PROBABILISTIC BIDDING GIVES
OPTIMAL DISTRIBUTED RESCURCE ALLOCATION

John H. Reif

Paul Spirakis

TR-23-83

Pre-print of paper appearing in Lecture Notes in Computer
Science, Vol. 172, pp. 391-402.

PROBABILISTIC BIDDING GIVES OPTIMAL DISTRIBUTED RESOURCE ALLOCATION}

John Reif
Aiken Computation Laboratory,
— Harvard University
Cambridge, MA 02138
Paul Spirakis

Courant Institute of Mathematical Sciences,
New York University

and

Computer Technology Institute
Greece

ABSTRACT

In this paper we consider a fundamental problem of resource allocation in a distributed
network. Informally, the problem is to concurrently satisfy many processors requests for
resources, each of which can be used by only one pmce&; at a time. In paricular, a processor
may simultaneously issue requests for various resources. It then awaits a grant for all its
requested resources. Upon receiving the resources, the processors may use them for only a
limited period of time. Finally, the process must reurn these resources. This must proceed
concurrently for all requesting processors. We seek distributed algorithms, which satisfy
dynamically changing user requests for resource allocation, in a distributed way, by only a

local communication between granting and requesting processes.

Each user’s demands for resources may change dynamically and the processors speeds '
can vary dynamically. Let v be the maximum number of users competing for a particular
resource at any time instant. Let k¥ be the maximum number of resources that a user is wil~
$ This work was supported in part by the National Science Foundation Grants NSF-MCS79-21024, NSF-MCS-8300630, DCR-

85503497, and the Office of Naval Research Contract NU0014-80-C-0647, and the Greek Ministry of Science and Technology.

‘This paper appeared, in a preliminary form, in the 11th International Colloguium on Automata, Lenguages and Program=
ming, July 1984, Antwerp, Belgium.

-2-

- ling to get, at any time instant. This problem was previously formulated in [Lynch, 1980]. It
has application (1) to two-phase locking in databases (2) to generalized' dining philcsophers,
and (3) to the implementaion of a novel extension of the CSP language, called Social-CSP and

to many other applications to concurrent programming.

Informally we say that an algorithm for this problem is real time-if its response time is
upper bounded by a function which does not depend on any global measure of the system of
processes and resources, except ¥ and v. [Reif, Spirakis, 1982b] gave the first known real
time algorithms to the problem with (mean) response time of 0(»*). This response time may

be too long, however, in applications where k has a large value.

In this paper we provide new algorithms whose response time is polynomialin v and
k. Our most efficient new algorithm has expected response time O(vk). Moreover, our con-
stant factors appear to be small enoué,h for practical applications.

Unlike our previous probabilistic algorithms of [Reif, Spirakis, 1982b], we do not use
random delays as means of avoiding process starvaion and of achieving probabilistic fairness.
Instead, our new algorithm utilizes 2 method of probabilistic bidding to resolve contention of

users for resources. This technique is essential in our achievement of polynomial response time.

We furthermore prove that our solution is optimal with respect to the average response
to a user’s request. In particular we provide matching lower bounds for any distributed algo~
rithm for resource allocation, and these bounds are within a constant factor of the response

time of our own algorithm.

We also provide a suboptimal algorithm, which allows user processes which demand less
than k resources to have higher probability of being assigned. This algorithm has the pro-
perty that if a user ¢ has a request of at most k; < k resources, then it has mean response
O(ok; log k log(k;»)). This suboptimal algorithm does use random waits combined with proba~
bilistic bidding. These techniques employ limied parallelism within each process, together with
the probabilistic bidding. (This limited parallelism is useful in achieving optimal response
time, though we would still get polynomial response time without limited parallelism.)

1. INTRODUCTION

1.1. Resource Granting Systems.

- In this paper, we consider a resource allocation pprlem previously described in [Lynch,
1980] and generalized in [Reif, Spirakis, 1982b}. The system has potentially an infinite set of
processes 7 and each process has an integer name. There is a potentially infinite set of
resources p in the system. Let R C = be the set of processes which control resources. The
set of user’s processes is U = = — R. Each resource p(5) € p is_oontroﬂéd by a distinct grant-
ing process 5. This process has the responsibility of granting each resource to a distinet user
process in U, so no two different processes in U may use the same resource at the same
time. We assume that there is a global time which totally orders events, but processes may
not have access to the global time. Users’ processes communicate only with those granting

processes for which they request resources.

A system as above is called a Resource Granting System (RGS); see [Reif, Spirakis,
1982b]. The goal of an RGS is to satisfy dynamically cl;anging user requests for resource
allocation, in a distributed way, by only a local communication between granting and
requesting processes. ’

The set of possible schedules of processes actions is determined by an "adversary” oracle
A which has the_power to set actions in the worst possible’ way to increase the response time.
A has also the capability to select b time ¢ =0 the schedule of speeds of all processes at al
times ¢ > 0. In addition, at each time ¢ > 0, the requests by user processes U are specified
by A. The adverse oracle A is restricted, to allow users to keep asking for their resources
until they are granted. In practice, nosuch A may exist but ooincidence of worst case situa-
tions may replace is action.

