Data Flow Analysis of Distributed
Communicating Processes’

John H. Reif? and Scott A. Smolka®

Received June 1989; revised June 1990

Data flow analysis is a technique essential to the compile-time optimization of
computer programs, wherein facts relevant to program optimizations are dis-
covered by the global propagation of facts obvious locally. This paper extends
several known techniques for data flow analysis of sequential programs to the
static analysis of distributed communicating processes. In particular, we present
iterative algorithms for detecting unreachable program statements, and for
determining the values of program expressions. The latter information can be
used to place bounds on the size of variables and messages. Our main innova-
tion is the event spanning graph, which serves as a heuristic for ordering the
nodes through which data flow information is propagated. We consider both
static communication, where all channel arguments are constants, and the more
difficult dynamic communication, where channel arguments may be variables and
channels may be passed as messages.

KEY WORDS: Communicating processes; data flow analysis; message
passing; reachability.

" A preliminary version of this paper appeared in the proceedings of the Sixth Annual ACM
Symposium on Principles of Programming Languages, pp. 257-268, June 1979.

? Supported by National Science Foundation Grant NSF MCS82-00269 and the Office of
Naval Research Contract N00014-80-C-0647. Author’s address: Department of Computer
Science, Duke University, Durham, North Carolina 27706.

*Supported by National Science Foundation Grants NSF DCR-8505873 and
NSF CCR-8704309. Author’s address: Department of Computer Science, SUNY at Stony
Brook, Stony Brook, New York 11794-4400.

1
Preprint of paper appearing in International Journal of

Parallel Programming, Vol. 19, No. 1, February 1990.

2 ' Reif and Smolka

1. INTRODUCTION

1.1. The Problem

We consider a collection of processes, each sequentially executing a distinct
program and communicating by the transmission and reception of
messages. We assume that there is no interference between processes by
shared variables, interrupts, or any other synchronization primitives
beyond the message primitives.

Various channels are availabe for communication among processes,
and each channel has a unique process which is the destination of messages
transmitted via this channel. Communication among processes is static if
the channel arguments to message primitives are constants, and otherwise
is dynamic. Hoare's CSP!"! is a language proposal incorporating static
communication, while NIL,'?" a high-level systems programming language
developed at IBM Research, Yorktown Heights, uses dynamic communica-
tion. Dynamic communication can also be found in the process calculi of
Refs. 3 and 4. We consider both static and dynamic communication,

We assume semantics for message passing where the process transmit-
ting a message need not wait until reception of the message, and thus an
unbounded queue of yet-to-be-received messages is associated with each
channel. This type of asynchronous message passing is used in NIL and in
the distributed programming language PLITS.*®

Message passing in CSP is synchronous: the transmitter of a message

M is required to wait until acknowledgement of reception of M. This kind
of communication is difficult to implement due to synchronization
problems which arise. Reif and Spirakis® give real-time randomized
algorithms for achieving the required synchronization.
We are interested. in data flow analysis of communicating processes: the
discovery of facts about distant processes and propagation of these facts
across process boundaries. To our knowledge, Reif ") was the first paper on
this topic; of which, this paper is an expanded version. An analysis problem
of particular interest here is reachability: Can a given program statement
ever be reached in some execution? Reachability is perhaps the most
fundamental of data {low analysis problems. If a program statement » in a
process P is unreachable, then an attempt by process P to reach n will
result in a deadlock. We are also concerned with the problem of detecting
the values of program expressions. This information can be used to place
bounds on the size of variables and messages.

Our solution method does not in general yield an optimal approxima-
tion to the data flow analysis problem, particularly for models in which
processes communicate over ordered message queues. However, our techni-

Data Flow Analysis of Distributed Communicating Processes 3

que is sound and efficient (in fact our algorithm for reachability analysis in
the case of static communication runs in time linear in the program size).
We view our solution method as a means to a useful first approximation
to the data flow analysis problem, a technique one would use before
submitting a program of distributed communicating processes to more
sophisticated and expensive analysis methods.

1.2. Our Solution

Section 2 describes our flow graph model for systems of communicat-
ing processes. The potential flow of control of each process's program is
represented by a flow graph, as is usual in data flow analysis.®’ In a flow
graph, conditional branches, from the original program are replaced by
purely nondeterministic btahches This model allows for all executions
valid in the usual semantlds of communicating processes, but also may
allow for additional, spurlous executions. Of course, a statement
unreachable in our model isjalso unreachable in the usual, more powerful
semantics in which conditiopals are interpreted. Thus our resulting data
flow analysis techniques are conservative.

Note that we are notinecessarily interested here in models strong
enough for correctness probfs Instead we desire reasonable models for
which analysis algorithms e)pst and are powerful enough to be useful for
practical situations of progr#m analysis.

As an aid to our flow analysis, we define in Section 3 a special directed
acyclic graph called an event spanning graph. It contains a spanning tree of
each process’s flow graph, as well as certain edges (called message links)
connecting pairs of transmit and receive statements between which a
message can be sent. Importantly, if no event spanning graph exists,
then_some program -statement is unreachable. The converse, however, is
not necessarily true. Section 3 presents a linear-time algorithm for con-
structing, when possible, an event spanning graph for the case of static
communication.

In Sectiond, we describe an iterative technique for communicating
processes with static communication that determines the values of program
expressions. This generalizes a technique for data flow analysis of sequen-
tially executed programs due to Hecht and Ullman.'” Their algorithm
repeats (until convergence) a pass through the flow graph of a single
program, in topological order of its depth-first spanning tree. Our
proposed algorithm repeats a pass through all the flow graphs of a set of
communicating processes, in topological order of their event spanning
graph.

Section 5 extends our data flow analysis to the case of dynamic

‘4 Reif and Smolka

communication. We present an algorithm that builds an event spanning
graph while simultaneously determining the values of program expressions,
Section 6 concludes.

1.3. Related Work

Since the publication of Reif,!” Cousot and Cousot'® have developed
a semantic analysis technique for CSP programs that can be used as an
invariance proof technique or for data flow analysis.

More recently, Peng and Purushothaman? have proposed a data
flow approach to analyzing networks of two communicating finite state
machines for non-progress properties (deadlock and unspecified reception).
They consider FIFO message buffers as opposed to the unordered message
buffers considered here. However, their approach involves the construction
of the network’s product machine, while the complexity of our analysis
algorithm is linear in the size of the network description.

Schlichting and Schneider!'?’ have developed a deductive proof system
for a model of distributed communicating processes similar to our own.
Furthermore, the predicate transformers they use for communication
Statements are similar to the ones we use for data flow analysis. Their
technique is intended for correctness proofs rather than data flow analysis,
and is not mechanizable. Other related work includes Ref. 13.

A companion paper by Reif and Smolka,!® investigates the com-
plexity of reachability for several models of distributed communicating pro-
cesses.

