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Matula  [6] examined certain properties of k,blocks in graphs (number of them, 
separation lemma) and Erd6s and Renyi  [2] and Karp and Tar jan  [5] examined 
the distribution of the size of the biggest 1 and 2-blocks in random graphs G,~p 
with p>~c/n and G~N with N>~cn. They proved that there is a giant k-block for 
k = 1, 2, with exponentially decaying probabili ty of error. For p > (log n)/n Erd6s, 
R6nyi  [ 3 ] showed that G~.o becomes almost surely k-connected, for k > 0. 

In our pap . we examine k-connectivity in the model  G,~p, defined precisely as 
follows: For 0~<p~<l and n>~0 let G,~p be a random variable whose values are 
graphs on the vertex set {1, 2 , . . . ,  n}. If e = {u, v} and u, v ~{1, 2 , . . . ,  n} then 

Prob{e is an edge} = p  and these probabilities are independent  for different e. 
We prove that for each constant k > 0  and each e (0~<e ~< 1) there is a 

c(k, e )>  k such that, for p >I c/n, G,.p has a k-block of cardinality at least en, with 
probabil i ty tending to 1 as n tends to infLrfity. Furthermore,  for any a > 1, k > 0 
and e on (0, 1] there is a c(k,e,  ot)>o& such that, for p ~ c / n ,  the above 
probabil i ty is at least 1 - e  -a". 

We  also prove that for any constant k > 0 and any m < n[2k, there are constants 
c ( k ) >  k and d ( k ) > 0  such that the cardinality of the biggest k-block of G,~p, with 
p >I (c(k) log n)/n is equal to n - m with probability at least 1 - n -"a(k~. A corol- 
lary of this result and the giant k-block result is the fact that, for such p, G,~p 
becomes almost surely k-connected (this was proved in [3]). For p above the 
threshold value, we get tight bounds on the probability estimates. 

Finally, we prove that for any m ~<x/n and any constant k > 0 ,  there is a 

constant ct(k) > 1 + k and a function t(n) > (ct(k)log n)/m, such that, if p > t(n)/n, 
then the cardinality of the biggest k-block of G~.p is greater than n - m  with 
probabil i ty at least 1-1~ran c~(k~-x-k. A corollary is that if p ~ c t ( k ) / n  with 
c t ( k ) > k + 3 ,  then G~.p has a k-block of cardinality greater than n - l o g  n 
with probability at least 1 - l / (n  2 log n). 

2. Properties of k-blocks 

Propc~sition 1 (Matula [6]). For each k >10, any two k-blocks have no more than 

k -  1 vertices in common. 

ll~Rnf.lion (Matula [6]). A separation set S of G is a vertex subset S ~ V(G) such 
that G - S is disconnected. A min imum separating set S = V(G)  has IS! = k(G).  

~ i t i o n .  Let G be  a graph (V, E)  and let S ~ V be a set of vertices. Then by 
(S) we denote the subgraph induced by S on G. 

1 (Matula [6], Block separation lemma). Let S =_ V(G)  be a minimum 
separating set of the noncomplete graph t3 with (At), ( A 2 ) , . . . ,  (Am), m >~2 the 
components of G - ( S )  and let k >~ k(G) + 1. Then each k-block of G is a k-block of 
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(Ai O S) for precisely one value of i, and each k-block of (Ai O S) for every i is a 
k-block of G. 

For  a proof, see [6]. 

Remmrk. Matula [6] shows that  for each k >I 1 the total number  of nontrivial 

k ' -blocks for 1 ~< k ' ~  < k, is ~< L(2n -  1)/3J for any graph G with n vertices. 

3. Giant k-blocks in random graphs 

In the following we introduce special notation for very large subgraphs. For  

each e, 0 <~ e ~< 1, a subgraph H of a graph G of n vertices is called an e-giant of 
G if the cardinality of the vertex set of H is Fen. 

De~mltion. Given a vertex set S _  V in the graph G = (V, E),  the boundary 
vertices of S are the set B ( S ) = { u e S I 3 v e  V - S  such that {u,v}~E}.  

Defmhlion. Let X be a r andom variable whose values are the cardinality of the 

max imum k-block of instances of G,~p. Let  F,~,v,k(a)= Prob{X<~a} be the dis- 
tribution function of X. 

Dellnilion. If G = (V, E) and A, B are subsets of V, then 

C R O S S ( A , B ) = { e  ={u, v } ~ E [  u ~ A  and v~B} .  