Let a process be tame during a time interval A, if for any interval A’ which intersects
A and is a single step of the process, then |Al € [ry, 7] Where 7o, ro: are fixed real con-

stants with 0 < r; < rop

-4-

We do not require processes to be tame at all times. More specifically, the basic correct~
" ness properties of our algorithm (e.g. mutual exclusion in allocation of resources) are not
cbmpromised in the event that the processes execute at arbitrary speeds. However, our proof
that our techniques are real time makes use of the assumption that processes are tame. Le. the
nice performance and fairness properties of our algorithms depend on the tameness assump— -
tion. Moreover, even if the processes behave "untamely” for a long time, as soon as they start
to behave tamely, the nice fairness and performance properies begin to‘hold. This is a very
desirable resilience property for a distributed algorithm.

Finally, we assume that processes are reliable in the sense that they perfectly execute
their programs. See Sections 1.2 and 1.3 for further details of this model and for precise
definition of response time. (Sections 1.2 and 1.3 may be skippéd in a first reading of the

paper.)

1.2. The RGS Model

A process step consists of either an assignment of a variable, a test, a logical or
arihnietic operation or a no-op. A step is considered to be a-finite time interval A in which a
single primitive instruction is executed just at the last moment of A, and no other instruc—
tions are executed within A. Let a process be tame during a time interval A, if for any
interval A which intersects A and is a single step of the process, then |Al € [rup, 7] Where
i T 27€ fixed real constants with 0 < rpy < roe We Will ot require processes to be
tame at all times. However our proof that our algorithms are real time makes an assumption
that processes are tame. We assume that processes are reliable in the sense that they perfectly
execute their programs. The rate of execution varies dynamically. We require that, at no time,
- any grahting process § € R simultaneously grant the resource (i) to more than one request—
ing process. We also require that, as soon as a process j € U hasgotall itsreémired
resources, then it can keep them only for a time interval whose length is upper bounded by a

fixed parameter & (containing at most s = §/ry, Steps, if the process is tame). Let

-5-

resources{¢) be the set of resources that process ¢ is requesting at time instant ¢. Let &,
be Iresources,(i). Let askers,(j) be the set of user processes requesting p(j) for j€R at
time ¢.Let v, be laskers,(j]. We assume that at all times ¢ >0, v;, and k, are upper
bounded by constants v,k respectively. (This does not necessarily imply any bounds on

luge, resources, (1) or lUg askers,(5) forany ¢ in U or j in R).

With respect to interprocess communication we assume (1) that each resource allocator
j €R hasaset S; available to it of size at most v, containing the names of those processes
willing to get the resource. Asin [Lynch, 1980] we assume this to be a primitive of our sys~
tem (it could be implemented by a queued message system, for example), (2) that synchroni—
zation must be done by special variables, called flags, each of which is written only by one
process and read by at most one other process. Read-write conflicts on flags are excluded by
our process step semantics and by our notion of global time. Flags seem to be the simplest
primitive for synchronization and lead to an easy implementation (m contrast to distributed
shared variables of multiple readers and writers).

1.3. Implementations and Complexity of an RGS

An implementation of an RGS determines the synchronization algorithms that the
processes run. As stated above, the synchronization algorithms use only flags to implement the
synchronization I_)etween processes. We consider a time-varying hypergraph H, with node set
x and timevaxﬁng hyperedge set {{i JU resources,(i}i € U}, i.e., where a hyperedge at time
instant ¢ is the set of nodes of = consisting of asingle process ¢ in U and the granting
processes of the resources i is willing to get at ¢. An RGS implementation dynamically
achieves distributed matchings in the hypergraph H,.

For each adverse oracle A, let the. response time of the RGS implementation be the
random variable 4,, which is the length of the smallest interval A required for any process
i €U tohave k resource requests simultaneously granted, given that s requested these
resources during the entire interval A and assuming that, ¢ and all allocators of the

-6-

resources requested by ¢ within A, are tame within A.

Let the mean response 7, be the max{mean{y, ;} over all oracles A}. Let the e
response be the minimum 4,(¢} such that for every oracle A prob{vas < %fe)} 21 —e. The
RGS implementation is real trme if for all € € (0,1),7:(¢) >0 and upper bounded by a func~
tion independent of any global measure of the network. (Note: A global measure of the
network is any positive function g of h =Id such that lim;_,, »/g(h) = 0.) Hence if an RGS
implementation is real time, then the mean response 3, is also upper bounded by a function

independent of any global measure of the network.

1.4. Previous Work

[Rabin, 1980a] first appliéd probabilistic choice to synchronization problems in distri-
buted systems and provided a solution to the dining philosophers problem which, with proba~
bility 1, is deadlock free and starvation free. [Rabin, 1980b] applied probabilistic coordination
methods to synchronize access to processes to a critical resource in a space-efficient manner.
[Frances and Rodeh, 1980] and [Itai and Rodeh, 1981] also proposed probabilistic techniques
for synchronization and leader election problems, respectively:

[Lynch, 1980] first posed the localized resource allocation problem as a formal synchron—
ization problem. Let the resource graph G be the graph whose nodes are the resources and
two resources are connected by an edge if there is ever a user process requesting both of them,
maybe at different times. Let x(G) be the chromatic number of G. The implementation
proposed by Lynch was a deterministic one in which processes should know the color of each
resource in a coloration of G. The worst case response time achieved in [Lynch, 1980] is of
the order of x(G)v*S)-r where 7 is the time necessary for interprocess communication. This
was not a real time implementation since x(G) is 0f) in general. (Let us note here that the
Lynch algorithm behaves better than its general worst case, in special cases of systems with
low congestion. Its response time is then polynomially related to x(G), however it still is not a

real time implementation.)