2. THE FLOW GRAPH MODEL FOR COMMUNICATING
PROCESSES

We describe here a flow graph model for a system of processes
{P1,.. P,}. These processes intercommunicate over channels having names
taken from the set C. Each process P; sequentially executes a distinct
program represented by flow graph G,= {N,, E;, 5;>. Each node neN,
corresponds to a single (non-control) program statement, and is labeled by
an assignment, transmit, receive, or no-op statement. The edge set
E;S N;x N, consists of pairs of nodes between which control may transfer.
An execution path of G, is a path of G, beginning at the start node s, (see
Fig. 1 for an example).

To simplify the definition of reachability here we assume, without loss
of generality, that each start node 5; is labeled by a no-op statement.

Data Flow Analysis of Distributed Communicating Processes 5

‘2.1, Informal Syntax and Semantics of Communicating
Processes

Process P, may execute program statements of the form:

(1)

(2)

(4)

Fig. 1.

Assignment statements “X e E” where X is a program variable
local to P, and 'E is an expression. This statement has the usual
effect of setting X to the result of evaluating E.

Transmit statements “TRANSMIT (E,, E,)” where expression
E, must evaluatg to a message channel ce C, and E, evaluates to
the message to be transmitted, say M. The message M cannot be
a pointer value, but is otherwise unrestricted. In particular, M
can be a communication channel (in the case of dynamic com-
munication). E,.may be absent, in which case some fixed default
message is senf. The transmit statement is assumed to be
executed without delay, regardless of the number of messages
previously transmltted over channel c.

Receive statemems “X « RECEIVE (E)” where E must evaluate
to a communication channel ce C, and X is an optional program
variable local to‘P assigned the value of the message received. If
no message is i;n the message queue for channel ¢, then the
receive statemanli s execution is blocked until a message is trans-
mitted over chaninel c.

No-op (emptT s’tatements will also be allowed.

i,’
b
11'
i

A\

n
3

The above flow graph has execution path (s, ny, ny, ny, ny), among others.

6 Reif and Smolka

Control statements are not found in N; since the control flow is
specified in our model by the edges of flow graph G;. The sets of program
variables local to distinct processes are disjoint, and are assumed to have
no shared values. Thus, there is no interference between processes except
that induced from our message primitives.

2.2. Formal Semantics of the Flow Graph Model

We present a description of the operational behavior for our flow
graph model of communicating processes. We refer to this model as M,
and it is distinguished by the fact that messages are received in the order
they are transmitted. A weaker model, M 1» will be presented next,

We assume a common value domain ¥ = Num L C for each process in
the system. Here Num = {0, 1, 2,...} and C is the set of channel names. Any
other domain can be substituted for Num, if so desired. Thus variables in
our language will be of type Num or channel.

We assume that programs to which we apply our data flow analysis
techniques are well-typed. For a program to be well-typed, the first argu-
ment of a transmit statement and the lone argument of a receive statement
must evaluate to channels in C. Such “channel expressions” are restricted
to be channel variables or channel names, in the case of dynamic com-
munication, and to channel names only in the case of static communica-
tion. For a program to be well-typed it must also be the case that:

(1) The type of the expression on the right-hand side of an assign-
ment statement matches the type of the variable on the left-hand
side. '

(2) “Semantically matching” transmit and receive statements agree
on type. A transmit statement 7 and receive statement R seman-
tically match if T transmits a message M along channel ¢ and R
receives M from c. 7 and R agree on type if the type of M
matches the type of the variable on the left-hand side of R,

Let {P,,.., P,} be our system of processes, and let G, be the flow
graph of the program executed by P, 1<i<r. Also, let Var, be the set of
variable names local to process P,. We can formally describe the state of
the system at any point in its execution in terms of a global state

S=nyn,) [y, m,], {b.|ce CchH
Here:

n;e N, is process Ps current node.

Data Flow Analysis of Distributed Communicating Processes 7

m;: Var,— V L {unbound} is P's memory function, which performs
the usual mapping of identifiers to values. We extend m, to expressions
by letting m,;(E) denote the value of expression E based on the
bindings in m,.

b.e V* is the current buffer contents associated with channel ce C.
Intuitively, b, describes the sequence of yet-to-be-received messages
transmitted over channel c.

The concurrent execution of a system of communicating processes
proceeds as the “evolution” of one system global state into another. Such
evolution involves the execution of exactly one program statement labeling
a flow graph node. The execution of a statement is assumed to happen
instantaneously and is referred to as an event. We use e,, e,,.., to denote
events. System evolution is nondeterministic: any enabled statement may be
executed next. Assignment, transmit, and no-op statements are always
enabled, ie. in any global state. A receive statement is enabled in global
state S only if b, #¢ (the empty channel), where the channel argument to
the receive statement evaluates to c.

Notation: Let f: D, — D, be a function. Then, f[d,/d,], d, €D, and
d,e D,, denotes the function that is everywhere the same as f, except
possibly on d, where its?value is d,.

Definition 1. B‘I,qtlk% §=<Q=[n,.nl], M=[m,..,m], B=
{b.lceC}) be a global st \tel Then S can evolve through event e = n) into
global state S' = Q' =[n,,l;n, _(,nj,n,, \,un], M, B iff n; is enabled
in S, (n,, n}) is an edge in ﬂ?w graph G,, and
if e=“X « E” then k|

M’ equals M with m, replaced by m;[m,(E)/X], ie. X is now bound

to the value of expression E, and B’ equals B.
if e=“TRANSMIT (E,, E,)” then

M’ equals M and, assuming E, evaluates to ce C, B’ equals B with b,

replaced by append (m;(E,), b,); ie., the value of expression E, is

appended to the rear of buffer 4.
if e="X « RECEIVE (E)” then

assuming E evaluates to ¢, M’ equals M with m, replaced by

m;[head(b.)/X]; i.e. X is now bound to the value at the head of buffer

b.. Also, B equals B with b, replaced by rest(b,), i.e. the head element

of b is removed. |J

An execution is a possibly infinite sequence of global states
So, 81, S5,.., such that S is the initial global state

S = {[81r 8.1, [m, <= unbound,..., m, < unbound], {h,=¢|lceC})

8 Reif and Smolka

and S; can evolve into S, ,, i >0. Regarding S,,,, recall that s, is the start
node of G, and by convention is labeled with “no-op”; unbound is the
everywhere unbound function (thus, all of memory is initially undefined);
and ¢ represents the empty sequence (thus, all buffers are initially empty).

In general, a system of communicating processes may have many
possible executions. We say that global state S is reachable if it is contained
in some execution. Flow graph node q in G, is reachable if there exists a
reachable global state S= {Q, M, B such that the ith element of Qisgq.

Note that any execution of events is consistent with the following
partial order:

(1) Events associated with process flow graph G, form a sequential
execution of G,.

(2) I e, is an event resulting from the execution of statement
“RECEIVE (E),” and E evaluates to channel c, then e,.. must be
preceded by a unique event e, resulting from the execution of
a transmit statement whose first argument evaluates to channel ¢
and whose second argument evaluates to the message received. In
addition, we have that if e, e, are events resulting from the
reception of messages M, M,, and ¢, ¢, are the corresponding
transmit events, then e, precedes e, implies) precedes e5.

