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Abstract. This paper determines upper bounds on the expected time complexity for a variety of
parallel algorithms for undirected and directed random graph problems. For connectivity, biconnectiv-
ity, transitive closure, minimum spanning trees, and all pairs minimum cost paths, we prove the
expected time to be O(log log n) for the CRCW PRAM (this parallel RAM machine allows resolution
of write conflicts) and O(log n-log log n) for the CREW PRAM (which allows simultaneous reads but
not simultaneous writes). We also show that the problem of graph isomorphism has expected parallel
time O(log log n) for the CRCW PRAM and O(log n) for the CREW PRAM. Most of these results
follow because of upper bounds on the mean depth of a graph, derived in this paper, for more general
graphs than was known before.

For undirected connectivity especially, we present a new probabilistic algorithm which runs on a
randomized input and has an expected running time of O(log log n) on the CRCW PRAM, with O(n)
expected number of processors only.

Our results also improve known upper bounds on the expected space required for sequential
graph algorithms. For example, we show that the problems of finding connected components, trans-
itive closure, minimum spanning trees, and minimum cost paths have expected sequential space
O(log n-log log n) on a deterministic Turing Machine. We use a simulation of the CRCW PRAM to
get these expected sequential space bounds.
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1. Introduction

1.1. The Parallel Machine Models. We consider here some fundamental models
of parallel compuiation, all of which assume the presence of an unlimited number
of processors. In the first model, the CREW (Concurrent Read Exclusive Write)
PRAM (see [Wyllie, 1979] and [Fortune and Wyllie, 1978]), different processors
can read the same memory location at the same time. They may store information
at different memory locations simultaneously, but no two processors can attempt
to change the contents of the same memory cell on the same step. Reif [1982a,b]
proposed a probabilistic PRAM where processors are capable of doing in-
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dependent probabilistic choices on a fixed input (but, again, simultaneous writing
at the same location is not allowed).

We also consider the CRCW (Concurrent Read Concurrent Write) PRAM
where simultaneous access to the same memory location is allowed for both read
and write operations. In the case of a simultanous write attempt, exactly one
processor succeeds but we make no assumption of which one succeeds. We denote
this machine model by WRAM for ease of notation. (See [Shiloah and Vishkin,
1981] and [Goldschlager, 1978] for similar models).

A time bound for a problem in the WRAM can be translated into a space bound
for the same problem for a deterministic Turing Machine by the following lemma:

LEmMA 1.1. Let L be a language accepted by a T(n) time-bounded WRAM, with
a polynomial number of processors. Then L is accepted by an

O(T(n)- max{T(n), log n})
space-bounded deterministic Turing machine.

For a proof, see [Goldschlager, 1978], [Cook, 1980], and [Ruzzo, 1982]. The
result has been proved for the SIMDAG machine which is more powerful than
the WRAM. Also, we have

PropPOSITION 1.1.  Any parallel algorithm for the WRAM of time T(n) implies a
parallel algorithm on the CREW PRAM model of time O(T(n)-log m), where m is
the total number of processors per step.

Proor. We can simulate the nondeterministic choice of write conflict resolutions
by a tree of depth log m of pairwise selections to find a unique winner. O

1.2. Known Parallel Graph and Digraph Algorithms and Open Problems. We list
here previous results. The best-known deterministic algorithm for undirected
graph connectivity is of @(log? n) time in the CREW PRAM model, with n*/log? n
processors [Chin et al., 1982]. Hirschberg et al. [1979] presented a version of the
above algorithm which used ©(n?/log n) processors.

DeFmNITION. Let G = (V, E) be a (directed or undirected) graph and let d(v, ),
for v, @ € V, be the length of the shortest path from v to e if any, — oo otherwise.
Then the depth, d(G), of the graph G is defined to be the max, ,.y{d(v, ®), 1}.

Note that for undirected graphs G with nontrivial connected components, d(G)
is the maximum of the diameters of the connected components of G. Savage and
Ja'Ja’ [1981] remarked that the Hirschberg et al. [1979] algorithm is actually of
time @(log n- min{log n, d}), where d is the depth of the graph.

The best-known deterministic algorithm for undirected connectivity in the
WRAM is due to Shiloah and Vishkin [1981] and is of ©(logn) time, with
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®(n 4+ m) processors, where m is the number of the edges of the graph. Shiloah
and Vishkin [1981] has the ingenious idea of using distributed collapsing of the
height of the data structures which are candidates for connected components.
Their algorithm is essentially different from that of Hirschberg, et al. [1979] in
the sense that the algorithm of Hirschberg et al. [1979] cannot be adjusted to run
in time @(log n) in the stronger model WRAM.

Cole and Vishkin [1986] presented an optimal (with respect to time-processors
tradeoff) algorithm for undirected connectivity, for the WRAM model, which,
however, has a running time of O(log n-log log n-log log log n). Also, Gazit [1986]
presented a randomized parallel algorithm for finding the connected components
of an undirected graph, with O(log n) time and O((m + n)/log n) processors.