Lemm~ 2. For any al, el, e2>0  where e l d - e 2 ~ l  and ax >~ l there are constants 
c, ea, e4 > 0 such that a random graph G,,.v with p >I c/n has the property (*) with 
probability >~1 - e -~1~. 

I rA ,  B are any two vertex subsets of V such that IAl>~ [eln], 
IBl>~ [e2nl and A NB=f~  then ICROSS(A, B ) [ > 0 .  (*) 

Proof .  The complement of (*)  is the event I :  "There  are two vertex subsets A, B 
such that  IA[ > kelnJ, IBI  [eEnJ and A nB--  and ICROSS(A, B)I = 0. ' ' 

Clearly 

Prob{CROSS(A, B)  = ¢}<~(1-p)~, '~2"~ < 1 -  ~<e -c~1~2". 

The  number  of ways to select these A,  B is 

EIII ~2/I / 
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(assume for simplicity here that e~n, E2nEN).  Note that [9] 

leading to 

1 ( 1 ' ~ " : ( 1 ' ~ " : (  1 '~(I--0,,(, 1 '~('-~9" 
nAB<~(4"a2e,e2(1--e,)(1--e2)n2)l'2L-'~] L-~21 LI--~I LI--~21 

Let 

1 
e~,e[,(1- e01-*,(1- ~2)1-"~" 

Clearly ,'y(E1, e2)<~4 and 'Y(el, E2) = 4  when el = e2=½. So 

where 

1 1 
nAB ~ - -  ~n(E1, ~2) (1) 

2~rn J/3(el, e2) 

~(el ,  e2) "- fie2(1-- ~1)(1-- e2) ~ 4 .  (2) 

Clearly, since El, E2~ l/n, we have 

1 1 2 
~(E1, 

\ (3) n4 n3. 

It is straightforward to show that 

1 1 
~<n ~n~/2 

J ~ ( ~ l ,  ~2) J1- -  2/n 
for n ~> 4. 

We then get 

for 

Probff} < Prob{CROSS(A, B) = ~} 
aUA.B 
/ 

~<~2 4.e_~:: (~om (1), (2), (3)) 
2~r 

42 J2  
~<2-a" (4e-~': ')" ~ < ~  e-%'~2"a" 

c ~  af+l°g~ 4 [ ]  
8182 

Now we can prove 

Theorem 1. For every e on (0, 1) and k > 0 there/s a c = c(e, k) > 0 such that, for 
p >c]n, lim,,._~ F.,p,k(en)= O. In other words, the random graph G,~p with p >~ c/n 
has an e-giant k-block with probability tending to 1 as n tends to +o0. 
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Proof. Let G = (V, E) be an instance of the random graph G..p. Let E:  be the 
event " G  has no e-giant k-block'.  Assume event E1 be true in the instance G of 
(~n.p- Let initially the set A = ~. Do the following construction just until A has 
cardinality >~e'(n/2), where e' = min(e, 1 -  e). 

(a) Find a minimum separating set S of (3. Let (A~) , . . . ,  (Am), m ~ 2 be the 
components of G - S .  Let (Ai) be the smallest of them. Let A be (A~ U S)U A. 
Let B be the union of the rest of the components and let G be the 
graph induced by B U S. If [AI < e "  ½n, then go to (a). 

By the above method of constructing A, each addition of a component in A 
adds at most k - 1  vertices to B(A)  (i.e. the vertices of the cut) and at least one 
vertex to A - B ( A )  (by the block separation 1emma and by the fact that k-blocks 
have >--k vertices if they are nontrivial) or causes the transformation of a 
boundary to a nonboundary vertex. Thus, at least 1/k of the vertices of A are not 
in B(A). 

By this construction, finally the k-blocks of G are going to be separated. 
Because all k-blocks have been assumed to have cardinality ~<en, we will finally 
have 

So 

and 

e, n_<lAl<~min[e,2 + 3ne'] 2 e n , - - ~ j .  

rain(e, 1 -  e) 
I A - B ( A ) [ ~  2k 

Let Y = A - B ( A )  and Z =  V - A .  Then IYl>~e~n and [Z[~ezrg where ex 
and for e2 it is straightforward to show that 

= e'/2k 

Finally 

l _e2=I -  ~ if e~½, 

L i. 

e 3 e  
if e ~<½ then E 1 - - - ~ ' ,  E2 --~ 1 4 

1 - e  1 3e else E1 = 2k ' e2=4+-4  -" 