The resulting semantics are nondeterministic in the sense that two
simultaneous message transmissions by two processes over the same chan-
nel must arrive in sequential order, but we make no assumptions about this
order. We note that the above semantics could also have been presented
using a Plotkin-style operational semantics''> or Petri nets (see Ref. 16),
where analogous notions of reachability have been defined.

In flow graph model M, no assumptions are made about the order in
which messages are received, and a receive statement does not delete a
message from the specified buffer; it simply copies the message. Such
semantics correspond to “bulletin board” style message delivery. Thus in
M,, sets of values from V are used to represent the message buffers, ie.,
b.e2". Here 2" is the power set of V. Also, the definition of system evolu-
tion changes as follows:

(1) For e="TRANSMIT (E,, E,),” the new buffer state B’ becomes
B with b, replaced by b.um,(E,); ie. the transmitted value is
added to the previous set of values,

(2) For e="X« RECEIVE (E),” M’ becomes M with m, replaced
by m,[v/X], for some veb,; ie. X gets bound to any one of the
values in b,. Since no message is deleted, B remains the same.

Data Flow Analysis of Distributed Communicating Processes 9

In Ref, 14, we consider the complexity of testing unreachability of flow
graph nodes. In the general case of dynamic communication, we show that
the reachability problem is undecidable. Even in the case of static com-
munication, testing reachability is decidable but requires exponential space,
infinitely often, in model M,; and is NP-complete in M,. In the next sec-
tion we give an algorithm that provides a sufficient test for unreachability
in models M, and M, under the assumption of static communication. This
approximation has the advantage of being polynomial (lincar) time.

3. EVENT SPANNING GRAPHS

In this section we present an algorithm that attempts to construct the
event spanning graph of a system of communicating processes (not every
system has one). When successful, the resultant event spanning graph will
be used to guide the data flow analysis (Section 4). When unsuccessful, we
can conclude that some flow graph node is unreachable.

A message link is an ordered pair of transmit and reccive statements
that specify the same channel. Static communication is assumed
throughout this section: the channel argument to any transmit or receive
statement labeling a flow graph node n is a constant ¢(n). Thus we may
statically determine the set ML of all message links. (Since the number of
message links may be quadratic in the size of the process flow graphs, for
efficiency the set ML is never explicitly constructed by our algorithm.)

Fix G;,=<{N,, £, s,-)! 1<i<r, as the process flow graphs. Let N=
U1 <i<r N; be the set of ;a]; flow graph nodes. Then the event spanning graph
is the directed acyclic gta?h"s ESG{N, EUML) where E=J,¢,<, E;, such
that: [

{
(1) Let ESG, be the subgraph of ESG induced by dropping all nodes
but those of N, and deleting all edges except those between nodes
of N,, 1 <i<r. Then, ESG, is a spanning tree of G,.
(2) For each node ne N labeled by a receive statement, there is a
path in ESG from some flow graph’s start node to n containing
a transmit statement communicating over the same channel as n.

Intuitively, the event spanning graph may describe, for each ne N, an
execution in which n may be reached. Restriction (1) insures that n is
reachable within the flow graph containing a. Restriction (2) attempts to
insure that at least one message is transmitted for each receive statement.
In model M,, this is sufficient to guarantee the reachability of all
statements; in M,, this is not necessarily the case. The event spanning
graph is exemplified in Fig. 2.

Not every system of communicating processes has an event spanning

10 Reit and Smolka

graph. A minimal set N,< N of receive statements is a blocking set if for
each transmit statement me N with the same channel argument as an
element of N,, all execution paths from a start node to m contain some
element of N,. An example blocking set is given in Fig. 3. It is easy to show:

Proposition 1. There is a nonempty blocking set N, if there is no
event spanning graph.

Lemma 1. For models M, and M|, if there is no event spanning
graph, then some flow graph node ne N is unreachable.

"password” 5'2 = ‘)

no= [TRANSMIT (e, x) My ¢ { Y ®—RECEIVE (o)
1

n,= ECEIVE (cz) -'“2“

;

il

|
Lz
l

o g——ou

Fig. 2. Portions of flow graphs G, and G,, with the corresponding portion
of an event spanning graph ESG.

Data Flow Analysis of Distributed Communicating Processes 11
start: s = D— start: s, = O_—__

ny,= RECEIVE (cl) ma= RECEIVE (c2 }

v A4

- () m =()
n, TRANSMIT (c,))— 5 TRANSMIT (C ;) Joed

Fig. 3. The set B={n,,m,} is a blocking set of the program flow graphs illustrated.

Proof. By the Proposition, there must be a nonempty blocking set
N . For the sake of contradiction, suppose some n € N is reached in some
execution and no other element of N, is reached before n. Since n is a
receive statement, by definition of ESG there must be an execution of a
transmit statement m over the same channel as n previous to the first
execution of n. This implies that in the {low graph G, containing m, there
is a path from the start node of G, to m which contains no element of N.
This contradicts the assumption that N is a blocking set. |

Simple counter examples shows that the converse of Lemma ! does
not hold. What follows is an algorithm for constructing either an event
spanning graph or a blocking set.

Algorithm A

INPUT: Process flow graphs' G, = <N;, E;,5;>,1<i < r, with the set
of program statements N = UN;; and message channel set C'.

OUTPUT: If an event spanning graph exists then its edge set ES, and other-
wise a nonempty blocking set Ny {Np may not be unique).

INITIALIZA TION:
Q@ «— 0

for each n € N do
I(n)+«~ {m €N | m immediately succeeds n}

if n is a start node then
add n to @
VISIT (n) + true
else

VISIT (n) + felse

end for

12 Reif and Smolka

for each channel ¢ € C do
WAIT (¢) « true
WAITING (¢) — 8
TALKER (¢) « null

end for

ES — @

Procedure VISIT-NEXT(n, S)

for eachm € S do
if VISIT (m) == false then
VISIT (m) + true
add (n, m) to ES
add m to @
end if
end procedure

MAIN LOOP:

until @ = @ do -- @ is the set of states still to be visited.
choose and delete some n € Q
if n is a transmit statement then
VISIT -NEXT (n, T'(n))
if WAIT (¢ (n)) then
TALKER (c(n)) «n
Q@ —Q U WAITING (¢ (n))
WAITING (c(n)) « @
WAIT (c (n) « false
end if
end if

if n is a receive statement then
if WAIT (¢ (n)) then
add n to WAITING (¢ (n))
elae
add edge (TALKER (¢ (n})), n) to ES
VISIT -NEXT (n, I'(n))
end if

if n is neither a receive nor transmit statement then
VISIT -NEXT (n, T(n))
end until

BLOCKING SET TEST:
for each channel ¢ € ¢ do
Ng «— Ng U WAITING (¢)
if Ng = @ then

return event spanning graph £ESG = <N,ES>
else

return blocking set Ny

Data Flow Analysis of Distributed Communicating Processes 13

In Algorithm A, a node ne N has been “visited” if VISIT (n) has been
set to frue. Initially, only the start nodes have been visited. It is easy to
verify that for each channel ce C, if no transmit statement over ¢ has been
visited, then

(1) TALKER (¢)=null
(2) WAITING (c) contains all receive statements over channel ¢ so
far visited.