Also, Ja'Ja’ [1978] has a ©(log n log d) time and n®/log n processors algorithm
for the CREW PRAM, where d is the depth of the graph. For the biconnected
components, Ja'Ja’ and Savage [1981] give a ®(log” n)-time algorithm in determi-
nistic CREW PRAM with n?/log n processors and also a @(log n-log d- log k)-time
algorithm with mn + n? log n processors, where k is the number of components
and m is the number of edges of the graph. Also, for the problem of finding the
biconnected components of a graph, Tsin and Chin [1983] gave a @(log? n)-time
algorithm, with n?/log? n processors, in the CREW PRAM model. For the
minimum spanning tree problem, Ja'Ja’ and Savage [1981] give a ®(log® n)-time
algorithm with n? processors. For the same problem, Tsin and Chin [1983] also
give' a O(log? n)-time algorithm in the CREW PRAM model with n?/log”n
processors. For all the above undirected graph problems, Reif [1982a] gives a
O(log n)-time probabilistic algorithm for the CREW PRAM, requiring n%®
processors. Note that the results of Reif [1982a] are not applicable to digraph
problems.

For transitive closure and strong components in digraphs, the best result [Ja'Ja',
1978] for the CREW PRAM is of @(log n-log d) time with n®/log n processors.
For the all pairs shortest paths in digraphs, Dekel, et al. [1981] give a ®(log? n)
algorithm with n® processors. No parallel algorithm for isomorphism was known
up to now.

The above discussion of previous work indicates several basic unanswered
questions:

(a) Can parallel time be dropped below Q(log? n) for directed connectivity prob-
lems on the CREW PRAM?

(b) Can parallel time be dropped below logn for connectivity, biconnectivity,
minimum spanning tree, etc., on the WRAM model?

(¢) Can parallel time for undirected connectivity be dropped below Q(log? n) and,
simultaneously, can the number of processors be dropped below Q(n?/log? n)
on the CREW PRAM?

In fact, Shiloah and Vishkin [1983] conjecture that the barrier of log n cannot
be surpassed by any polynomial number of processors.

This paper gives affirmative answers to the above questions if the words “parallel
time” and “number of processors” are preceded by the word “expected,” over
inputs which are randomly chosen.
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Furthermore, it is the first time that an algorithm for connectivity is presented
with O(log log n) expected parallel time on the WRAM.

1.3. Known Sequential Space Bounds for Graph Problems. A space-efficient
sequential probabilistic search technique was first introduced by Aleliunas et al.
[1979] to test contiectivity. Lewis and Papadimitriou [1982] observe that this
technique immediately implied a space O(S(n)) probabilistic algorithm to simulate
a symmetric nondeterministic machine with space S(n). Reif [1982a] extended the
above techniques to yield O(log n) probabilistic sequential space algorithms for
many undirected graph problems. However, the above do not extend to directed
graph problems, for which the problem of achieving less than Q(log? n) sequential
space is still open. (The Q(log? n) space bound is implied by the theorem of Savitch
[19707).

1.4. Average Performance of Graph Algorithms and Random Graphs. Consider-
able work has been done on sequential graph algorithms which are fast on the
average given random input graphs. This includes the work by Angluin and
Valiant [1979], Karp [1976], Karp and Sipser [1981], Schnorr [1978], Karp,
and Tarjan [1980], Reif and Spirakis [1981], and Spirakis [1981].

Almost no previous work examined the average performance of parallel graph
and digraph algorithms, with the exception of Shamir and Upfal [1982] on
coloring random graphs, Karp and Sipser [1981] on parallel matchings in random
graphs, and Coppersmith et al. [1987] on coloring, finding Hamilton circuits, and
finding lexicographically first maximal independent sets on random graphs.
Furthermore, no previous work analyzes the expected sequential space of graph
algorithms.

We analyze here the average performance of parallel algorithms for connectivity,
biconnected components, strong connectivity and transitive closure, minimum cost
spanning tree, minimum cost all pair shortest paths, and graph isomorphism. Qur
analysis also gives upper bounds on the expected sequential space complexity of
the above problems.

The input to our algorithms is assumed to be a random graph of the model
G,, , as defined by Erdos and Renyi [1960], where n is the number of vertices and
p is the edge probability, or a random digraph D, , as defined by Angluin and
Valiant [1979].

In the Appendix we investigate the probability distribution of the depth of a
random graph G, , or a random digraph D, , (the depth was defined in Section 1.2).

The mean value d (and bounds on the probability distribution) of the depth is
crucial to a number of our results. We prove the following theorems:

THEOREM 1.1.  The is a constant c, > 2 such that, for any probability p in the range

[0,1] — [@, o b (@)2],
n n n

the graph G, , has average depth d = O(log n). Furthermore, prob{d = O(log n)}
tends to 1 as n tends to co.
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THEOREM 1.2. There is a constant ¢, > 2 such that, for any probability p in the

range
[au—[l—/r—@fﬂ,
n n

the digraph D, , has average depth d = O(log n). Furthermore, prob{d = O(log n)}
tends to 1 as n tends to .