Also, CROSS(Y, Z ) = ~ ,  by construction. Let F-.2 be the above event. We have 
just shown that E1 impfies F-.2. So, 

ProbiEd Prob{F.  
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and, by using the proof of Lemma 1 

Prob{E2} ~< x/2 (~/(el, e2)e-~'*~) ". (4) 

Clearly, when ha ~/(el, e2)< cele2 then the fight-hand side of (4) tends to zero as 
n--->+o0. So, for c > l n  ~/(el, e2)/(ele2)we get Prob{E1}---> 0 as n ~ +oo. [] 

Note.  The constant c must be greater than 

ha V(ea, e2) ha el ha e 2  ( 1 -  el) In ( 1 -  el) ( 1 -  e2) ha ( 1 -  e2). 
C t h - -  ~--- - -  

8 1 8 2  82  81 E1E2 E182 

Clearly Cth(el, e2)=Cth(1--el, 1--  e2). From [ 1] it is known that the threshold for a 
giant connected component ( k =  1) is l/n, i.e. c must be >1.  Let us find 
rain cth(el, e2) for e l + e 2 ~ l  , El, eE>>-l/n, and k = 1. Clearly cth(el, e2)>1 and 
el --~ 0, e2 --~ 1 gives us  Cth(el, e2) ~ 1. So, our threshold matches the threshold of 
[ 1] for k = 1. In general, (k i> 1), c > k. 

\ 

Carolllm~ 1L For every e on (0, 1), a > l  and k > 0  there is a c =c(k,  e, a ) > 0  such 
that, for p >I c/n, F~v.k(en) ~ e -'~. 

Proo| .  Just take c>--(a+ha ~/(el, e2))/ele2 in (4) Of the proof of Theorem 1. We 
get Prob{E1}<~Prob{EE}~<e - " .  [ ]  

Remark.  In the proof of Theorem 1, note that IYl<(1-e2)n and IZl<(1-e0n. 
Then, the probability that CROSS(Y, Z ) =  f~ is greater than ( l - p )  (1-~1)t1-~)"2. 
Also, the number of ways to select such Y, Z is 

nvz >I ( 1 -  e2)n / \  ( 1 - e l ) n  /" 

By the proof of Lemma 2 then, the probability that there are two such sets is at 
least 

,/2 
( ~ ( 1 -  ex, 1 - e2)e-C(1-~,)(1-~P)" 

2~r 

leading to the conclusion that such sets almost surely exist when c <  

ha 3,(1- el, 1 -  e2)/(1-  e l ) ( 1 -  e2). But 3,(1- el, 1 - e2) = 3'(el, e"2) and, when 
el + e2 = 1 then (1 - e l ) ( 1 -  e2) = ele2. So, we conclude: 

Coronary 2. The constant c~h = ha V(el, e2)l(ele2) is optimal. 

4. k-blocks of dense random ~'aphs 

This section considers random graphs with edge probability p I> c log n/n. Erd6s 
and R6nyi [3] gave the threshold probability for a random graph o f  the G~r~ 
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model to be k-connected.  That  threshold, translated to G,.p implies that  

(1 (1)) 1 og n + log log n + a + o (where a is a constant) Pth n 

is the threshold for G,.p to be k-connected.  We examine here  a related question, 
namely the distribution of the size of the biggest k-block of dense random graphs. 
This question has not  been sufficiently answered in the past. Erd6s and R6nyi [3] 

used a powerful technique for proving tight bounds on the probability that  a 

random graph is k-connected, namely, they locate suitable subgraphs not joined 
by an edge, and derive tight bounds on the probability of the existence of such 
subgraphs. We use essentially the same ideas here. 

Theorem 2. For any constant integer k > 0  and any n and m < n/2k there are 
constants c(k ) > k and d(k ) > 0 such that the cardinality X of the biggest k-block of 
the graph G,~p with p >~c(k)log n/n satisfies 

m} ~ n-rod(k) Prob{X = n - 

l~root. Let  G be an instance of G,.v and let the event X = n - m be true in that  

instance. Let A be a k-block with IA[ = X. For  every u ~ V -  A we have that 

I{{u, v}~ E ( G ) :  v ~ A}I <~ k - 1 

(else, u would belong to A) .  Let  

A1 ={v c A :  ~lu e V - A :  {u, v}~ E(G)} 
then 

[ A l l ~ ( k -  1 ) [ v - m l = ( k  - 1)m. 