-7-

[Reif, Spirakis, 1982b] provided the first real time RGS implementation, with mean
response time O(kv*+2log v). In that previous work, we used the techniques of probr_abilistic
selection of processes by resource allocators and random waits to avoid adverse schedules of
speeds which might be set up by the oracle. Although this was a real time implementation, it

was still exponential in k.

1.5. The New Results of This Paper

We shall present (in Section 3) a probabilistic implementation of ;n RGS, with mean
response O(kv) and e-response O(kv log{1/)). Not only is the expected response of our imple~
mentation is upper bouﬁded by a constant, but also the actual time needed by any user to
get its requeﬁed resources, is upper bounded by a constant thh overwhelming probability.
Violations of this property occur with vanishingly low likelihood. Furthermore, we make no
probability assumptions about system behavior. Because of the above facts, we feel that our
algorithm compares favorably to the worst case performance of previously developed deter—

ministic algorithms for the same problem.

To achieve the stated response time, we make essential use of the probabilistic bidding
technique, together with use of limited parallelism within each user process and each resource
allocator. In our uniform bidding é]gorithm, we do not use random waits to achieve proba-
bilistic fairness. Instead we use only the probabilistic bidding technique. In particular, we
slice the time of each process into rounds. In each round each user process tries to get all the
wanted resources. It has to get all of them in the same round. The users do not accept par—
tial allocation of resources to them, unless all the required resources are offered to be allocated
in a small number of steps. At the end of the round, users release their allocated resources (if
any) and make a fresh start. User rounds have the same length in steps for all users and this
length is a parameter of the algorithm. The time of the granting processes is also sliced into
rounds (resource rounds). In contrast to user rounds, resource rounds are not of the same

length and their length in steps is not fixed in advance, but adjusts to the conditions of the

-8-

algorithms. We conjecture that this is essential in avoiding exponential growth of the response
| with k.

We also prove lower bounds of Q(kv) for the worst case and average response time of
any algorithm for the local resource allocation problem. Thus our proposed technique is of
optimal performance within a constant factor. We also provide a priority bidding algorithm
which has mean response time polynomial in k¥ (however not optimal) and is useful for
improving the throughput rate of resource allocations in the network. In particular, it allows
user processes which demand less than k resources to have higher probability of being
assigned. This algorithm has the property that if a user i € U has a request of at most

k; < k resources, then it has mean response 0(vk; log k log(k; v)). f{(.
1.6- Applications) < \ét—‘; 7,’:‘:1.";— \;'f-ﬂ"‘r_: ’:‘i-'., t/ .‘: . RS

e . . -~

Example 1: m:% Phiiosophers. As ziusimlgie ;al;lp];;)f the usefulness of RGS, con-
sider a generalization of the dining philosophers problem to the case where each philasopher
requires k-forks to eat. (This problem was first considered in [Lynch, 1980].) We extend it to
the case where the identities of the forks required by each pililosopher change dynamically.

Let the set of "forks” be R = {rq,...,r.—s} and the set of "philosophers” be U = {ug,...,v,_;} and -
let resources, (¥;) = {r;,7 (s 41)mod m e (i-+2-1)mod »} A0 a5Kers; (1) = {854 41)mod » ¥ —1)mod »,%} fO

all ¢. Our new resource allocation algqrifhm achieves mean response time 0(k?). In contrast,

our previous results a{chieved mean response time 0(k**%), (see [Reif, Spirakis, 1982b]).

Ezample 2: Social CSP. An extension of CSP, defined and discussed in [Francez, Reif,
1985], has an efficient implementation by our real time RGS. Social-CSP has the following

new commands:
(1) Extended Output Command: (p; ,...,p;){%1,-.w) in which the sender process simul-
taneously sends the value u, to process p; , m =1,..k. Here, "simultaneously” means that

the receipt of a value by a process named in the output command does not affect in any way

the receipt of the values by other processes named in the output command. Note that (1) can

-9-

be considered as the generalization of a broadcast command.

(2) Extended Input Command: (p; ,....p;,)?(zy,.-.:) Where the receiver process simul~-

taneously gets a value for its variable z,, from process P, m=1..k.

' Al:hough these extended input and output commands can, in.theory, be simulated in
Hoare’s CSP, it is not clear how to provide an efficient simulation. The power of the new
constructs of Social-CSP can be demonstrated by the simplicity they give to a program solving
the k-fork philosophers problem. In obntrast, it is not known how to solve the k-fork philo-

sophers problem by the conventional CSP constructs.

Social-CSP commands can be directly implemented by our RGS real time implementa-
tion, by considering the sender in the output command (respectively the receiver in the input
command) as a user process and the processes p; ,...p;, (respectively p; ,...p;) as resource
granting processes. Note that our implementation of Social-CSP allows for unspecified or
computed targets of communication, since the identities of the resources a user wants may
change dynamically. (This is useful in case of routing protocols and was first considered in
[Francez, 1982).)