We also prove that, for

(c a particular constant > 1), the depth d of G, , (or D, ,) is less than or equal to
3 with probability — 1 as n — co.

The result d = O(log n) for nonsparse random graphs (with p = (¢/n)- w(n) and
w(n) = 0o as n— o0) can be deduced by the results of Erdos and Renyi [1960]
(see the Appendix). Also, Bollobas [1984] has proved that when

clogn

p=
n

(for a suitable ¢ such that the random graph becomes connected with high
probability), then
s o]l 6
ds[%ij]+3
loglogn

For even denser graphs, with

PZ@
n

such that d(n) — log n — oo, Bollobas [1984] proved that

& < [M] 4 3.
log d(n)

In contrast, the results for sparse graphs with edge probability p = ®(1/n) and for
very dense graphs (with p > ¢/n'/3) are totally new contributions of our paper.

1.5. Our Expected Time Results for Parallel Graph Problems. Using the above
facts and some nontrivial analysis, we show that the connected components of a
random graph G, , and the strong components and transitive closure of a random
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digraph D, , and also the minimum spanning tree of a weighted random graph
and the all-pairs shortest paths of a weighted random graph or digraph can be
found in average parallel time O(log log n) in the WRAM and O(log n-log log n)
in the CREW PRAM. The average time for biconnected components is

O((log log n)?)

for the WRAM and O(log n- (log log n)?) for the CREW PRAM. The average time
for graph isomorphism is O(log log n) in the WRAM and O(log n) in the CREW
PRAM. The results for digraph connectivity and digraph and graph all-pairs
shortest paths are implied by the result that the average depth of G, , or
D, ,is d = O(log n) (see Section 1.4).

However, our result for undirected connectivity in the WRAM (and the result
for minimum spanning tree in the WRAM) are not implied by the fact that
d = O(logn). A large part of our paper is devoted to a new algorithm (and
probabilistic analysis) for undirected connectivity in the WRAM. A side benefit
of this new algorithm is a result about the expected number of processors needed
for undirected connectivity in the CREW PRAM model, which is

n*/(log n-log log n)

for time O(log n-log log n), and O(n) in the WRAM model. A random sampling
technique is used to derive this result.

The above results answer the (open) questions (a)(c) of Section 1.2 in an
affirmative way, given that we concentrate on average-case analysis.

For directed connectivity and transitive closure, and biconnected components
we need n’/log n processors for the CREW PRAM model and n* processors for
the WRAM model. For graph isomorphism we need n? processors for the WRAM
and n?/logn for the CREW PRAM. For the all pairs shortest paths we need
n*/log n processors in the CREW PRAM model and n® processors in the WRAM
model. For the minimum weight spanning tree we use an expected number of n*p
processors, which is @(n?) for pn = @(1).

We remark that there is generally a considerable drop in time and number of
processors complexity when we concentrate on the average case of the above
problems rather than worst-case input. Note that none of the previously known
algorithms for undirected connectivity imply an expected time below Q(log? ) in
the CREW PRAM and below logn in WRAM and a simultaneous drop of
expected number of processors below n?/log n even if the average depth result
d = O(log n) is used. Note also that our results for the WRAM model can be
applied to the SIMDAG model of Goldschlager [1978] and other parallel
computation models allowing resolution of write conflicts in a constant number
of steps (see [Kucera, 1981]).

1.6. Our Results for Expected Space Complexity. Our results improve known
upper bounds on the expected space required for sequential graph algorithms. By
using our expected parallel time results for WRAMs and Lemma 1.1 we provide
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an upper bound of O(log n-log log n) for the expected deterministic sequential
space needed for undirected connectivity, directed (strong) connectivity and
transitive closure, minimum cost spanning tree and directed and undirected all
pairs shortest paths, and graph isomorphism. Reif, [1982b] provides O(log n)
probabilistic sequential space bounds for the undirected versions of all the above
problems, but his method does not seem to extend to directed graph problems.
Our results answer the question posed in Section 1.3 in an affirmative way when
we concentrate on expected space and our methods could be viewed as indirect
ways of getting results about expected sequential space.

2. Results that Follow from the Bounds on the Mean Depth of Random Graphs

2.1. Digraph Connectivity. The following well-known algorithm for computing
the transitive closure of an n x n boolean matrix 4 can be used for digraph
connectivity and transitive closure:

input A
begin
B—A+1
L:B «B
B+ B'B
if B' # B then goto L else output B
end

This algorithm was shown by Dekel et al. [1981] to be of @(log? n) worst-case
time by using n* processors in the CREW PRAM model. Ja'Ja’ [1978] did an
efficient implementation of this algorithm showing that it could be done in
©(log n-log d) time on the CREW PRAM model and by using n®/log n processors,
where d is the depth of the digraph D. The n?® factor in the number of proces-
sors in [Ja'Ja’, 1978] is due to multiplication of n x n matrices. Parallelization
of the faster matrix multiplication algorithms known togday, will lead to a time
BO(log n-log d) on the CREW PRAM model, using only t(n)/logn processors,
where t(n) is the sequential time for matrix multiplication.

