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k-CONNECTIVITY IN RANDOM UNDIRECTED GRAPHS*

John H. REIF
Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138, U.S.A.

Paul G. SPIRAKIS
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, U.S.A.

This paper concerns vertex connectivity in random graphs. We present results bounding the
cardinality of the biggest k-block in random graphs of the G, , model, for any constant value of
k. Our results extend the work of Erdds and Rényi and Karp and Tarjan. We prove here that
G, ,» with p=c/n, has a giant k-block almost surely, for any constant k >0. The distribution of
the size of the giant k-block is examined. We provide bounds on this distribution which are
very nearly tight. We furthermore prove here that the cardinality of the biggest k-block is
greater than n-log n, with probability at least 1—1/(n%logn), for p=¢/n and ¢ >k +3.

1. Introduction

A graph G =(V, E) consists of a finite nonempty set V of vertices together with
a prescribed set E of unordered pairs of distinct elements of V (set of edges). (We
allow no loops nor multiple edges.) The vertex connectivity k(G) of an undirected
graph G is the minimum number of vertices whose removal results in a discon-
nected graph or a trivial graph (consisting of just one vertex). Note that we follow
here [6] in defining k-connectivity, which we find to be most natural. MacLane [8]
gives a (somewhat different) definition of triconnectivity so that he can have the
theorem that a graph is planar if its triconnected components are. MacLane [8]
shows that his triconnected components are homeomorphic to 3-blocks. Vertex
k-connectivity seems to be a fundamental property of a graph and has numerous
applications to other graph problems (such as planarity testing, routing problems
etc.) It is relevant to questions concerning vulnerability of a graph to separation.
Cluster analysis methods considering the nature and inherent reliability of prox-
imity data use the theory of k-connectivity to find groups of likes and dislikes in
object pair association graphs ([6, 7] also [4]).

A k-block of an undirected graph G is a maximal k-connected subgraph. A
k-block is trivial if it has only one vertex [6]. Clearly, each k-block consists of =k
vertices or it is trivial.
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Matula [6] examined certain properties of k-blocks in graphs (number of them,
separation lemma) and Erdds and Renyi [2] and Karp and Tarjan |[5] examined
the distribution of the size of the biggest 1 and 2-blocks in random graphs G, ,
with p=c/n and G, 5 with N=cn. They proved that there is a giant k-block for
k =1, 2, with exponentially decaying probability of error. For p > (log n)/n Erdds,
Rényi [3] showed that G, , becomes almost surely k-connected, for k >0.

In our par . we examine k-connectivity in the model G, ,, defined precisely as
follows: For 0<p=<1 and n=0 let G,, be a random variable whose values are
graphs on the vertex set {1,2,...,n}. If e={u, v} and w,ve{l,2,..., n} then
Prob{e is an edge}=p and these probabilities are independent for different e.

We prove that for each constant k>0 and each ¢ (0<e=<1) there is a
c(k, £€)> k such that, for p =c/n, G, , has a k-block of cardinality at least £n, with
probability tending to 1 as n tends to infinity. Furthermore, for any a >1, k>0
and £ on (0,1] there is a c(k, &, a)>ak such that, for p=c/n, the above
probability is at least 1—e™".

We also prove that for any constant k >0 and any m <n/2k, there are constants
c(k)>k and d(k)>0 such that the cardinality of the biggest k-block of G, ,, with
p =(c(k)log n)/n is equal to n—m with probability at least 1—n"™®_ A corol-
lary of this result and the giant k-block result is the fact that, for such p, G,,
becomes almost surely k-connected (this was proved in [3]). For p above the
threshold value, we get tight bounds on the probability estimates.

Finally, we prove that for any m<+n and any constant k>0, there is a
constant c¢,(k)>1+k and a function t(n) > (c,(k)log n)/m, such that, if p>t(n)/n,
then the cardinality of the biggest k-block of G, , is greater than n—m with
probability at least 1—1/mn“®"'"% A corollary is that if p=c,(k)/n with
cy(k)>k+3, then G,, has a k-block of cardinality greater than n-—logn
with probability at least 1—1/(n?log n).

2. Properties of k-blocks

Propeosition 1 (Matula [6]). For each k=0, any two k-blocks have no more than
k —1 wvertices in common.