Let A 2 = A - A 1 .  W e  get 

IA21 n - m - ( k  - 1)m = n - kin. 

Furthermore,  there is no edge from V - A  to A2. Let  E be this event. The 

probability of E is bounded above by 

But 

= n n - m  1 

u(m, n) ( m ) ( n _ k m ) (  _p)( .-k, . , .  ( 5 )  

(1--p)(a-km)m<~(l c lognl(n-kra)ra ( ~  I clognl(ra(n-km)ll°gn)'l°gn 
n n 

~< e-Cm loz, = n -°" .  (6) 

Also, note that  (,"-~,,)=((~-1~',,)- Since ( k - 1 ) m < ½ ( n - m )  we have ~(k-1)~ 
(n -m)(k -1 )~<n (k-x)'~. Also, since m <½n we get (~ , )<n" .  W e  conclude 

u ( m , n ) < n k ~ n  - ~ .  (7) 

Let d ( k ) = c - k .  Clearly d ( k ) > 0  itt c > k. W e  thus have Prob{E}<~n -"~'a(k) [] 
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Theorem 3. For any constant integer k > 0 and any sufficiently large rg there are 
positive constants c(k ) and d(k ) such that the cardinality X of the biggest k-block of 
the graph G.,v with p I--c(k)log n/n satislies 

Prob{X ~ n - log n} < 2n (1-dtk)logn). 

Proof .  By using Theorem 2, we get 

Prob og n ~< n - X < n = n_.,a(k) 
rn =log n 

with d ( k ) = c - k ,  c > k .  So, 

Prob{log n<~n - X < ~ }  < n .  n - l °gn  "a(k) < nX-d(k)l°g n. 

Also, by Corollary i and using e = 1/2k we get Prob{n - X > n/2k} < e - " " "  for any 

a > 1 and c(k) >~ (a + log~ ' y ( e l g g ) / g l e  2 w i t h  e l g  2 -~- ( 1 / ( 2 k ) ) ( 1 -  3/(8k)). So, for 
c(k) < m a x ( k ,  ( a  +log~ 4)/ere2) or  

we get 

o r  

c(k) > 16(a  +log~ 4)k 2 

Prob{log n ~< n -  X} < e - " ' " +  n t-~°g"'a(k) 

P r o b { X ~ n - l o g n } < 2 n  (t-a(k)t°g") for any sufficiently large n. [ ]  

(8 )  

Note .  Theorem 3 says that  for p>~c(k)logn/n the graph G~v has a k-block of  
size ~> n - log n with probability tending to 1 as n - ,  oo. 

Theorem 4. For any constant integer k > 0  and n suyrw.iently large, there are 
constants c ( k ) >  k 2 and  d ' ( k ) =  c ( k ) - 1 - k  such that the random graph G..p with 
p >~c(k)log n/n is k-connected with probability at least 1 - 2 n  -a'(k). 

Proof .  Let  R = n - X where X is the cardinality of the biggest k-block of G,.p. By 
using the previous two theorems, with 

we get that 
Prob{1 ~< R} < e -~ ' "  + n t-<~-k). 

'03) 
w i t h  e e2 = 

Let d'(k)= c -  k -  1. Then d ' (k)>0 for 

and 

c(k)> 2 +max(k, a +  logo ~(ex, e2)) 
8 1 8 2  

Prob{1 ~< R} ~<e - ~ ' " +  n -a'<k) < 2n -d'<k) 

for large n. Hence, Prob{R = 0} > 1 -  2n -a'¢k). [ ]  
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Note. Erd6s and R6nyi [3] prove that (for the G..N model) the threshold 
probability that G~t~ is k-connected is asymptotically the same as the threshold 
probability that the mindegree of G~t¢ is k. This result can be easily shown to 
hold for the G,,o model too. Our proof of Theorem 3 (of which Theorems 4, 5 are 
corollaries) is based on the examination of vertices whose degree is ~<k- 1. The 
optimality of the result of [3] for G~.t~ then, allows us to conjecture that the 
estimate of Theorem 2 is close to optimal. 

5. k=blocks for intermediate edge densities 

Let  c/n <- p ~ c' log n/n. We wish to study the k-connectivity for random graphs 
of the G~.p model, with p as above. Note that the result of Theorem 5 below, does 
not translate easily to G,~N. Below, c '<< - 1. 