It is easy to observe, that the primitive set of operations of Ja'Ja’ [1978] (i.e.,
the union of O(n) sets of O(n) integers each, from 1 to n) can be done in O(1) time
in the WRAM, implying an O(logd) algorithm for strong components and
transitive closure (see also [Kucera, 1982]). Using our results on the average depth
of D, , (see the Appendix) we get

COROLLARY 2.1.  The average parallel time for transitive closure of directed graphs
is O(log log n) for the WRAM model and O(log n-log log n) for the CREW PRAM
model. The probability that the parallel time is more than this is less than n™", y > 2.
The WRAM model uses n® processors and the CREW PRAM model uses n®/log n
processors for the stated time bounds.



604 J. Reif and P. Spirakis

Ja'Ja’ [1978] also gave an algorithm for finding the strong componerts of a
digraph in parallel time @(logn-logd) in the CREW PRAM model, by using
n3/log n processors. Our results on the depth of D, , also imply

COROLLARY 2.2. The average parallel time for finding the strong components of a
digraph in the CREW PRAM model is O(log n-log log n), using n®/log n processors.
In the WRAM model the average time is O(loglogn) using n® processors. The
probability that the parallel time is more than this, is less than n™" for some y > 2.

By using Lemma 1.1 we also get

COROLLARY 2.3. The average deterministic sequential space needed for transitive
closure and strong components of digraphs and connected components of undirected
graphs is O(log n-log log n). The probability that the space needed is

O(log n-log log n)
is at least 1 — n™" for some y > 2.

Note that the same techniques can be applied to undirected graphs to compute
the connected components by the CREW PRAM in O(log n-log log n) average
time. However, the number of processors used is wasteful. In Section 3 we give a
derivation of this result which is independent of our results about the depth of G, ,
and optimizes simultaneously over expected time and expected number of pro-
CESSOTS.

2.2. Biconnected Components. Savage and Ja'Ja’ [1981] provided an algorithm
for the CREW PRAM which finds the biconnected components of a graph in
parallel time O(log n-log d-log k), where d is the depth of the graph and k is the
number of biconnected components. The number of processors needed is mn + n?
log n. Again, this algorithm can be implemented on the WRAM model to run in
O(log d-log k) parallel time with mn + n* log n processors. The Appendix shows
the expected depth is d = O(log n). Reif and Spirakis [1985] show the expected
number of biconnected components is k = O(log n). These results imply

COROLLARY 2.2.1. The expected parallel time complexity for finding biconnected
components in the random graph G, , with p > c/n, ¢ > 5, is O((log log n)?) for the
WRAM model and O(log n-(log log n)®) for the CREW PRAM. The number of
processors needed is mn + n*logn for the WRAM (also for the CREW PRAM).
The probability that the parallel time is more than this is o(1/n).

By using Lemma 1.1 we get

COROLLARY 2.2.2.  The expected deterministic space for finding biconnected compo-
nents in the random graph G, , with p > c/n, ¢ > 5, is O(log n-(log log n)?).
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2.3. All Pairs Shortest Paths. Given an n vertex graph G or digraph D, the all
pairs shortest path matrix A4 is an n x n matrix such that A(i, j) is the length of a
shortest path from i to j in G (or D). Let A%, j) denote the length of a shortest
path from i to j going through at most k intermediate vertices. Clearly, A(i, j) =
A, j) where d = depth of G (or D). Let A°(, j) be 1 if {i,j} is in G (if (i, j) is in D)
and oo otherwise. It is easy to see that

AXG, j) = min{ A*2(i, m) + A*(m, j)}.

m

Hence we can compute A¢ by computing
Aol AT Ui ol

A* can be computed from 4% using the matrix multiplication algorithm with + -
substituted for * and min for +. (See also [Dekel et al. 1981].)

Assuming binary representation of lengths and by using bit addition with
parallel carry, we can perform all additions in the kth phase of the algorithm in
constant time on the WRAM, by assigning one processor to each pair of (i, m),
(m, j). The min operation can obviously be done in constant time in the WRAM.
To see this we have to use O(n?) processors as follows: Assign n — 1 processors
to each m. Each one of them compares the computed v,, = A**(i, m) + A**(m, j)
with one of the n — 1 other values. If v,, is bigger, the corresponding processor
writes a 1 in a memory location C,, otherwise it does not write. Next, one processor
for each m checks C,,. If C,, is not written, then this processor outputs its v,, into
AXG, j). Only one C,, will not be written in this step. Hence,

THEOREM 2.3.1.  The all pairs shortest paths of a graph or digraph can be computed
in O(log d) worst-case time on a WRAM, where d is the depth of the graph or digraph.

Note that the above procedure is also valid if we are computing the all pairs
minimum weight shortest paths provided that edge weights are nonnegative and
satisfy the triangle inequality. The only modification needed is 4°(i, j) = the weight
of the edge (i, j), if it exists, co otherwise. This leads to an expected time O(log log n)
for the WRAM model for random graphs G, , or digraphs D, ; since the expected
d is O(log n) (see the Appendix).