Definition (Matula [6]). A separation set S of G is a vertex subset S < V(G) such
that G —S is disconnected. A minimum separating set S < V(G) has |S|= k(G).

Definition. Let G be a graph (V, E) and let Sc V be a set of vertices. Then by
(S) we denote the subgraph induced by S on G.

Lemma 1 (Matula [6], Block separation lemma). Let S< V(G) be a minimum
separating set of the noncomplete graph G with (A;),(A),...,{A,), m=2 the
components of G —(S) and let k = k(G)+ 1. Then each k-block of G is a k-block of



k ~connectivity in random undirected graphs 183

(A; US) for precisely one value of i, and each k-block of (A, US) for every i is a
k-block of G.

For a proof, see [6].

Remark. Matula [6] shows that for each k=1 the total number of nontrivial
k'-blocks for 1=k’'=<k, is <|(2n—1)/3] for any graph G with n vertices.

3. Giant k-blocks in random graphs

In the following we introduce special notation for very large subgraphs. For
each g, 0=g =<1, a subgraph H of a graph G of n vertices is called an &-giant of
G if the cardinality of the vertex set of H is =¢n.

Definition. Given a vertex set ScV in the graph G =(V, E), the boundary
vertices of S are the set B(S)={ueS | 3ve V-8 such that {u, v}e E}.

Definition. Let X be a random variable whose values are the cardinality of the
maximum k-block of instances of G, ,. Let F,,,(a)=Prob{X=<a} be the dis-
tribution function of X.

Definition. If G =(V, E) and A, B are subsets of V, then
CROSS(A, B)={e={u,v}cE|uec A and veB}.

Lemma 2. For any «,, £,, £,>>0 where €,+&,<1 and a,=1 there are constants
C, €3, €4>0 such that a random graph G, , with p=c/n has-the property (*¥) with
probability =1—e ™",

If A, B are any two vertex subsets of V such that |A|=|en],
|B|=le,n] and ANB =@ then |CROSS(A, B)|>0. (%)

Proof. The complement of (*) is the event I: “There are two vertex subsets A, B
such that |A|= | e n], |B|=|e,n] and A NB =0 and |CROSS(A, B)|=0."
Clearly
Prob{CROSS(A, B) = i} <(1—p)="< ((1 —9 ) T e,

The number of ways to select these A, B is

n n—en
nAB =
£1n &n
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(assume for simplicity here that €,n, e,n € N). Note that [9]

()~ Gn) O G

leading to

_ 1 (l)sln(l)ezn( 1 )(1—51)1!( 1 )(1—52)71
Mas T (4m2e,ex(1- ) (1 - e)n?2 \g, €5 1-¢, 1-—¢,

Let

1
efes(1—g,) ™ (1—gy)' 752"

Clearly vy(e,, £,)<4 and y(g,, £,) =4 when g, =¢,=3. So

'Y(S 1> 82)

Nap < ! ,——-——1 = y" (&4, £2) o))
2mn vV B(e;, £7)
where
B(Gls 82) = 8182(1 - 31)(1 - 82) =4. (2)
Clearly, since &,, e,=1/n, we have
1 2
B(&1, 82)/ s+t—=——. (3)
n* n

It is straightforward to show that

1 1
—=n+2 for n=4.
‘/E(Sb 82) ‘fl -2/n " orn

We then get

Prob{I}< ) Prob{CROSS(A, B) =}
all A.B

<;/__2 4recE (ﬁ-om (1), (2), (3))
i3

V2

2
<__ 4e—celez)n - e—aln
for
- ay+log. 4 O

E1€2

Now we can prove

Theorem 1. For every € on (0, 1) and k>0 there is a ¢ = c(g, k) >0 such that, for
p>c/n, lim,_,.. F, ,(en)=0. In other words, the random graph G, , with p=c/n
has an e-giant k-block with probability tending to 1 as n tends to +.
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Proof. Let G=(V, E) be an instance of the random graph G, ,. Let E; be the
event “G has no g-giant k-block”. Assume event E,; be true in the instance G of
G, - Let initially the set A =@. Do the following construction just until A has
cardinality =¢'(n/2), where ¢’ =min(e, 1—¢).