Theorem 5. For any constant k>~O and any m < ~ / n  there is a constant cl (k)> 
1+ c'k and a function t(n) > (cl(k)log n)/m such that, if p > t (n) ln  then if X is the 
cardinality of the biggest k-block of G,.p then 

1 1 
Prob{X n-m}  m nC _1_¢,  k ~ 0 O~ n ---> oo. 

Proof. Assume that in the instance G of G,~. v the cardinality X of the biggest 
k-block satisfies the inequality X ~< n -  m. Then, we can find two sets Y, Z (as in 
the proof of Theorem 3) such that [Yl=m, [ Z l = n - k m  and no edge between 
them. This event is above bounded by the probability 1 - q  where 

q = Prob{for every pair of disjoint sets Y, Z of 
vertices of the above sizes, there is at least one 
edge between Y, Z}. 

We shall show q--> 1 as n--* oo. Let us enumerate all possible pairs of sets of 
vertices of the above sizes. Call them 

(Y1, z0, zg,. . . ,  
where 

n n - - f i r [  
, 

We have 
q = Prob{CROSS(Y~, Z 0  :/: ~t A-- -  A CROSS(Y=, Zg) # ¢}. 

By Bayes's formula, 

q - Prob{CROSS(Y~, Zx) :/: ~1} 

ICROSS(Yz, Z,2) # ¢ /  
• P r o b , [ ~  ~ ~-~j 

CROSS(Y  Z,)=O }. 
. . . -  Prob{ ~ CROSS(Y~, Z-3 # 0 

l~ i t~g- -1  
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We need the following enumerat ion lemma: 

L e m m a  3. For every two sets Y~, Z~. having at least one edge e between them, there 

are at least 

( n - 2 ) ( n - 2 - ( m - 1 ) ' ~  

g l =  m 1 ( k - 1 ) m - 1  ] 

pairs of sets of sizes m, n -  km which also have this edge between them. 

This lemma can be proved easily by taking out the two vertices of e and 
enumerating. 

Corollm'y 3. There is a suitable enumeration of the sets in the q product such that 
for every term i not equal to 1 the next gl or more terms (conditioned on the 

existence of an edge from Ai  to Bi) will be equal to 1. 

Hence,  the value of q is 

but 

hence 

o r  

o r  

o r  

o r  

q  [ProbIE(Y , b 

gl S k i n  and 

q >~ (1 - (1 - p)m(,-k,~)~j~, 

q I > ( 1 - ( ( 1 -  p)l/p)p,,(.-k~))g/g, 

q >~ (1 - e - ~ ¢ " - k m ) )  ~ ' ,  

q ~> 1 - g  e -~'t(")+vk~= 
gx 

[ n - 1  ~ [ n ~  .,,,.~+.m2 
- e -  ""  " P~ 

q 1-  J ,m J 

lim g n 
n--,+*o g l  t t l  

0 r  

q ~ 1 - -  e l ° g n - l ° I m - ~ t n ) + c ' k  1ogn 

I n _ ( c x _ l _ c , k )  q > ~ l - - -  (9) 
t n  

o r  

Since p < c ' l o g  n/n we have pkm2<(c ' /n )km210g  n. For m ~<x/n we get p k m 2 <  

c'k log n and as n grows large, we get 

q >~ 1 _  (n~e-tt-)-~+~'klog- 
x m I  
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(because m t ( n ) > c l  log n). So, if cl > c'k + 1 we have 

1 1 
Prob{X < n -  m } < - ~  . nCl_l_c, k ---> 0 as n---> +oo. [] 

Corollary 4. For m = log n we get: For each k > 0, the graph Grt, p with cx(k)/n 

p <~c' log n/n and cl(k) > c'k + 3, has a k-block of cardinality > n - l o g n  with 
probability >11- ll(mn2). 

6. Conclusion 

We provided here nearly tight bounds on the probability distribution of the size 
of the biggest k-block in random graphs. We leave as an open problem the 
problem of determining k-blocks of a graph efficiently when the graph is random. 
This problem has been successfully answered, for k = 1 and 2, by Karp and Tarjan 
[51. Algorithms for finding the k-blocks (for any k) when the graph is not 
necessarily random, have been discovered by  Matula [7 ]. We believe that consid- 
erable improvements in the time efficiency of these algorithms can be made if the 
algorithms are adjusted to make a use of the structural properties of random 
graphs. 
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