COROLLARY 2.3.1. The expected time for all pairs shortest paths in G, , or D, ,
models with p as in the Theorems 1.1 and 1.2 and arbitrary weights, nonnegative
and satisfying the triangle inequality, is O(log log n) for the WRAM model by using
n® processors. It is O(log n-loglogn) in the CREW PRAM by using n’/logn
processors. The probability that the time is more than stated above is <n” 7,y > 2.

By Lemma 1.1 we get

COROLLARY 2.4. The expected deterministic sequential space for all pairs shortest
paths in the random graphs G, , or random digraphs D, , (which are arbitrarily
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weighted with nonnegative weights satisfying the triangle inequality) is

O(log n-log log n).

2.4. Minimum Weight Spanning Trees

2.4.1. An Algorithm for Minimum Spanning Trees of Unidirected Graphs in the
WRAM. Let G be a weighted undirected connected graph, with positive weights.
The connectivity algorithm of Hirschberg et al. [1979] can be used to obtain a
minimum weight spanning tree, by picking the edge with minimum weight while
merging supervertices with one another (see [Savage and Ja'Ja’, 1981]). Let G be
an instance of the random graph G, ,, p = ¢/n, as input, with arbitrary nonnegative
edge weights. We can use our new algorithm, Algorithm MERGE, of Section 3 for
connectivity by using the Ja'Ja’ [1978] algorithm for the deterministic part. Picking
the minimal weight edge will take constant time in the WRAM if we use n*-p
processors. Hence,

CoROLLARY 2.4.1. Suppose we are given an instance of the random graph G, ,,
p = ¢/n (c is the constant defined in Section 3.1), as input, with arbitrary nonnegative
edge weights. Then we can compute a minimum weight spanning tree in the WRAM
in expected parallel time O(log log n), using n®p processors on the average.

CorOLLARY 2.4.2. The expected deterministic sequential space for a minimum
weight spanning tree is O(log n-log log n), when the input graph is as in Corollary
24.1.

2.5. Isomorphism of Random Graphs. The following algorithm, given by Babai
and Kucera [1979], is essentially a Breadth-First-Search procedure applied to
random graphs of the model G, , with p = 3.

1. Classify vertex by valences so each vertex is labeled by its valence. Let C,, ..., C,
be the classes of the above classification, arranged by the order induced by this
classification.

2. In the first refinement we let N(v) be the number of neighbors of v in ¢; and
let N#(v) be the smallest nonnegative integer congruent to N(v) mod 4. Then
two vertices v, u are ordered now if (a) they had a different label before or (b)
they had same labels but

(N1(0), ..., Nj(©)) < (Ni(®), ..., Njw)
lexicographically.
3. Let Cy, C,, ..., C,, be the equivalence classes of step 2. Apply step 2 to each
of these classes.

THEOREM 2.5.1 [Babai and Kucera, 1979]. Let U be the set of vertices whose class
is not a singleton after step 3. Then

Prob{|U| =2} <e "

for some absolute constant ¢ > 0.
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The valence classification can be done in O(log log n) time on the WRAM model
by using O(n*) processors. In the CREW PRAM it can be done in time O(log n)
by using n*/log n processors. The partial orders created by the refinements are
best stored as a function corresponding to them. These function computations
cost no more than O(log log n) time in the WRAM and O(log n) in the CREW
PRAM, by using n? and n?/log” n processors, respectively. So,

CoRrOLLARY 2.5.2. A canonical labeling algorithm on G, ,, p = 1, takes expected
parallel time O(log log n) in the WRAM model with n* processors and O(log n) time
in the CREW PRAM with n*/log n processors.

By Lemma 1,1, we get

COROLLARY 2.5.3.  The expected sequential deterministic space needed for a canoni-
cal labeling algorithm on G, ,, p = 3, is O(log n-log log n).

3. Expected Parallel Time and Processor Bounds for Connectivity in Undirected
Graphs

3.1. Introductory Remarks and Assumptions. We present here a new algorithm
for finding connected components of a graph on a WRAM. Although it is related
to the algorithm of Shiloah and Vishkin [1982], it uses probabilistic choice so the
processors of the WRAM model are allowed to choose random bits independently.
Also, we assume random resolution of write conflicts. If k processors attempt to
write simultaneously at the same memory location, then exactly one succeeds and
the probability that each particular one succeeds is 1/k. Both of these assumptions
can be removed by using the randomness of the input. Our new algorithm for
graph connectivity has O(loglog n) expected probabilistic parallel time in the
WRAM, which leads to an O(log n-log log n) expected parallel time algorithm in
a probabilistic CREW PRAM model.

Since our algorithm works on a random input (a graph of the G, , model) we
can use the randomness of the input in order to implement the probabilistic choices
of the processors of the WRAM. In fact, our algorithm has three stages, out of
which only one requires probabilistic choice. This particular stage “looks” at about
one-third of the edges of the random graph (see details at the description of the
algorithm). The remaining edges can be used in order to simulate the probabilistic
choices of the processors of the WRAM. Hence, our results about the expected
parallel time hold also for the deterministic WRAM model, which, however, allows
random resolution of write conflicts.