(a) Find a minimum separating set S of G. Let (A,),...,(A,.), m=2 be the
components of G—S. Let (A;) be the smallest of them. Let A be (A, US)UA.
Let B be the union of the rest of the components and let G be the
graph induced by BUS. If |A| <&’ - 3n, then go to (a).

By the above method of constructing A, each addition of a component in A
adds at most k —1 vertices to B(A) (i.e. the vertices of the cut) and at least one
vertex to A — B(A) (by the block separation lemma and by the fact that k-blocks
have =k vertices if they are nontrivial) or causes the transformation of a
boundary to a nonboundary vertex. Thus, at least 1/k of the vertices of A are not
in B(A).

By this construction, finally the k-blocks of G are going to be separated.
Because all k-blocks have been assumed to have cardinality <en, we will finally
have

3 !
e'gSIAlsmin[s’g+en, T]
So
min(e, 1 —¢)
—_— ?———_—.
|4 -B(a) =22
and

venpefi-me (%) )

Let Y=A—-B(A)and Z=V—A. Then |Y|=¢,n and |Z|=e,n, where &, =¢'/2k
and for &, it is straightforward to show that

3¢

1_82= 3 3
48 if >1
Finally
. € 3e
lfs<%then 81=5"C‘,GZ=1—7
1-¢ 1 3¢
elsesl——z-’:-,ez—-z+—;.

Also, CROSS(Y, Z) =@, by construction. Let E, be the above event. We have
just shown that E, implies E,. So,

Prob{E,}<Prob{E,}
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and, by using the proof of Lemma 1
\/2 —Ceg,.E,\N
Prob{Ez}Sé;(v(el, gr)e 12", 4)

Clearly, when In y(e,, €,) <ce; &, then the right-hand side of (4) tends to zero as
n—+». So, for ¢ >In y(e,, £,)/(e1€,) we get Prob{E,;} >0 as n -+, [
Note. The constant ¢ must be greater than

=1n y(e,, 82)= _ln 81__111 -‘52~_(1“1'31)ln (1_81)_(1_82)

€18&5 €o €1 E1E, €1€&,

th In (1-¢,).
Clearly cu(e;, £2) = c,(1— &4, 1 —&5,). From [1] it is known that the threshold for a
giant connected component (k=1) is 1/n, i.e. ¢ must be >1. Let us find
min cy(€4, £,) for e,+e,<1, e,,8,=1/n, and k=1. Clearly cy(e,, £,)>1 and
e1—0, e, — 1 gives us cy(eq, £2) = 1. So, our threshold matches the threshold of
[1] for k =1. In general, (k=1), c>k.

Corollary 1. For every c on (0,1), a>1 and k>0 there is a c =c(k, &, a) >0 such
that, for p=c/n, F, ,;(en)<e™".

Proof. Just take ¢ =(a+In y(e4, €,))/€,&, in (4) of the proof of Theorem 1. We
get Prob{E }<Prob{E,}<e™. O

Remark. In the proof of Theorem 1, note that |Y|<(1—e,)n and |Z|<(1—¢))n.
Then, the probability that CROSS(Y, Z)=@ is greater than (1—p)@®~=20~=n*
Also, the number of ways to select such Y, Z is

( n )(n—(l—-ez)n)

ny; = .

(A—e)n/\ (1—¢g)dn

By the proof of Lemma 2 then, the probability that there are two such sets is at
least

V2
Dy (y(1—g,, 1—g,)e c7e202yn

leading to the conclusion that such sets almost surely exist when c¢<
Iny(1—ey,1-8))/(1-€1)(1—€5). But y(1—e;,1—e))=7(ey, &) and, when
g,+e,=1 then (1—¢,)(1—&,)=¢€,¢,. So, we conclude:

Corollary 2. The constant ¢y, =1In y(e4, é,_)/(slez) is optimal.