Otherwise, when n is the first transmit statement visited with ¢(n) = ¢, then

(') TALKER (c) is set to n, and

(2') Each receive statement m in WAITING (c) is put back in @, and
WAITING (c) is set to . When each such m is revisited, edge
(n, m) will be added to ES. Similarly, edge (n, m’) is added to ES
for any other receive statements m’ over channel ¢ visited subse-
quently.

Theorem 1. If an event spanning graph exists, then Algorithm A
returns one; else it returns a nonempty blocking set.

Proof. 1t is easy to verify that if Ny= (&, Algorithm A returns an event
spanning graph. On the other hand, suppose Algorithm A returns a non-
empty blocking set Ny={J.cc WAITING(c). We claim this is a blocking
set. Suppose not. Then there exists a receive statement ne N,, a transmit
statement m communicating over the same channel ¢ as n, and a path p in
a flow graph G, from start node s; to m avoiding all elements of Ny. In
Algorithm A, s, is initially visited and added to Q. Furthermore, all other
elements of p are also eventually visited and added to Q, including m. Thus
WAITING (c) is eventually set to J and remains empty till termination.
This contradicts the assumption that ne N.

Termination of Algorithm A is guaranteed since an element ne N is
added to Q at most twice, and an element of Q is deleted at each iteration
of the until loop. In particular, a non-receive statement is added to Q at
most once, and a receive statement may be added twice, the second time
occurring after an appropriate talker has been found. |

As alluded to above, the computational complexity of Algorithm A is
O(|N| + |El) time. This can be seen by noticing that the main loop is
executed O(|N|) times, and that O(|N|) message links are added to ESG.

14 Reif and Smolka

4. DATA FLOW ANALYSIS OF COMMUNICATING PROCESSES
WITH STATIC COMMUNICATION

Data flow analysis yields information about a program. This informa-
tion is in general too weak for program correctness proofs, but it is suf-
ficient for the usual compile-time optimizations. For example, it may be
discovered that certain program variables or expressions always evaluate to
constants; hence the compiler may substitute single load instructions for
more complex sequences of instructions which compute the same constant
value. (Hecht™® is an informative text on data flow analysis of sequential
programs.) Here, we extend such data flow analysis techniques to the
analysis of concurrent programs with static communication. Hence our
value domain for program variables is simply V= Num; ie. variables
cannot take on channel names as values.

4.1. A Data Flow Analysis Framework

We present a general data flow analysis framework similar to the ones
in Refs. 8, 17 and 18. We then customize this framework for the purpose of
determining the values of program expressions in a system of communicat-
ing processes. The results we obtain are as strong as possible for model
M, where message delivery is unordered, in that one cannot do better with
symbolic execution. For model M, where messages are delivered in order,
our results are “conservative” (see Section 4.3).

Let D be a set of predicates. We assume a semi-lattice (D, | |), where
LI: D* - D, the usual lattice join operation, is associative, commutative,
and idempotent. with respect to D. We require || to be the following
weakening of logical disjunction:

Yp, ge D:if p or ¢ holds, then pLig holds.
The lattice partial order = is defined as:
Vp.qeD:p = qiff pug=gq.
Note that = is the restriction of logical implication to D:
Vp,qe D: p = qiff p implies q.

We assume that D contains FALSE and TRUE as minimum and maximum
values, respectively. So FALSE — p and p c TRUE,VpeD. Also, we

define the strict ordering — such that:

p = qholds in D iff p = ¢ and P#q.

Data Flow Analysis of Distributed Communicating Processes 16

We assume that (D, |]) is of finite length, containing no infinite strictly
increasing chains p, = p, = ---. Finally, we say that a function f/: D —» D
is monotonic if f(p) = f(p') for all p, p’ such that p — p’. Similarly,
g: D? - D is monotonic if g(p, g) = g(p'. ¢'), for all p, p’ and g, 9" € D such
thatp z p'and g = ¢'.

For the flow analysis of communicating processes, we consider a family
of domains D,,, each member of which is a domain of membership func-
tions. Let Var be a set of program variables, V the set of values over which
these variables may range, and S a subset of V. Then D,(Var) is the
domain of functions p: Var —2" such that p(X)=S means that during
execution, the values assumed by program variable X are members of the
set S. We often represent p, in the obvious way, as the set of pairs {(X, S)},
and refer to S as the “value set” of X.

Note that D,, is parameterized by the set of variable names over
which a membership function may range. For systems of communicating
processes {P,.., P,}, we will consider domains D,(Var,),.., Dy(Var,).

We assume that all membership functions p in D ,,(Var) are total, and
that for each variable X e Var, |p(X)| is bounded by a constant k,. The
latter assumption is necessary to ensure termination of our data flow
analysis algorithm. We believe that this assumption is justifiable since
many distributed programs are finite-state, synchronization and coordina-
tion protocols in particular. If not, then various approximation techniques
can be used. For example; by modifying our approach slightly, it can be
used to determine whether the value of a program variable is undefined,
equal to a constant valye &, or nonconstant.

Given p, g€ D ,(Va_fr)j,} the join operator | |, produces the function:

PUnm é(X) = p(X)uq(X), VX € Var.

The relation p =, g holds for p,ge Dy (Var) if for all X in Var,
p(X) < q(X). Since the domain and range of each function in D ,,(Var) is of
bounded size, the semilattice (D,,(Var), | |,,) is of finite length. Its least ele-
ment is the constant function ¢, and its greatest element is the constant
function V.

4.2. Predicate Transformers for Flow Analysis
of Communicating Processes

With each node n of a process flow graph we need to associate a
function that produces an output membership function from an input
membership function. We can think of this function as a “predicate trans-
former,” since it transforms predicates of the form value(X)e S into

16 Reif and Smolka

predicates of the form value(X)e S'. The nature of the transformer
depends, of course, on the type of statement labeling n. As we will show
(Proposition 2), all transformers are monotonic functions.

Notation. Let E denote an expression having free variables D STND. ¢
Then, E[v,/X|,.., v,/X,] denotes the value of E when X, is bound to v,
1<igk.

Let n be labeled by the assignment statement “X « E.” where E is an
expression involving program variables X,,.., X,. We associate with n the
function 4,: Dy(Var) - D,,(Var), weakly describing the change of state
on execution of program statement n. (4, is often referred to as the “trans-
fer function” of n.) More precisely, if pe D,,(Var) holds just before the
execution of n, then 4,(p) holds on exit from . (4,(p) need not be the
strongest such predicate, as would be required in Hoare logic.) 4, is
defined as:

4,(p)= pLS/X] (see Section 2.2 for an explanation of this notation)

where S= {E[v,/X,., v,/X]v,€ p(X)), | ik}

Intuitively, the new value set of X is obtained by taking all possible
evaluations of E based on the incoming value sets of Xy Xi. For
example, let n be labeled by “X « Y + X.” Then

A::({(Xa "1*2})a (Y, {2})})= {(X’ {4’ 5})’ (Y’ {3})}

That is, if X is known to be either 1 or 2 and Y is known to be 3, then after
execution of the statement “X « Y+ X,” the variable X may be either 4
or 5.