Our algorithm uses n + 2m processors for a graph of n vertices and m edges,
hence it uses n + 2pn® processors on the average. An improvement over this is
n*/(log n-log log n) processors and that is shown in Section 3.5 for the CREW
PRAM. An additional improvement (shown in Section 3.6) brings the processor
count down to O(n) by using random sampling.

3.2. A Preview of the Algorithm and Its Analysis. Our algorithm uses the
following data structure: Each vertex v has a pointer field D(v) through which it
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points on another vertex or to itself. We can regard v — D(v) as a (directed) edge
in an auxiliary graph, called the pointers-graph. In the probabilistic part of our
algorithm, this pointers-graph will always be a collection of sets called super-
vertices, each of which is a rooted star of height one, with a self-loop at the roots.
As the algorithm proceeds, the number of sets decreases while each individual set
increases or disappears. This is caused by a “hooking” operation in which a
supervertex can be hooked on another supervertex.

The algorithm has three stages. In the first stage the algorithm proceeds as in
[Shiloah and Vishkin, 1982], for a parallel time of O(log log n) steps. Due to this,
the algorithm constructs a sufficient number of supervertices of polylogarithmic
size, at the end of the stage.

In the second stage, which goes through O(loglogn) phases, the algorithm
becomes probabilistic. In each phase each of the supervertices decides probabi-
listically (depending on their size) to be either an acceptor or a proposer. Only
proposers can hook themselves to other supervertices which must be acceptors.
Let us vaguely speak here about the expected size of supervertices in phase i, and
denote it by s(i). Each supervertex decides to be an acceptor with a probability
proportional to 1/s(i). This results in an expected number of approximately s(i)
proposers per acceptor, resulting in a quadratic growth of supervertices (i.e.,
s(i + 1) = s(i)?) per phase. This argument presumes that the size of the proposers
and acceptors is at least s(i). In our algorithm the supervertices have a fast
probabilistic way to determine whether their size is at least s(i). (This technique is
similar to the logical OR and can be implemented in a constant number of parallel
steps of the WRAM.) Only “large” supervertices become acceptors and proposers.

Due to the quadratic growth of components during the second stage, a parallel
time of O(loglogn) steps results in the comstruction of O(n)-size connected
components.

The last stage is a clean-up stage. It is deterministic and follows the algorithm
of Shiloah and Vishkin [1982].

Note that we do partial collapsing in each phase so that the supervertices remain
rooted stars of height one. At the end, each remaining set is a connected component
of the graph and is still a rooted star.

In the following, s(t) intuitively corresponds to the size of supervertices at phase
t of stage 2 of our algorithm.

DeriviTION.  Let s(¢) be the following sequence:
s(1)=21log®n
and, fori> 1,

s(i)

Pty et B o
D = S+ iegtn

(¢ is a small constant, to be determined later). We now describe the algorithm in
detail.
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3.3. Algorithm MERGE. Input: Graph G = (V, E), an instance of the random
graph G, ,. We use D(v) = u to denote that an edge from vertex ve V points to
vertex u after the tth phase.

Initially, at phase 1, for each veV, {u} is a supervertex, these are the only
supervertices, each supervertex is declared large and D(v) = v for each vertex v.

In the following text we use “vertex” and the assigned processor to that vertex
interchangeably. We allocate a vertex processor to each vertex. Each undirected
edge {u, v} is viewed as two ordered pairs {u, v, {v,ude V x V and we allocate
one edge processor to each such pair.

The algorithm has three stages. Before the start of the first stage, each edge
processor draws a random number between 0 and 1, uniformly. We require that
{u,v) and {(v,u) draw the same number, but otherwise the choices are in-
dependent. Those processors whose number is less than 4 participate in the first
stage only. Those whose number is between § and 3 participate in the second stage
only. The rest participate in the third stage. This procedure results in partitioning
the instance of the random graph G, , into three instances of a random graph
G, ,3.1n a way guaranteeing that edges used in one stage are not reused in another
stage.

Stage 1. We apply the Shiloah and Vishkin [1982] connectivity algorithm for
2 + 6loglog n of its phases.

Stage 2. It consists of <d, loglogn phases. (d, is a positive constant, its exact
value is determined later.) For the pairs of processors associated with each edge
and with stage 2, flip a coin at the beginning of each phase of stage 2, with the
probability of heads equal to 1/2, to decide whether the edge will be used in that
phase. Those who succeed are used only for that phase. Those unused, try again
in the next phase. (This sampling of edges guarantees that an edge is not used in
two different phases of stage 2 and hence the randomness of the input is not
destroyed.)

Seti=1.

Execute the following loop until i = d, log log n.

Phase i of stage 2

(a) The purpose of this step is to estimate quickly the size of each supervertex. Let
B be a positive constant greater than 3, to be determined later. For each
supervertex, construct a table of size s(i)/(f log n). Initially, all entries in the
table are 0. Each vertex of the supervertex sets a randomly chosen cell of the
table to 1"on this phase. We declare a supervertex to be large if all its cells
are found to be 1.