Ezxample 8: Two-Phase Locking tn Databases. Two-phase locking is a concurrency
control method in databases; for a survey see [Bernstein, Goodman, 1980]. It has the feature
that as soon as a transaction releases a lock, it never obtains additional locks. A very efficent
static implementation of two-phase locking can be achieved by our methods. Our assumption
is that transactions are allowed to act on the data only if they have already obtained all the
locks requested. In the context of such a database system, let the usersin U be called
transaction modules and the processes of R be called data modules. If the readsets of the
transactions are of cardinality at most k¥ at each time instant and if at most v transactions
can compete for a lock at a time instant ¢, then our optimal RGS will result in an 0(vk)
mean response time per transaction. Our suboptimal RGS achieves an even smaller mean
response time when |readset,(t) = o(k). In this case, if a transaction wants to lock k; data

itemns at a time, it has a mean response 0{vk; log(vk; Jlog k). (However, this becomes

-10-

O(vk log(vk)log k) When Ireadset; (¢} = k.) Our implementations of two phase locking proposed in
- this paper are asymptotically more efficient than the static locking method proposed in [Reif,
Spirakis, 1982b], which had a mean response 0(kv**%). Thus our new algorithm be;oomai
advantageous in cases of database systems with small granularity of locking and hence very
large cardinality o transactions readses. In thase cases other known algorithrrs are imprac-

tical since they have response times exponential in k.

-11-

2. AN O(k) LOWER BOUND FOR THE LOCAL RESOURCE ALLOCA-
TION PROBLEM

THEOREM 1. For k >0 and v =k there is a network in which at least one user

process has two have a response time of at least ((kvf) — 1) steps.

Proof. Consider a network with a set of users U such that | U] = a-b, where

¢ =b = [k2]= [vf] (see Figure 1). The set of resources R laslRl = ab also, and let us
represent. it as a matrix of elements py,, ... ,p., - - ., 0. Let A be an oracle such that all
processes are equi-speed, synchronous and such that for all ¢t >0 and for all j e U, if

J=am+n (WhereOSme—l andlSnSa) then

rSo"“rCSt(t) = {pm+1.lrpm+l,27 . :pm+1,u} U {Pln;p2n: ... 7plm}

ie. the m+1-th row and the n-th column of the matrix R. Then, only one user process
can be granted all its resources at each time instant t, simply because any two pairs of a row
and a column of R each, intersect in at least 2 resources (and each resource has to be
granted to only one user at a time, thus forming a bipartite matching of the hypergraph
defined in Section 1.3). This implies that resources will be allocated to users serially, hence A
the last process in the serial order will have a response time of at least (ab — 1) steps, i.e. of
at least ((kvA)— 1) steps.

Note also that the maximum demand per useris e + & — 1 < & and that the maximum

number of users competing for a particular resource isalso a + b — 1< v.

Finally, let us note that the above proof does not rely on any complicated adverse tim-

ing of requests, and holds independently of the synchronization technique. D

THEOREM 2. For ¥ >0 and v >0 there ts a network in which at least one user

process has to have a response time of at least ((kv/d)— 1)u steps.

-12-

Proof. Consider a network with a set of users U, such that [Ul = ab with o = [k},
b = |v/2]. Let us partition the users into a groups, such that group ¢ consists of the users
%y Uimia - - - > Yigasy 100 1< § < a. (We consider here an enumeration u,,u,,..,u, of the

user set U.)

Theﬁgmorkhasalsoarsourceset R of IRl = a2 We consider R tobean a X«

matrix of resources [p; ;] where1<i<ae and1<j<a (see Figure 2).

To complete the network description, let A be an oracle such that all processes are
equi-speed, synchronous and such that for every ¢ >0 and every -u; € U if »; belongs to
group g, then he set resources,(5) is the union of row ¢ and column ¢ of the matrix R.
Then, only one user process can be granted all its resources at each time instant ¢, because
any two pairs, of 2 row and a column of R each, intersect on at least 2 resources, andeach
resource has to be granted to only one user at a time. This implies that resources will be
allocated to users serially, hence the last process of the serial order will have a response time
of at least (ab — 1)u steps i.e. of at least ((kv/4) — 1)p steps.

Note that the maximum deﬁmd of resources per user is 2a — 1 < k and that the max~
imum number of users competing for resource p;; is b (because of group ¢) plus »
(because of group j)i.e. 2b < v. This holds for any resource p; ;.

Finally, let us note that the above proof does not rely on any complicated adverse tim-
ing of requests and holds independently of the synchronization technique that a possible

implementation could use. O

COROLLARY. Our probabilistic bidding algorithm of Section 8 has optimal mean

response within a constant factor.

Proof. By The_orem 2 and by the fact that given any multiset of serial ordersof y = kv /s
elements, there is at least one element whose average position (over the multiset of orders) is

at least lyfl= kvl O

- 13-

3. OUR DISTRIBUTED UNIFORM PROBABILISTIC BIDDING ALGO-
RITHM

. We assume that the requesting processes communicate only to the resource allocators
whase resources they want (or have been allocated), and that each granting process j is wil-
ling to communicate only to the requesting processes in the set S; (as defined in Section 1.2).
The actions of the requesting and granting processes are time-sliced in rounds, each round
being a repetition of a basic set of actions. Processes use indepe;ndent sequences of probabilis~
tic choices as the basic construct to counteract adverse speed schedules and adverse resource
demands set up by the oracle A. We assume that A cannot affect or foresee the results of
these probabilistic choices. We allow each user in U and each resource allocator in R to
have a set of synchronous parallel subprocesses, which aid in our algorithms. The use of local

parallelism here is not actually essential in achievement of polynomial response time.