In order to describe the functions associated with nodes labeled by
transmit or receive statements, we introduce an auxiliary variable M eV,
for each channel ce C. Intuitively, M, =S means that channel ¢ may con-
tain any of the values in S, S< V. Furthermore, just as we had a separate
domain of membership functions D, Var,) for each process P;, we will
have a separate domain of membership functions for each channel c. Let
AV, denote the singleton set containing auxiliary variable M., Then
Dy, (4V,) is the domain of membership functions g: 4V, — 2¥. Our objec-
tive will be to compute a ¢ such that g(M,) records the “history” of all
values transmitted over channel ¢ during the lifetime of the program.
Membership over auxiliary variables directly mimic the message passing
semantics of model M,, where a set rather than a queue is used as the
channel data structure.

Let n be labeled by the transmit statement “TRANSMIT (¢, E),
where ce C and E is an expression as before. We associate with n the

Data Flow Analysis of Distributed Communicating Processes 17

function 1,: D(Var)— D,(AV,), describing the value of the message
transmitted by n. Let p belong to D,,(Var). Then

7,(p) = g such that g(M)= {E[v,/X ... v/ X]| v;€ p(X), 1 <i<k]}.

Intuitively, the value of the message transmitted may be any of the
possible evaluations of E. For example, let n be labeled by “TRANSMIT
(¢, X*Y).” Then

w({(X, {2,3}), (Y, {4})}) = {(M., {8, 12})}.

Finally, let n be labeled by the receive statement “X « RECEIVE (c¢),”
where ce C. We associate with » the function p,: D, (Var)x Dy, (AV,.) —
D, (Var), such that if pe D,,(Var) and qe D ,(AV,) hold on input to n,
then p,(p, g) holds on output from node n:

pa(p,q)=plg(M .)/X].

Intuitively, X can assume any of the values ever transmitted over
channel ¢. For example, let n be labeled by “X « RECEIVE (¢).” Then

pal{(X, {1,2}), (Y, {SH} {(M, {3,4})}) = {(X, {3,4}). (Y, {5})}.

Propositon 2. Functions 4,,t,, and p, are monotonic, for all
flow graph nodes n.

Proof. Consider first %A,,: D, (Var)— D,(Var) for node n labeled
by “X« E” Assume that variables X,,.., X, appear free in E. Let
p.ge Dy (Var) such that p=,q. Since pr,q implies p(X))s
q(X)., (X)) € g(X,), we have that 4,(p)(X) < 4,(9)(X). Given that the
function returned by 4,(p) is the same as p except possibly at X, we have
shown that 4,(p) = 4.(9).

The proof for z,, is similar for that of 4,,. Consider next p,: D,,(Var) x
Dy (AV,.) > Dy(Var) for node n labeled by “X « RECEIVE (c).” Let
p,p'eDy(Var) and q,q €D, (AV,), such that p=, p' and g = ¢
Since g =, ¢ implies g(M,)<q'(M.), we have that p,(p,g)(X)s
Pa(P's ¢')(X). Given that the function returned by p,(p, ¢) is the same as p
except possibly at X, we have shown that p,(p, q) =\ 0.7, q"). |}

4.3. Data Flow Analysis Algorithm
The objective of our data flow analysis is to compute for each program

statement n € N, the membership functions /P, (Input Predicates) and OP,

82819 1-2

18 Reif and Smolka

(Output Predicates) belonging to D,,(Var,), assuming # is a node of flow
graph G;, where

(i) 1P, holds on input to » for all executions.
(ii) OP, holds on output from » for all executions.

Let C be the set of channels occurring as arguments to transmit
and receive statements. For each channel ce C, we wish also to compute
MP.eD,(AV,) (Message Predicate), recording all messages sent over
channel c.

Specifically, we wish to compute IP, and OP, for each flow graph
node ne N, and MP, for each channel ceC, satisfying the following
recursive equations:

(1) IP,=|], OP,, where the join is taken over the set I"~(n) of all
immediate predecessors nt of n.

| 1P = FALSE
Y - |
4 IP = {(Y,{1,2,10))} .
"Q% RECEIVE (c;) ' MP, = (M, (2,10]))
1 1
5. IP = {(Y,(2,10)))
| TRANSMIT(CZ,S) j
2 IP = FALSE
X - |
N P = {(X,[L,5)H)
TRANSMIT (¢, 2¥X) MP = [(M_,(5h)
. B €2
6. P = (X, {15}

‘_(X <+— RECEIVE (cz)'

Fig. 4. An example program annotated with minimal solutions to
data flow equations (1)-(3).

Data Flow Analysis of Distributed Communicating Processes 19

(2) OP,=1IP,if nis a node labeled by a transmit statement;
=p,(IP,, MP) if n is labeled by a receive statement;
=A4,(IP,) otherwise.

(3) MP. =], 1,(IP,), where the join is taken over all transmit
statements ne N with channel argument ¢ = c(n).

It is easy to show that this system of equations does not have a unique
solution. We desire the least solution, which gives us the most specific
information about the values of program variables. We obtain this
iteratively, starting with an approximation that is too small and work up.
An example of the data flow analysis problem is given in Fig. 4.

Recall that an event spanning graph of the last section is acyclic and
has node set N, the set of all flow graph nodes. A ropological ordering of
an acyclic directed graph is a total ordering of its node set that is consistent
with its original partial order. A topological ordering can be easily com-
puted in linear time as described in Ref. 19.

We now present an algorithm which repeatedly computes approx-
imations to the previous data flow analysis equations. In each pass, the
algorithm visits each node in topological order of an event spanning graph.
Any topological ordering may be used; in fact, any ordering will suffice.
However, very often convergence is obtained more quickly if a topological
ordering of the event spanning graph is used. This point is discussed further
below. .

Algorithm B ‘

i
INPUT: Process flow graphs G; = <N;, E;, s; >, 1 < i < r, with the set
of program statements N = U N,; message channel set C; an event spanning

graph ESG; and the functions A,, r,, p, defined appropriately for each
n €N.

OUTPUT: Minimal IP,, OP,, MP,,foralln € N, ¢ € C, satisfying data
flow equations (1), (2), and (3).

INITIALIZATION:
for each n € N do
IP, +~ FALSE
OP, — FALSE
end for

for each channel ¢ € C do
MP, — FALSE

MAIN LOOP:
until no change in any IP,, OP,, MP, do

20 Reif and Smolka

for each n € N in topological order of ESG do

for each immediate predecessor m of n do
IP, «~ IP, ||y OP,

if n is a transmit statement then
OP, ~ IP,
MPc(n) - MPc(n) Il a7 (IPy)
end if

if n is a receive statement then
OPn i pn(IPn1 MPc(n))

if n is neither a receive nor transmit statement then
OP, — A, (IP,}

end for
end until

The behavior of Algorithm B is illustrated in Table I on the data flow
analysis problem of Fig. 4. In Fig. 4, the numbering of the nodes indicates
the topological sort of the network’s event spanning graph that we use to
carry out the analysis. We use this node ordering to associate a node with
each row of the table. The columns correspond to the various membership
predicates. Table I shows how the values of the membership predicates
change as the nodes are visited in topological order, iteration by iteration.
Within an iteration, each table entry contains the value of the membership
predicate immediately after the calculation of the node’s input membership

Table I. Simulation of Algorithm B on the data flow
analysis problem of Fig. 4.