(b) Let k be a constant greater than 3, whose exact value is determined later. Let
the root of each large supervertex decide to be an acceptor with probability
log* n/(e-s(i)) (x is a small positive constant > 1, to be determined later). All
other supervertices are declared proposers.

(c) Each proposer supervertex chooses a random edge departing from it to an
acceptor (if such an edge exists) and merges into that acceptor. This is done
in constant time on the WRAM as follows: All the processors associated with
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vertices of the proposer check whether their neighbors are nodes of an acceptor.
If one finds such a neighbor w, it tries to hook its supervertex on D;_,(u). If
more than one try this, then each one is allowed to succeed with equal
probability by use of random resolution of simultaneous writing,

(d) (Collapsing): For all vertices v we assign D,(v) = D;_{(D;_(v)).

Notice that phase i takes a constant number of steps on a WRAM. To do (a)
in constant time, we must place the assigned table in contiguous memory. In
addition, we assume a distinct register, which is set to 1 at the beginning of (a).
The root of each currently large proposer writes 1 into a randomly chosen memory
cell of the root of the acceptor it proposes to. Then each of the vertices of the
acceptor selects randomly one of the cells of their root, and if any chosen cell has
value 0, then it writes a 0 in the register of the root of the acceptor. Otherwise,
they do nothing. The root of the acceptor then reads its register and declares the
acceptor large if the register has value 1 and otherwise declares the acceptor small.
Finally, each currently large proposer then resets its chosen memory cells to be
0, and the root of the acceptor sets its register to 1.

To do (b) in constant time on the WRAM, we let each root of a large supervertex
first make an independent probabilistic choice and then have the processors
associated with each node of the set read the result.

Stage 3. We run the (deterministic) connectivity algorithm of Shiloah and
Vishkin [1982] until the number of supervertices does not change.

Finally, output the connected components. These are given by the supervertices
remaining.

3.4. Probabilistic Analysis of Algorithm MERGE. The following will be needed
in the analysis:

Fact 1. Foranyn p, f withn>0,1>p>0,and0< f <1,

=Bl /p N
(@) Y (1 — p)"~* < o™ 672
k=0 \K
and
n n Tia
®) 3 (O -pres e
k=T(1+pmpT\K

The above fact follows from the bounds of Chernoff [1952].
In this section we prove the following theorem:

TreEOREM 3.1. Algorithm MERGE computes the connected components of G, ,,
with p > ¢/n and ¢ = 192, in expected parallel time O(log log n) in the WRAM. The
expected number of processors used is O(n + pn®). The probability that the parallel
time exceeds O(log log n) is O(1/n). (Note that with a constant factor of time increase
we can reduce the number of processors to n + pn?.)
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Proor oF THEOREM 3.1.  We analyze each stage of the algorithm. The combined
results yield the proof of the theorem.

(a) Analysis of Stage 1. Let K, be the number of supervertices at the end of
stage 1. Let K, be the number of supervertices of size at least 2 log® n and let K,
be the number of supervertices of size less than 2log® n. Then K, is at most
n/4log* n (since the number of supervertices drops by one-half on each phase).
Also, at least n/2 of the nodes will be in supervertices of size at least 2 log® n. (If
the opposite was true, then K, would be greater than (n/2)/(2 log® n), i.e., greater
than n/(4 log® n), but then K, > K, a contradiction.)

(b) Analysis of Stage 2

(bl1) Preliminary lemmas. 1t is easy to see that

PROPOSITION 3.1. At the end of (a) of phase i of stage 2, each large supervertex
has size at least [s(i)/( log n)], and this holds for every i.

Proor. The number of vertices in the large supervertex has to be at least equal
to the number of entries of the table. [

We now show

LemMA 3.1, If a supervertex has size > s(i), then it is declared large with probability
at least 1 —n~ €1,

Proor. Let p(i) be the number of cells of the table of the supervertex, which stay
at value 0 after (a) of stage 2. We know that s(i) is increasing with i and s(1) is
2 log® n. The probability that the particular supervertex fails to be declared large is

Prob{there is a particular memory cell staying at value 0}

1 s(i)
=(1- ~—~—) < e flosn _ p—#,
( s(i)/(B log n)

So, Prob{p(i) =0} <n-n"f=n"¢-1, .

DEerFINITION 3.1, Let N; be the number of large supervertices at the end of (a) of
phase i.

LEMMA 3.2. For any f'€(0,1), if N; > s(i)u(f — 1), then the number of large
acceptors at the end of (b) is at least

log"n

as(i)

2

L=(1-p)N;

with probability >1 — n~HE¥E-1/2,
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Proor. By Fact 1(a), applying it to the Bernoulli experiment of N, trials, and
success probability

_log'n
T oas(i)

we get

Prob{number of successes > L} > 1 — exp(—(8))*"">  (by Fact 1(a))
>1— cxp(_(Bf))(zm)((hg“n)lzasti))
oy D s g since logtn > K logn.

a

By Lemma 3.2 and Proposition 3.1 we then get

COROLLARY 3.1(a). The number of nodes in acceptors at the end of phase i, step
(b) of stage 2, is at least (1 — B)N;log"*~* n(1/af), with the same probability as that
stated in Lemma 3.2.