3.1. An Informal Description of the Rounds

a. The User’s Round. A user’s round starts with the user drawing (with equal proba~ _
bility) a random number in the set {1,2,..,8kv} where §>1 is an integer. If the number
drawn was less than Bkv, the use remains nonactive, until the end of the round.t (Al users’
rounds take a predetermined number of steps.) Else, the user immediately notifies (by the use
of at most & paréllel synchronous subprocesses) all the resource allocators of the resources he
wants, that he is a winner. Then, the user’s parallel subprocesses collect answers from the
resources for a period which is bounded by a constant number of steps. During this period
some of the resources may declare that they agree to be allocated to the particular user.
However, if at that time, any other resource requested by that user is denied, then that user
does not utilize f;he resources which agreed to be allocated to him, but he continues to report
An altemative way o implement the random choice is to use an unfair twofaced coin of

Prob{success} = 1/8kv. In the case of failure, the user stays nonactive, until the end of the round.
The two alernatives are comparable in terms of implementation difficulty.

-14-

that he is a winner to all of his requested resources and repeats the algorithm (without draw—
ing again), until the user’s round ends. If all of the wanted resources agree to be allocated at
the same period (in which the user collects answers), then the wser utilizes them for p steps
(1 is 2 small integer constant, as in Section 2.1) and then he releases these resources, using his
k subprocesses. Note that a communication with all the k¥ resource a]!ocators takes only

rmax timme due to the limited parallelism and tameness of processes.

b. The Resource Allocator’s Round. The round of resource allocator j starts with a
monitoring period of a constant number of steps during which at most v parallel synchro-
nous subprocesses continuousiy monitor the users of the set S, llool_dng for-winners. Let M;
be the se of winners detected during the monitoring period. If M; contains more than one
winner, then all the elements of M; are notified in parallel that they have been denied, and
the round ends. However, if M; has a unique winner, then the granting process notifies the
winner that it agrees to be allocated. If the winner does ot accept the agreement then the
rounds ends. If the winner accepts, then the round enters an allocation period. During this
period, the parallel subprocesses of the resource allocator deny all appearing winners. The

round now ends By receipt of the notification by the user thaf the resource has been released.

c. Additional Remarks. Note that communication with all v of the user processes and
all set operations in a resource allocator’s round take only a constant (independent of » and
k) number of steps due to the parallelism employed. Note also that the following holds with
certainty:

A resource decides to be allocated to a untque winner, only after the resource allocator
agrees to allocate the resource and the winner accepts the agreement. Thus, no resource can

be allocated to more than one user at the same time, by our bidding algorithm.

3.2. A Detailed Description of the Uniform Bidding Algorithm

a. Detailed Description of variables and Constants Used. In the following, we set

-15-

/3=1+:ﬂ , c=(2(2+‘y)+1)[:—m?xJz

T
X2=ﬂ ’)‘1=2 =

—) Tmin

The users use the following flags: For user i, the flag W;; =1 iff ¢ is a winner and is
willing to get resource p(;). The flag A; =1 iff user ¢ accepts the allocation of the
resource p(5). Both flags are O otherwise. The flag N; is initially 0, it becomes 1 when user

i releases resource j.

The resource allocators ; use the following flags: E; = 0 if the resource is denied and
1if j agrees that its resource is allocated to i. Each allocator j has also a shared (for its
parallel §ubprocm) variable A; which allows concurrent reads, and, in case of multiple
writes of the same value, their sum modulo 3 is recorded. This can be done in constant (3
steps) parallel time by using the concurrent read-exclusive write model and a summation

binary tree of depth 3. M; is used to cound winners during the monitoring period.

Each user ¢ uses also a shared (for all its parallel subprocesses) variable L;. It allows
concurrent reads and concurrent writes of the same value. I; is used to identify situations in

which all wanted resources have been propcsed to be allocated to user ¢, at the same time.

The oountex% counter;, counter; count steps of respectively ¢,; in a round. We assume
that these counters are set to zero at the beginning of each round. Note also that every time
a user (or resource allocator) p (1) modifies a flag and then (2) reads a flag of a resource
allocator (or user) ¢ to see its answer, we allow for \; = (rum/ru)2 Steps between the two
actions of p (th@est.epsallowfor at least 2 steps of process ¢ sothat ¢ canread the
asking flag and answer back). |

We now present formally the rounds of a user ¢ and a resource allocator j. Note
that, in the code which follows, the section of code between cohegin, and ecend is executed (is
a synchronous fashion) by all the parallel subprocesses of the process to which the cobegin-

coend block belongs.