1P, P, 1P 0P 1P, OP, MP, MP,
{1} o) (%] 1%} %] %] 63 1]
m {2}
{2
{2} {1} {5}
{1. 5} {5}
- (2,10}

AW A BRW VAW
[38]

Data Flow Analysis of Distributed Communicating Processes 21

predicate and just before the application of the node’s predicate trans-
former. Only nodes 3 through 6 are considered (the behavior of nodes |
and 2 is not very interesting), and only a single value set is given for each
membership predicate. This should cause no confusion as the first process
has only the program variable Y, and the second process has only the
program variable X. For readability, a membership predicate’s value set is
given only when it assumes a new value.

Table I contains the execution of the first three iterations of the
algorithm; there is no change to any of the membership predicates in
iteration 4, after which the algorithm terminates.

Theorem 2. Algorithm B is correct: it always terminates and, upon
termination, data flow analysis equations (1)-(3) are satisfied.

Proof. Data flow equations (1)-(3), directly encoded by the if
statements of the main loop, define a system of mutually recursive equa-
tions over the semilattice (D,,, | |»). Furthermore, all operators in this
system are monotonic (Proposition 2). Since all variables (ie. IP,, OP,,
and MP_, neN, ceC) are initialized to FALSE (the least element of the
domain), fixed-point iteration must yield their least fixed points. The finite
length of (D,,, | |4) ensures that this iteration is finite.

To determine the computational complexity of Algorithm B, let ML
be the set of all message links, let £ be the set of all edges in the process
flow graphs G,,..., G,, and let K be the total number of program and chan-
nel variables, ie. K=Y, ., ¢; |Var}+|C|. Clearly, each iteration of the
until loop requires O(|N| + | E|) operations. In the worst case, Algorithm B
converges after |N| A iterations, where A=K |V/|. Intuitively, it takes at
most |N] iterations to propagate a newly generated value from one flow
graph node to any other, and in the worst case this value increases the size
of exactly one variable’s value set. Thus, the total time cost is at most
O(INI(IN| + | E]) 4).

We expect that the number of iterations actually performed by Algo-
rithm B to be considerably less than |N| A. Consider a value v generated
(by an assignment statement) at flow graph node n. By using an event
spanning graph ESG, the number of iterations required to propagate v
locally, i.e. to a node m where n and m are in the same flow graph G, is
minimized. This is because the subgraph of ESG on nodes and edges only
in G, forms a DFST (depth-first-search spanning tree) of G,. From Ref. 20,
we know that v can be propagated from n to m in at most d; iterations,
where d, is the depth of G,. (Let D be a DFST of a flow graph G. Then
the depth of G is the largest number of retreating edges along any cycle-free
path in G.)

22 Reif and Smolka

Regarding the propagation of value v globally, ie. to a node m in a
flow graph different from the one in which n resides, each message link in
ESG reduces by one the requisite number of iterations.

As mentioned earlier, the results obtained using Algorithm B are as
strong as possible for model M. That is, they cannot be improved upon
by any other symbolic execution technique. This is not necessarily true for
model M, where it is assumed that messages are received in transmitted
order: variables M P, are sets and thus do not maintain the ordering infor-
mation. Our results are, however, conservative: IP,(X)= S guarantees that,
upon entry to flow graph node n, the values assumed by X during execu-
tion form a subset of S. In terms of our semantics of Section 2.2, we require
that, for any reachable global state S= ([n,,..,n,], [m,,.., m,], B) such
that n is an immediate successor of n,, m,(X)e IP,(X), where X € Var, and
neNn, :

To see why Algorithm B is conservative, refer to the data flow equa-
tions given at the beginning of the section (Algorithm B computes the least
fixed point of these equations). Equations (1) and (2), part 3, encode the
local propagation of data within a process due to local flow of control
(flow graph edges) and assignment statements. Equations (2), parts 1 and
2, and (3) encode the global propagation due to message passing. The
accounting of this global propagation is certainly conservative as M., will
contain all values ever transmitted over c(n).

5. DATA FLOW ANALYSIS IN THE CASE OF
DYNAMIC COMMUNICATION

In the previous section we assumed that all message channel
arguments of transmit and receive statements are constants. We are able to
further refine our data flow analysis techniques to the case of dynamic com-
munication: where the channel arguments of the communication primitives
are expressions that must evaluate to channels but not necessarily the same
channel on all exccutions. Our analysis is made more difficult by the fact
that messages communicated between processes may be channel names.
For example, a given process may inform other processes of new channels
over which they may communicate. In NIL,® a language for programming
“secure” systems, this viewpoint is taken to the extreme: a process P cannot
communicate with a process Q unless Q explicitly passes P a port over
which communication can take place.

Since we are dealing with dynamic communication, the value set over
which program variables may range is ¥ = Num u C. As before, C is the set
of all channels over which processes might communicate. Let T, Pn> and

Data Flow Analysis of Distributed Communicating Processes 23

4, be our predicate transformers as defined in Section 4. We assume for
each transmit or receive statement n e N a function y,,: D ,,(Var) — 2€ such
that if p e D ,,(Var) holds on input to n, then y,(p) hold on output from n.
Let Y be the variable occurring as the channel argument to n, e.g. n is
labeled by “X «+ RECEIVE (Y).” Then, simply,

yu(p) = p(Y).

Approximation is an essential technique in gobal flow analysis. Here
we use y, to approximate the possible channels over which n may
communicate. More formally, given a membership function pe D,(Var)
weakly describing the state just before execution of n, y,(p) must contain at
least all channels over which n may communicate. For example, let n be
labeled by “TRANSMIT (Y, X + Z).” Then

‘))n({(Y’ {cl’ CZ})""})= {Cl’ 62}'

As expected, y, is monotonic for all flow graph nodes n. The proof is
simple and follows the proof of Proposition 2.

For dynamic communication, we seek minimal IP,, OP, e D,,(Var)
for all flow graph nodes ne N, and MP_.e D,,(AV) for all channels ce C,
satisfying:

(1') IP,=|]s OP,,, where the join is taken over the set I"~'(n) of
all immediate predecessors m of n.

(2') OP,=1IP,if nis a node labeled by a transmit statement;
=y ps(IP,, MP) if n is labeled by a receive statement,
where the join is taken over all cey, (IP,);
= 4,(IP,) otherwise.

(3") MP.=|]1,(IP,), where the join is taken over all transmit
statements ne N with cey,(IP,).

For any solution to the above data flow equations, /P, and OP, are
predicates in D, (Var) holding on input and output, respectively to flow
graph node ne N; and MP, holds for all messages transmitted over channel
"ce C. Note that the previous equations differ from those given in Section 4
for static communication, only in that we use y,(/P,) to estimate the chan-
nels over which each transmit and receive statement » may communicate.
An example of the data flow analysis problem for dynamic communication
is given in Fig. 5.