4. k-blocks of dense random graphs

This section considers random graphs with edge probability p = c log n/n. Erdos
and Rényi [3] gave the threshold probability for a random graph of the G, y
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model to be k-connected. That threshold, translated to G,,, implies that

1 k 1 .
Pun=— 1ogn+§10glogn+a+o - (where a is a constant)

is the threshold for G, , to be k-connected. We examine here a related question,
namely the distribution of the size of the biggest k-block of dense random graphs.
This question has not been sufficiently answered in the past. Erdos and Rényi [3]
used a powerful technique for proving tight bounds on the probability that a
random graph is k-connected, namely, they locate suitable subgraphs not joined
by an edge, and derive tight bounds on the probability of the existence of such
subgraphs. We use essentially the same ideas here.

Theorem 2. For any constant integer k >0 and any n and m <n/2k there are
constants c(k)> k and d(k)>0 such that the cardinality X of the biggest k-block of
the graph G, , with p =c(k)log n/n satisfies

Prob{X =n—-—m}<sn"m4®,

Proof. Let G be an instance of G, , and let the event X =n—m be true in that
instance. Let A be a k-block with |A|= X. For every ue V— A we have that

|{u, v}e E(G): ve A}i<k—1
(else, u would belong to A). Let

A;={veA:Jue V-A:{u, v}e E(G)}
then
A=k -1)|V-A|=(k-1)m.

Let A,=A—A,. We get
|Asl=n—m—(k—1)ym=n—km.

Furthermore, there is no edge from V—A to A,. Let E be this event. The
probability of E is bounded above by

u(m,my=(")( "7 Yapyeiom 5)

n—km
But

C log n)(n—km)m< (1 C log n)(m(n—km)/logn) -logn

_ (n—km)ms —
(1Yt (1- 22

n

< e—cm logn . n—-cm. (6)

Also, note that ("7%)=(,""m). Since (k—1)m<3(n—m) we have ()<
(n—m)* V"< pn®&=Dm  Also, since m <in we get () <n™. We conclude

u(m, n)< n*™n"". 7

Let d(k) = c — k. Clearly d(k)>0 iff ¢ > k. We thus have Prob{E}<n"™9%® O
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Theorem 3. For any constant integer k >0 and any suﬁiciently large n, there are
positive constants c(k) and d(k) such that the cardinality X of the biggest k-block of
the graph G, , with p = c(k)log n/n satisfies

Prob{X < n —log n} <2pn—40Neen)
Proof. By using Theorem 2, we get

n n2k
Prob{log n<n _X<E} = z p—md )

m=logn

with d(k)=c—k, c>k. So,

Pl'Ob{lOg n<n _X<_21k}< n- n—logn . d(k) < nl—d(k)log n
Also, by Corollary 1 and using € = 1/2k we get Prob{n — X > n/2k}<e™™ " for any
a>1 and c(k)=(a+log. y(e1€,))/e,8, With £,6,=(1/(2k))(1—-3/(8k)). So, for
c(k) <max(k, (a +log. 4)/e,€,) or

c(k)>16(a +log, 4)k> ®)
we get

Prob{log n<n—X}<e ™™ "+ plloen-d)
or

Prob{X<=n—logn}<2n®4®ee™  for any sufficiently large n. [

Note. Theorem 3 says that for p=c(k)log n/n the graph G, , has a k-block of
size = n —log n with probability tending to 1 as n — .

Theorem 4. For any constant integer k>0 and n sufficiently large, there are
constants c(k)>k? and d'(k)= c(k)—1—k such that the random graph G, , with
p=c(k)log n/n is k-connected with probability at least 1—2n=4'®,

Proof. Let R =n— X where X is the cardinality of the biggest k-block of G, ,. By
using the previous two theorems, with

' a+log, y(slez)) . 1 ( 3)
k)>1+ ( a =—[1=-=
c(k) max| k ool with €&, oK 1 k)’

we get that
Prob{l <R}<e *"+nl~h)

Let d'(k)=c—k—1. Then d'(k)>0 for

c(k)>2+max(k, a +log. (e, 82))
£1€E,

and
Prob{l < R}<se * "+ n W <p4®

for large n. Hence, Prob{R =0}>1-2n"%4®, O
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Note. Erdos and Rényi [3] prove that (for the G, n model) the threshold
probability that G, 5 is k-connected is asymptotically the same as the threshold
probability that the mindegree of G, is k. This result can be easily shown to
hold for the G,,, model too. Our proof of Theorem 3 (of which Theorems 4, 5 are
corollaries) is based on the examination of vertices whose degree is <k —1. The
optimality of the result of [3] for G,y then, allows us to conjecture that the
estimate of Theorem 2 is close to optimal.