-16-

Also note that although the semantics of "do z do-ops” and "wait until counter; = 3"
are essentially similar, the first expression allows for an explicit wait of z steps while the
second states that the process must wait until the value of the counter becomes y. We
sacrifice uniformity in the code in favor of expressibility.
b. The User’s Round for User i. (Initially Wj; = A; = N; =oforall =1,k and
L=1)
start round
L 1
chosse r randomly uniformly from {1,2,...,8kv}
if z‘;é Bkv then begin do e—1 no-ops; go to finish end
repeatz cobegin { comment in parallel for § =1,..k}
W; +1; do)\ no-ops; if E; =0 then L; «0
coend
L =1 AND counter; < c—p then
begin
cobegin { comment. All resources allocated}
A; +1 { comment accept}
use resource p(j) for p steps
Ny «1 { comment release resource}
coend
N; «0; A;; +0; wait until counter; = ¢; go to finish
end

begin

cobegin A;; «0 { comment. deny allocation} coend

if counter; < ¢—p—2 then go to repeat else wait until counter; = ¢
end

-17-

finish: end round

¢. The Resource Allocator’s Round for Allocator . (Initially M; =0, E,,= 0

do until (counter; =X, or M; >0)
begin if Wj; =1 then (M; <—(M,-+l)mod 3 a; +1)end
if counter; < X, then (do no-op until counter; = ,)
coend
cobegin
if (M; =0 or M; =2)then
begin E; «0; go to finish end
e .
begin
if a; =1 then
E; +1; wait for), steps
if A;; = 0 then begin (E; +0; goto finish) end
else
begin
do no-op until N; =1
{ comment: Resource allocated. Awsait release by
user}

E,‘;‘—O

-18-

ga to finish
end
end
else (repeat E; «O0 until resource deallocated)
— end
coend
finish: end round

3.3. Properties of the Uniform Bidding Algorithm -

In the following we assume all processes tame.

PROPOSITION 1. If a particular user i is a winner (1. e. selects z = Bkv) in
its current round, then sts k parallel synchronous subprocesses will, at least once
in its current round, report at the same time that ¢ is a winner when all requested

resources are in a monitoring pertod.

Proof. Assume that user ¢ has just been declared a winner in its current round

because ¢ got as an outcome z = Skv in the probabilistic selection. Withinone of its -
steps (at mOSt 7o /rmn Of a resource allocator’s steps) all resource allocators are

notified. If some resource allocator is in an allocating period at the time of notification,
then it is going to enter a monitoring period by at most a number of is steps equal to

the allocating period. If a resource allocator was in a monitoring period at the time of
notification, then it shall continue being in such a period (since his resource cannot be
allocated to another winner, due to the presence of winner). So, by at most a number
of steps equal to an allocating period from the time i decided that ¢ is a winner (ie.,
by < (2FuXrmae/ruin) Steps of g), all &’ resources are going to be notified, at the

same time, within their monitoring period, that ¢ is a winner. O

-19-

PROPOSITION 2. Given that a particular user i is a winner n ils current
round, the probability that i stays a unique winner for all its wanted-rzesources

during the whole round, is lower bounded by a constant, independent of k or v.

Proof. We need the following definition:

DEFINITION. Let a draw by a user be a random independent selection of one of the

numbers {1,2,....8kv}. -

First we prove Lemma 1.

LEMMA 1. During a round of user i, any other distinct user j, competing for

the same resource cannot draw for more than B =r_ Jr_; + 1 times.

Proof of Lemma 1. The maximum number of rounds of user 5, overlapping with
the round of user 4,15 rp,/rm, + 1 (because the maximum ratio of speeds cannot
exceed rou/rm and j may have drawn at most once in each round). The "plus1"is
to take into account the fact that a round of wser ;j may partially overlap the begin—

ning of the round of wser ¢. D

Now, given that user ¢ is a winner, the probability that ¢ remains a unique
winner during his current round is equal to the probability that none of the competing
users manag& to be a winner within ’s round. The number of the competing users is
at most kv (ab most v competitors per each of the k resources asked by user) and
each competing user can draw for at most g times within +’s round (by Lemma 1).
The probability of each draw failing to win is 1 — 1/8kv, hence the probability that «
stays a unique winner during his current round is at least

1

ko
['Wr >% , whee ¢=273. . O

-20-

THEOREM 3. The probability that a user is allocated all his wanted resources in
its current round ts upper bounded by 1/8kv and lower bounded by 1/2¢fkv,

‘e = 2.73...

Proof. The probability p(T,,A), for oracle A and history T,, that a user & is allo—
cated all its wanted resources is his current round starting at ¢, never exceeds 1/Bkv
due to the fact that prob{user ¢ chooses to be a winner in his current round} = 1/8kv.
Given that user ¢ chooses to be a winner, if ¢ remains a unique winner during all of
his current round, ¢ is going to be allocated all of his resources (due to Propesition 1)

with certainty. Multiplying probabilities given by Propcsition 2, we get that

' I 1
p(TeA) 2 o o = Sepuk

THEOREM 4. Our uniform bidding algorithm has e-response O(kv log(1/f)) and

mean response 0(kv).

Proof. Let « be the number of rounds required for user ¢ to be granted all its &
resources in some round, given that i starts requesting them at time ¢, and also

assuming any history of the system up to ¢, and any oracle A. Let round j startat -
time ¢; j < m. We have by Bayes’ formula

Prob(u=m) = (1 — p(T,,A))..{ — p(T,_,A)2(T:,A)

By use of Theorem 3, we get

s —1
_1 | 1
Prob{u=m) < [1’ 2cﬂkv] kv

If u(e) is he least number such that Prob{z > u(€)} < ¢, then

-921-

Remark

ule) < 2¢ Pk log(%) .

