B′, A〉)

else if pre[w] < pre[v] ∧ w �= u
then begin

m← min(m, pre[w]);
〈{〈v, w〉}, ∅〉

end
else 〈∅, ∅〉)

end.

This algorithm returns a triple instead of two nested pairs. Recall that a bicon-
nected component is a maximal set of edges that contains an articulation edge. In
the triple 〈B, A, �〉, B is the set of edges thus far in the current biconnected com-
ponent, A is the set of components collected so far, and � is the current minimum
low value. Note that at the top level � is not used in the triple 〈B, A, �〉. We now
have a linear-time algorithm for computing the set of biconnected components
in an undirected graph.

The Biconnectivity Algorithm. In many presentations of the biconnectivity
algorithm components are emitted as they as found, rather than collected explic-
itly (as in the second component of the result of balow , above). This traditional
presentation can be derived using transformations that introduce operations on
global state and eliminate corresponding operations on explicit results. This cor-
responds to the implicit/explicit distinction raised in Section 2 above.

This transformation, strictly speaking, is not of Algorithm (23) but rather
an alternative choice for state management in doing finite closure for bcomps
(e.g., Algorithm (53)). With respect to Algorithm (23), we distinguish all oper-
ations that directly change the accumulated value of the second result. There is
essentially only one place where this happens, which is when B′ is added to A′

in the innermost conditional.

bcomps ⇐
begin

pre[V ]← 0 // p← 0;
for r ∈ V do (if pre[r] = 0 then balow (Λ, r))

end
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balow (u, v)⇐
begin var m;

m← pre[v]← p← p + 1;
〈B, m〉

where B =
⋃

w∈Adj(v)

(if pre[w] = 0
then (let 〈B′, �〉 = balow (v, w) in

let B′′ = B′ ∪ {〈u, v〉} in
if � ≥ pre[v] (66)

then begin
[[B′′ is a component]]
m← min(m, �);
∅

end
else B′′)

else if pre[w] < pre[v] ∧ w �= u
then begin

m← min(m, pre[w]);
{〈v, w〉}

end
else ∅)

end
(We have in addition, “rotated” the outermost union to the callee; this allows
most of the top-level loop of bcomps to be incorporated into balow .) In this
program, bcomps is executed only for its side-effect of emitting components.

A Final Transformation. A similar transformation can be carried out to
eliminate the first result of balow . In the prior example, biconnected components
were added to the set as they were found. In this case the changes to state
corresponding to accumulation of the edge set have a stack-like discipline. This
is a result of our transformation of merging bc and ae. The difficulty is that it
is not known whether the edges found by the innermost call to balow are part
of the current component until the low value is tested.

There are three places where the accumulated set of edges is modified or used.
At two of these, an edge is added to the current set. The third, in the inner-
most conditional, results in the possible removal of a number of edges from the
accumulated set (depending on the low value). These edges are those that have
been most recently accumulated, however, and they are all distinct. The data
structure that results is thus a stack, and the following algorithm is obtained.

bcomps ⇐
begin

pre[V ]← 0 // p← 0 // stack← empty;
for r ∈ V do (if pre[r] = 0 then balow (Λ, r))

end



Deriving Efficient Graph Algorithms 679

balow (u, v)⇐
begin var m;

m← pre[v]← p← p + 1;
for w ∈ Adj(v) do

if pre[w] = 0
then begin

Push 〈v, w〉;
let � = balow (v, w) in

if � ≥ pre[v] (67)
then begin

m← min(m, �);
Pop to 〈v, w〉
[[Popped edges are a component ]]

end
else if pre[w] < pre[v] ∧ w �= u

then begin
m← min(m, pre[w]);
Push 〈v, w〉

end;
m

end

The stack-pop operation, ‘Pop to 〈v, w〉,’ pops all edges on the stack up to and
including the edge 〈v, w〉 and emits this set of edges as a biconnected component.

5 Conclusions

These derivations are intended as a step towards developing an approach to
the explication, proof, and possibly the adaptation and design of complex algo-
rithms. The underlying hypothesis is that derivation can often be more revealing
of specific design steps and their rationale than the usual textbook presentation
of a complete algorithm and proof. This hypothesis has been explored from
time to time over the past two decades, and both in textbooks and in research
papers. The derivational approach to algorithms provides a (potentially revi-
sionist) glimpse at the evolutionary process by which algorithms can be created
from simple components. This is potentially most useful to an algorithm designer
when faced with a new computational problem or architecture, providing a more
solid basis for moving forward than structural analogy with existing algorithms.
Work such as reported here on sequential algorithms led to later work in the
1980s and 1990s on the derivation of parallel algorithms such as [14] and [16].

There are challenges associated with the transformational approach to pre-
sentation. The manipulations are ultimately formal, and it continues to be dif-
ficult to suppress detail and make large steps. In a presentation (such as the
foregoing), this can inhibit the understanding of the essential structure and com-
ponents of the solution. For example, the biconnectivity algorithm results from
merging three loops. Each is informed by a particular deep fact from graph
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theory—respectively, depth-first search, articulation edges, and ancestry testing
using preorder numbers. But each is structured to enable the mering to be done.

Of course, we are still far from automating the heuristic side of the deriva-
tion process. In fact, we argue that at this point our efforts are still best directed
at discovering and exercising useful transformation techniques, developing foun-
dations for establishing their soundness, and developing tools for interactive
program development that can make appropriate use of outside domain-specific
knowledge. This capability still lacks in present refactoring tools. In a specific
problem domain, such as graph algorithms, certain facts and fundamental al-
gorithms are frequently reused. In our derivations, for example, the depth-first
search algorithms were repeatedly used as templates for the development of re-
lated algorithms.

By treating these program derivations as structured data objects in a pro-
gram development system, program modification, even when it appears pervasive
at code level (as in the last three derivation steps above) might be carried out
by making relatively small changes at the appropriate places in the derivation
structure. This is because a derivation provides a way to make certain design
decisions explicit that are not apparent or even easily deduced when only the
final code is available.
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