5. k-blocks for intermediate edge densities

Let ¢/n <p=c'log n/n. We wish to study the k-connectivity for random graphs
of the G, , model, with p as above. Note that the result of Theorem 5 below, does
not translate easily to G, 5. Below, ¢’'=<1.

Theorem 5. For any constant k=0 and any m <+n there is a constant c,(k)>
1+c'k and a function t(n) > (c,(k)log n)/m such that, if p>t(n)/n then if X is the
cardinality of the biggest k-block of G, , then

1

ncl-—l-—c'k

1
Prob{Xsn—m}s-r-n— -0 asn—o>owx,
Proof. Assume that in the instance G of G, , the cardinality X of the biggest
k-block satisfies the inequality X <n —m. Then, we can find two sets Y, Z (as in
the proof of Theorem 3) such that |Y|=m, |Z|=n—km and no edge between
them. This event is above bounded by the probability 1—q where
q = Prob{for every pair of disjoint sets Y, Z of
vertices of the above sizes, there is at least one
edge between Y, Z}.

We shall show q— 1 as n — «. Let us enumerate all possible pairs of sets of
vertices of the above sizes. Call them

(Yb Zl)a (Y2, Z2)’ sy (Yg: Zg)

&= (:u)(nn—_k':1) - (;)((kn:lr;m) )
We have
q =Prob{CROSS(Y,, Z,) #9A- - - ACROSS(Y,, Z,) # 8}.

where

By Bayes’s formula,
q =Prob{CROSS(Y,, Z,) # @}

CROSS(Y, Z)#0] . CROSS(Y, Z,)=9
'Pmb{CROSS(Yb zl)aeg} Pr°b{ N CROSS(Y},Z,-)%{D}'

1=isg—1
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We need the following enumeration lemma:

Lemma 3. For every two sets Y;, Z; having at least one edge e between them, there
are at least

B (n—2)(n-—2—(m— 1))
8.7 m—-1/\ (k—1)m-—1
pairs of sets of sizes m, n—km which also have this edge between them.

This lemma can be proved easily by taking out the two vertices of e and
enumerating.

Corollary 3. There is a suitable enumeration of the sets in the q product such that
for every term i not equal to 1 the next g, or more terms (conditioned on the
existence of an edge from A, to B;) will be equal to 1.

Hence, the value of q is

q=[Prob{E(Yy, Z,) # #}¥*

but

£ (L)) w22

g, \n—km/\m netw @ M’
hence

q=(1-(1-prm)ee
or

a=(1-((1-p)Pymeim)es
or

q= 1- e—pm(n—km))g/g1
or

g —m-t(n)+pkm2
=1l——e

1 &1

or

n—1 n
()
1 n—km/\m ©

Since p <c’log n/n we have pkm2<(c'/n)km?log n. For m<+vn we get pkm?><
c’'k logn and as n grows large, we get
q = 1 _ (_n_)e—t(n)-m+c'k logn
m

or
q= 1- eloln—losm—-mt(n)-i-c'k logn

or

q=1—— 1w ©)
m
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(because mt(n)>c, logn). So, if ¢;>c'k+1 we have

1

1
Prob{X<n—-m}<;[-- coimex —~> 0 asn—+oeo [

n

Corollary 4. For m =log n we get: For each k>0, the graph G, , with c,(k)/n<
p=<c'logn/n and c,(k)>c'k+3, has a k-block of cardinality >n—logn with
probability =1 - 1/(mn?).

6. Conclusion

We provided here nearly tight bounds on the probability distribution of the size
of the biggest k-block in random graphs. We leave as an open problem the
problem of determining k-blocks of a graph efficiently when the graph is random.
This problem has been successfully answered, for k = 1 and 2, by Karp and Tarjan
[5]. Algorithms for finding the k-blocks (for any k) when the graph is not
necessarily random, have been discovered by Matula [7]. We believe that consid-
erable improvements in the time efficiency of these algorithms can be made if the
algorithms are adjusted to make a use of the structural properties of random

graphs.
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