Proof of Remark. Let s =1/2¢8kv) and s = 1/8kv). We have

Prob{u = m} < (1-1)"s

Prob{s > u(< 50 (1—f)"te

me=x(c)+1

<st-1r9 S -y

s% (t-fy@ . Ny

It is enough for (s/f) (1—/)*9 to be less than or equal to e, because, then, INI implies
Prob{u > u(e)} < e. So, we have ‘

—}—(1 —frU<e

(- syocd

ie.

tog(<L)
"<

But f/s =1L¢ and iog(l—f)>—1/f for 0 <f <1. Soweget

w9 < 4 log (%)

ie.

-9
u(e)s2cﬁlw-log(-2€—e) . o

To complete the proof of the i:heorem, let s recall that each allocation part of a
resource’s round takes 2+p steps. So, it is enough for the user’s round to be equal to
¢ = (A2+u}+1)rmae/ruialy by the proof of Proposition 1. This implies that the duration of
a ﬁsel;;mund is at mos ery,, and so (for « independent of k,v-)

Prob{ya s < crmyu(€)} > 1 — €. Hence, (€)= 0(kv log(1/)).

Note. Theorems 3 and 4 imply, with probability 1, that our algorithms never deadlock,
no process starves, and our algorithm is probabilistically fiar, in the sense that each wil-
ling user, gets its resources infinitely often in an infinite time interval, with probability
1.

-93.

4. THE PRIORITY BIDDING ALGORITHM

4.1. Motiv;tion

- Theoren:s 1 and 2 provided lower bounds for systems where all the users were
requesting the maﬁm@ number of resources possible. In practice, it may be the case
for some users to have only a small number of requests. It is then desirable to have an
implementation which tends to favor users requesting only a few resources, while, at the
same time, it does not degrade a lot the performance of users req:mting Iany resources.
This section provides such an algorithm. Let us assume that at all times ¢ >0, k,
(see section 1.2) is upper bounded by a constant k; (and that the ¥ are not neces~
sarily the same for different users i). Our priority bidding 2lgorithm has then the fol-
lowing property: For users ¢ with demands in Urn220, b,) with k, = k2™, the
e-response is O(k,, v-log k-log(h,,v/)) and the mean response is T, = O(hmv log k log(k,, v)).
For example, if &, is a small constant, much sma‘ller than * and v, the mean
response of users, with &; as above, is 0(v log & log v), which is much smaller than o(kv)
in most cases. If, on the other hand, 4, is 6(k), then the mean response becomes
O(kv-log k log(kv)) compared to O(kv) of the optimal algorithm, i.e. users with heavy
demands suffer only « .polylogari‘thmic degradation of their mean response time.

In our, priority bidding algorithm, we split the users into groups according to their
demands in number of resources. Only users of the same group compete against each
other. We use the additional trick of having users execue random waits at the beginning
of each round. These random waits allow user groups to avoid interfering with each
other. The mndom waits also make the probabilistic analysis easier, by making some
events probabilistically independent.

4.2. Description of the Priority Bidding Algorithm

-%-

a. Round for User ¢. The round starts with the user waiting for a randomly
chosen number of steps, uniform in an interval upper bounded by a constant
¢y = (2A2+p)H 1) me/ria)® Steps. Note that ¢; is chosen in such a way that ¢;-ry, is
greater than the maximum possible duration of the useful part of the round. The rest
of the round is the same as in our uniform bidding algorihm.

b. Round for Resource Allocator j. Each round of process 5 is split into a
sequence of ﬂoé k] intervals. For each m =0,...,[log k], in each interval A, only the
users ¢ for which k; € [k2™*!}[k/2™] are monitored. Process ; proceeds to the next
interval A,,,; only if all user processes which demand ¥; resourcm, k€ [k M)k
have been allocated their resources. Within each A, the resource allocator goes
through a sequence of “small rounds”, each small round being exactly as a round of a

resource allocator in our uniform bidding algorithni of Section 3.

4.3. Probabilistic Analysis of the Priority Bidding Algorithm

Let us consider a time interval A,. Let u’ be the number of rounds required for
user ¢ with k; € [k2™*}[k2™], and also for all users (;ompeting with user ¢, to have
all resources allocated. The number of those users is < k¥ /2™-v, because user ¢ com—
petes for at most k2™ resources, and each such resource is claimed by at most v
users competing with user ¢. Let v be the number of rounds (within A,,), required
just for user ¢. Let u(e) be such that Prob{u < u{¢)} > 1 —¢. Then,

Prob{u’ <+u(€)} 2 (1 — ¢)*~", because users take independent actions and due to the

random waits. Let us set ¢ = (¢/kv)-2™. Then

But, from the analysis of the uniform bidding algorithm (Theorem 3) and from the fact
that, within the A, the algorithm looks exactly like the uniform bidding algorithm, we

get

u£=0ivl kv 1
kv om ogz'” €

leading to a mean response of O((kv2™) log (kv2™)) for the interval A,,. This deter-

mines probabilistic uppér bounds on the length of the interval A,,. Since there are

flog k] such intervals, the e-response for a user with ke [[k 2mHlkpr] will be

kv log [_l"’_J log k
A €

0

implying a mean response of

kv kv
Ol— log k log|—
[W . og[?m]J

For users with small demands (i.e., when k2™ = 0(k)) the above mean response is better
than the mean response of the uniform bidding algorithm of Section 3. E.g., for

2™ = §(k) we get a mean response O(v log k log »). We hence conclude:

THEOREM 5. Our priority bidding algorithm has the following property: For

users i with demands ki [|k,plhn] and kb, = k2™, the e-responsé 1S

—

and the mean response is %, = 0(h,,v log k log(h,, v)).