The following algorithm yields a minimal solution to Egs. (1')~(3’)
assuming as before that the data flow domain (D,,, [|4s) has no infinitely
strictly increasing chains. Our algorithm combines Algorithms A and B

24‘ Reif and Smolka

IP=FALSE IP=FALSE

MP =
<
((Mcll(cz))l ((Mc:((CG)))
A
CX “4— RECEIVE (CZ D, @ <4— RECEIVE (c4 D
OP= {(X,{"ack"})} OP=~ { (W, ("ack"})}
P IP= FALSE
Y
IP = (¥, {cy ,c3 1}y (2,8))
2 <— RECEIVE (Y)
Op= ((Y,(clzc3)),(Z:(cz G N
L4
‘ TRANSMIT (Z,"ack")’
MPCz - ((Mczl("aCk"))) MPC‘ - ((Mc‘y("ack")))

Fig. 5. An example program annotated with minimal solutions to data flow
equations {1')-(3"),

of the previous sections, building an event spanning graph ESG while
simultaneously carrying out the data flow analysis. As in Algorithm B, the
event spanning graph is used to order the nodes through which we
propagate data flow information. The procedure VISIT-NEXT is the same
as in Algorithm A.

Algorithm C

INPUT: Process flow graphs Gy = <N, E,8;,>,1<i < r, with the set
of program statements N = (J N;; message channel set. C'; and the functions
Ay, Th, py, and 7, defined appropriately for each n € N.

OUTPUT: Event spanning graph ESG = <N, ES> if it exists, with
minimal /P, , OP,, MP,, for all n € N, ¢ € C, satisfying data flow equations
(1'), (2"), and (3'); otherwise a nonempty blocking set Ng.

Data Flow Analysis of Distributed Communicating Processes

INITIALIZA TION:
Q@ «—90
for eachn € N do
if n is a start node then
add n to @
VISIT (n) — true
else
VISIT (n) + false
IP, — FALSE
OP, « FALSE
end for

for each channel ¢ € C do
WAIT (¢) + true
WAITING (¢) — ¢
TALKER (¢) + null
MP, ~ FALSE

end for

ES ~ 0

function wait(n)

wast — N\, WAIT (¢), for each ¢ € v, (IP,)
end function

Procedure PROPAGATE|n)

for each immediate predecessor m of n do
IP, « IP, || g OP,

if n is a transmit statement then
OP, — IP,
VISIT -NEXT (n,T'(n))
for each ¢ € v, (IP,) do
MP: ‘—MPc o Tn(IPn)
if WAIT (¢) then
TALKER (c)+«~—n
Q@ — @ U WAITING (c)
WAITING (¢) — 0
WAIT (¢) «~ false
end if
end for
end if

if n is a receive statement then
if watt (n) then
for each ¢ € 4, (IP,) do
add n to WAITING (¢)

25

26 Reif and Smolka

else
for each ¢ € v, (IP,) such that “WAIT (¢) do
OP, oP, Ly pn (1P, ‘Mpc)
add edge (TALKER (¢), n) to ES
end for
VISIT -NEXT (n, I'(n))
end if
end if

if n is neither a receive nor transmit statement then
OP, «— A, (IP,)
VISIT -NEXT (n, I'(n))
end if
end procedure

MAIN LOOP:
until no change in any IP,, OP,, MP, do
until @ = @ do
choose and delete some n € Q
PROPAGATE (n)
end until

for each node n of (N, £S) in topological order do
PROPAGATE(n)

end until

BLOCKING SET TEST:

for each channel ¢ € € do

Ng —~ NgU{n | ne€ WAITING (¢) A wait (n) = true }
if Ng £ 0 then

return blocking set Ny
else

return event spanning graph ESG = <N, ES >

and IP,, OP,, MP, foreachn € N and ¢ € C.

Theorem 3. On convergence, Algorithm C either outputs a non-
empty blocking set, or an event spanning graph is output and data flow
Egs. (1')-(3") are satisfied. Moreover, Algorithm C always terminates.

Proof. Algorithm C is a generalization of both Algorithms A and B.
We examine its correctness first in terms of event-spanning-graph con-
struction, and then in terms of data flow analysis. In the case of dynamic
communication, a receive statement n is reachable if a talker (a reachable
transmit statement) can be found for any c¢ in y,(IP,). Accordingly, if no

Data Flow Analysis of Distributed Communicating Processes 27

such talker has been encountered before visiting n, then wait(n) (initially
true) is still true and a is added to each WAITING (c¢). Otherwise, at least
one talker has been found, and each such talker is used to construct a
message link with n.

Similarly, a transmit statement » can serve as a talker for each ¢ in
y,(IP,). Thus, upon encountering n, the appropriate actions (see also the
discussion of Algorithm A) are taken to make »n the talker for all ¢ in
y.(IP,) such that WAIT (c) is still true.

Finally, when checking for a nonempty blocking set, we must dis-
regard receive statements in WAITING (¢) with wait(n)=false. These
statements have found a talker for a channel ¢’ in y,(IP,), ¢ #c¢’. We can
now argue, as in the proof of Theorem 1, that Algorithm C returns an
event spanning graph if one: exists; else it returns a nonempty blocking set.

Regarding data flow analysis, procedure PROPAGATE directly
encodes data flow Egs. (1')~(3'). PROPAGATE is called from both the
until loop and for loop of the main loop of Algorithm C. In the until loop,
data flow analysis is performed in conjunction with event-spanning-graph
construction. Upon termination of the until loop, those receive statements
that blocked the construction of the event spanning graph will be con-
tained in the various WAITING sets. In the for loop, data flow analysis is
performed in topological order of the so-far-constructed event spanning
graph. During this loop it is possible that blocked receive statements will
become unblocked due to the discovery of qualified talkers. Thus, upon
completion of the for loop, these unblocked receive statements will have
been added to Q. The until loop will then continue its event-spanning-
graph construction/data flow analysis starting from these unblocked nodes.

Note that once an event spanning graph has been constructed, the
subsequent iterations of the main loop will involve the for loop only. Ter-
mination of Algorithm C is guaranteed since nodes are added to @ at most
twice in the until Q = ¢J loop, and each iteration of this loop deletes a node
from Q. Concerning the termination of the main until loop, data flow
Egs. (1')-(3’) still (as a result of the monotonicity of y,) define a system of
monotonic recursive equations in the /P,, OP,, and M P, variables. Fixed-
point iteration must yield their least fixed points, and the finite length of
(D, |]a) again ensures the finiteness of this iteration. |

Regarding the computational complexity of Algorithm C, each itera-
tion of the main until loop requires O(|N|> + |E|) operations (versus the
O(|N| + |E|) operations needed per iteration of Algorithm B) since
Suen 1vs(IP,)] = O(IN|?). That is, there may be O(|N}) transmit/receive
nodes n each with |y,(IP,)| = O(|N]). In the worst case, Algorithm C, like
Algorithm B, converges in O(]N| A) iterations of the main until loop, since

28 Reif and Smolka

the “dynamic” calculation of the event spanning graph delays convergence
only by an additive factor of O(|N|) iterations.