D

REFERENCES

Andrews, G., "Synchronizing Resources”, ACM Trans. on Programming Languages
and Systems 3 (4), 405-30 (1981).

Angluin, D., "Local and Global Properties in Networks of Processors”, 12th Annual

| _S'ymp. on T?zgory of Compuling, Los Angeles, CA, 82-93 (;April 1980).

Arjomandi, E., M. Fischer, and N. Lynch, "A Difference in Efficiency Between Synchro~
nous and Asynchronous Systems”, 18th Ann. Symp. on Theory of Computing,
(April 1981).) _

Bernstein, A.J., "Output Guards and Nondeterminism in Communicating Sequential
Processes”, ACM Trans. on Programming Languages and Systems 2 (2), 234-
238 (19%0).

Bernstein, P. and N. Goodman, "Fundamental Algorithms for Concurrency Control in
Distributed Database Systems", CCA. Tr. Contract No. F30603-79-0191, Cambridge,
MA (1980).

Dennis, J.B. and D.P. Misunas, "A Preliminary Archite;:ture for a Basic Dataflow Pro~
;:esor", Proc. 2nd Annual Symp. on Computer Archiecture, ACM IEEE,
126-132 (1974).

Fisher, M.J., NA. Lynch, JE. Burns, and A. Borodin, "Resource Allocation with
Immunity to Limited Process Failure”, 19th FOCS, 234-254 (1979).

Francez, N, "Extended Naming Conventions for Communicating Processes”, 9th ACM
Symp. on Principles of Programming Languages, Albuquerque, New Mexico,
(Jan. 1982).

Francez, N. and J. Reif, "A Social CSP", to appear.

Francez, N and M Rodeh, "A Distributed Data Type Implemented by a Probabilistic

Communication Scheme”, 21st Ann. Symp. on Foundations of Computer Sci~

-97.-

ence, Syracuse, New York, 373-379 (Oct. 1980).

Hart, S. and M. Sharir, “Termination of Probabilistic Concurrent, Programs”, 9th Ann.

SCM Symp. on Principles of Programming Languages, Albuquerque, New
. Mexico, (Jan. 1982)

Hoare, CA.R., "Communicating Sequential Processes”, Com. of ACM, 21 (8), 666-677
(1978).

Itai, A. and M. Rodeh, “Symmetry Breaking in Distributive Networks”, 22nd Annual
Symp. on Foundations of Computer Science, Nashville, Tennessee, 120-158
(Oct. 1981). |

Lehmann, D. and M. Rabin, "On the Advantages of Free Choice: A Symmetric and
Fully Distributed Solution to the Dining Phlasophers’ Problem”, in 8th ACM
Symp. on Principles of Programming Languages, (Jan. 1981).

Lipton, R. and F.G. Sayward, "Response Time of Parallel Programs”, Research Report
#108, Dept. of Comp. Science, Yale University, (June 1977).

Lynch, MA., "Fast Allocation of Nearby Resources in éDistributed System"”, 12th Ann.
Symp. 1n Theory of Computing, Los Angeles, CA, 70-81 (April 1980).

Rabin, M., "N-Process Synchronization by a 4 log M- Valued Shared Variable”, 21st
Ann. Symp. on Foundations of Comp. Science, Syracuse, New York, 407-410
(Oct. 1980).

Rabin, M,, "The Choice Coordination Problem”, Mem. No. UCB/ERL MBO/38, Electric.
Research Laboratory, University of California, Berkeley, (Aug, 1980).

Reif, JH. and P. Spirakis, "Distributed Algorithms for Synchronizing Interprocess Com-
munication Within Real Time", 13th Ann. Symp. on Theory of Computation,
Wisconsin, 133-145 (1981); also as "Real-Time Synchronization of Interprocess
Communications”, in ACM Transactions on Programming Languages and Sys-

tems, 8, No. 4, April, 1984, pp. 215-238.

- 98-

Reif, JH. and P. Spirakis, "Unbélmded Speed Variability in Distributed Communica-
tions Systems”, 9th ACM Symp. on Principles of Programming Languages,
Albuquerque, New Mexico, (1982a); also in SIAM Journal of Comput;'ng{ 14, No.
1, February, 1985, pp. 75-92.

Reif, JH and P. Spirakis, "Real Time Resource Allocation in Distributed Systems”,
 ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing,
Ottaws, Canada, (Aug. 1982b). |
Schwarz, J., "Distributed Synchronization of Communicating Sequential Processes”, DAI |
Research Report No. 56, University of Edinburg, (1980).