6. CONCLUSIONS

We have shown that data flow analysis techniques for sequential
programs can be extended to concurrent programs in which processes com-
municate through message passing. To achieve this, we introduced the
event spanning graph, a generalization of the (depth-first) spanning tree
used in flow analysis of sequential programs. The event spanning graph ser-
ves to order the nodes through which data flow information is propagated,
both within a process and across process boundaries. Importantly, if no
event spanning graph exists, then some program statement is unreachable,

We presented two data flow analysis algorithms: one for static com-
munication (all channel arguments are constants) and one for the harder,
dynamic communication (channel arguments may be variables and chan-
nels may be passed as messages). Our algorithms detects the values of
program expressions within a system of distributed processes and can be
used to place bounds on the size of variables and messages. We intend to
investigate the possibility of computing a more accurate approximation for
models in which message queues are ordered and messages are deleted,
without greatly sacrificing efficiency.

It would be interesting to develop direct (non-iterative) data flow
analysis algorithms which run very efficiently when the process’ programs
and their communications are well-structured; or when message transmis-
sions can be simply modeled as procedure calls. In the latter case, known
interprocedural data flow analysis methods such as Refs. 21 and 22 would
be of use. Note that in general it would be quite misleading to identify
processes and procedures, and messages and procedure calls, since the
semantics of procedure calls is entirely sequential and a message trans-
mission does not evoke a process execution.

APPENDIX A: GRAPH-THEORETIC DEFINITIONS

We consider directed graphs (N, E) consisting of a finite set N of nodes
and a set £ of ordered pairs (n, m) of distinct nodes called edges. If (n, m)
is an edge, m is a successor of n and n is a predecessor of m. Let I'(n) be
the set of successors of node n. A graph (N’, E') is a subgraph of (N, E) if
N'c Nand E'< E. A path p of length k from n to m is a sequence of nodes
p=(n=ng,ny,.,n.=m)such that (n,,n,,,)eE for 0<i<k. The path is

Data Flow Analysis of Distributed Communicating Processes 29

s s

n

n n
2 3

Fig. 6. Example: a flow graph G and spanning tree of G.

simple if ng,..., n, are distinct (except possibly no=rn,) and the path is eyclic
if ng=n,. A graph is acyclic if it contains no cycles.

A flow graph G=(N, E,s) is a directed graph (N, E) with a dis-
tinguished start node s such that, for any node ne N, there is a path from
s to n. A (directed, rooted) tree T= (N, E,s) is a flow graph with |E| =
|N| — 1. The start node s is the root of the tree. Any tree is acyclic, and if
n is a node in tree T, then there is a unique path from s to n. If n and m
are nodes in a tree T and there is a path from n to m, then n is an ancestor
of m and m is a descendant of n. In a tree, each node has a unique prede-
cessor called its parent (except the root which has no predecessor). The
successors of a node in a tree are its children. If G=(N, E, s) is a flow
graph and T=(N', E',s’) is a tree such that (N’, E') is a subgraph of
G, N=N',and s = s', then Tis a spanning tree of G. See Fig. 6 for an example.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for their careful
reading of the manuscript and the resulting constructive comments. They
would also like to thank to Gene Stark and S. Purushothaman for valuable
discussions on data flow analysis of communicating processes.

REFERENCES

1. C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21{8):666-677 (1978).
2. R. E. Strom and N. Halim, A new programming methodology for long-lived software
systems, IBM J. Research and Development 28(1 %:52-59 (1984).

30

had

11.

12.

13

14,

15.

16.

17.

19.
20.
21.

22,

Reif and Smolka

U. Engberg and M. Nielsen, 4 Calculus of Communicating Systems with Label- Passing,
Report DAIMI PB-208, Computer Science Department, University of Aarhus (1986).

- R. Milner, J. Parrow, and D. Walker, A Calculus of Mobile Processes, Part I, Technical

Report ECS-LFCS-89-85, Department of Computer Science, University of Edinburgh
(June 1989). :

- J. A. Feldman, A programming methodology for distributed computing (among other

things), Comm. ACM 22(6):353-368 (1979).

. J. H. Reil and P. Spirakis, Distributed algorithms for synchronizing interprocess com-

munication within real time, Proc. 13th ACM Symp. Theory of Computation, Madison,
Wisconsin 133-145 (1981). Also rewritten as Real-time synchronization of interprocess
communications, TR-25-82, Aiken Computation Lab, Harvard Univ., Cambridge,
Massachusetts (1982).)

. J. H. Reif, Dataflow analysis of communicating processes, Proc. 6th ACM Symp.

Principles of Programming Languages, pp. 257-268 (June 1979).

. M. S. Hecht, Data Flow Analysis of Computer Programs, American Elsevier, New York

(1977).

. M. S. Hecht and J. D. Uliman, A simple algorithm for global data flow analysis problems,

SIAM J. Comput. 4(4):519-532 (1975).

. P. Cousot and R. Cousot, Semantic analysis of communicating sequential processes, in

Proc. 7th Int'l Collogq. on Automata, Languages and Programming, Lecture Notes in
Computer Science 85:119-133, Springer-Verlag (1980).

W. Peng and S. Purushothaman, Towards data_{z flow analysis of communicating finite
state machines, Proc. 8th ACM Symp. Principles, &/ Distributed Computing (August 1989),
R. D. Schlichting and F. B. Schneider, Understahding and using asynchronous message
passing, Proc. Ist ACM Symp. Principles of Distributed Computing, Ottawa, Canada,
pp. 141-147 (August 1982), K

P. F. Kearney, Reasoning about Nondeterministic Data Flow, Ph.D. Thesis, Department of
Computer Science, University of Queensland, Australia (July 1988).

J. H. Reif and S. A. Smolka, The complexity of reachability in distributed communicating
processes, Acta Informatica 25:333-354 (1988).

G. D. Plotkin, 4 Structural Approach to Operational Semantics, Report DAIMI FN-19,
Computer Science Department, Aarhus University (1981).

U. Goltz and W. Reisig, CSP programs as nets with individual tokens, Advances in Petri
Nets 1984 (G.Rozenberg, ed.), Lecture Notes in Computer Science 188:169-196,
Springer-Verlag (1985). ‘

S. L. Graham and M. Wegman, A fast and usually linear algorithm for global flow .
analysis, J. ACM 23(1):172-202 (1976).

. B. Wegbreit, Property extraction in well-founded property sets, JEEE Trans. on Software

Engineering 1(3):270-285 (1975).

D. E. Knuth, The Art of Computer Programming, Vol. I: Fundamental Algorithms,
Addison-Wesley, Reading, Massachusetts (1968). .
A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, Massachusetts (1986).

B. K. Rosen, Data flow analysis for procedural languages, RC-5211, IBM T.J. Watson
Research Center, Yorktown Heights, New York (1975).

T. C. Spillman, Exposing side effects in a PL/I optimizing compiler, Proc, IFIP Congress
71, North Holland, Amsterdam, pp. 376-381 (1971).