ProoF. Just multiply L (of Lemma 3.2) with [s(i)/(8 log n)], specified in Proposi-
tion 3.1. O

By working as in Lemma 3.2 and applying Fact 1(b), we also get

COROLLARY 3.1(b). For any p"€(0, 1), if N; = s(i)o — 1), then the number of large

acceptors at the end of (b) is at most (1 -+ B')N{log" nfas(d), with probability at
least 1 — n~XBVB-1)/3,

Proor. By Fact 1(b), applying it to the Bernoulli experiment of N; trials, and
success probability r = log* n/o - s(i). 0

(b2) Determining the number of nodes in large supervertices. 'We now inductively
assume that, for i > 1, the event “at least n/2' nodes are in large supervertices”
holds with probability at least 1 — n™2. The basis (i = 1) was proved previously, in
Section 3.4(a). The following results prepare for the induction step:

We first get an estimate of N; based on the inductive hypothesis. Since the
product of the number of large supervertices times their minimum size has to be
at least equal to the minimum number of nodes in them, we get

s @) > E implying N; > M
Blogn 2 2's(i)

(*)

DEFINITION 3.2. Let g be the probability that a random edge, not yet used at
stage i, goes into an acceptor, given the inequality of Corollary 3.1(a).
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COROLLARY 3.2.

. loghn
120 =B) o
PRrOOF.
__ 4 nodes in acceptors at end of phase i
1= n
_pr . =1
5 - BN og ™ R "\ ottty 3.4
n
= (1)(1 —B) logt? n(—l-) L8 by inequality (+)
n aff)  2's(i)
implying
a1 logtn
g=2(1-p) (a) - 0

Our next lemma is “at the heart” of the proof of the induction step and is
central to the proof of Theorem 3.1. (Compare with the main argument in the
preview of the analysis, Section 3.2)

LeEMMA 3.3.  For any o > 4, each large proposer, P, has at least one departing edge
into a node of an acceptor, with probability at least 1 — n™° given the condition of
Corollary 3.1(a) (about the number of nodes in acceptors at the end phase i).

ProoF. Let |P| be the number of nodes in P. Since P is large, | P| > s(i)/p log n.
Let ¢’ = ¢/3. Since edges are not reused by the algorithm, each new edge tried is
a random edge, with probability p’ > ¢/3n-2" = ¢'/n-2' of being there. O

Now there are (n — 1)|P| possible edges with (at least) one end in P. The
probability that each of them both appears and joins P with an acceptor is p'g,
by using Corollary 3.2 and the fact that the estimation of g is conditioned on the
event that the edge appears in the instance of the random graph. Hence, the
probability, g, that P has no departing edge into a node of an acceptor is

(1) g<(1—pgt "

N
n o 4LS(E)

Let A, = (1 — p)/a. By using the known inequality (1 — (F/x))* < e~, and putting
(1) in this form, with x = (n — 1)(s(i)/p log n) and

S A ey G
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we get

(n—1\ 4 \[logn
o ozoo (7 il ¥ )

However, 4' < 22dleglegn < (Jog n)2%, So, by choosing d, < 1,

0 e )

Also, for all n > 2, (n — 1)/n > % and, furthermore,

log nX ~ 2%~ 1> (k—2)logn

for k > 3. So, (3) becomes

; A
g <n kDA =y for a=(K-— 2)c’(§—;),

ie., o =(k — 2)c'((1 — B)/(2xB)). We can now choose K, p' (free up to now), and
o, B to make o > 4. Up to now, the restrictions on our constants are:

o> 1,
B>3,
0<p <1,
¢ = 64,

which are consistent with « > 4, if we choose k = 3.
We now complete the proof of the induction step.

LEMMA 3.4 (Induction Step). At least n/2'*! of the nodes are (at the end of phase

i, stage 2) in supervertices of size at least s(i + 1), with probability at least 1 — n™ 2.

In order to prove Lemma 3.4, we need the following remarks, A and B.

REMARK A. Let us assume that we have 4 acceptors and Am proposers and that
each proposer has (at least) one outgoing edge, which is directed to one acceptor,
selected at random from the set of A acceptors, with probability 1/4. Furthermore,
let m be of the form m = A(n)b log n where n > A(n) > 1, b > 4 and n is the number
of vertices. Then the following event holds with (conditional) probability
>1—n"0"2

“Each acceptor is proposed by at least A(n) proposers.”
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Proor oF REMARK A. Let us separate the proposers in A(n) groups of b- 4 -logn
proposers each. Consider first a particular group g. The probability that a
particular acceptor does not get an edge is

1 bAlogn
5(1 ——) <n~?,
A

Hence, the probability that there exists an acceptor which is not being proposed, is

<n-nP=p"0"D,

Therefore,
Prob{ all acceptors get at least one 5 1 —g==1)
edge each, because of group g

The A(n) groups of proposers act in an independent way. Let E, be the event “all
acceptors get at least one edge each, because of group g” and consider an
enumeration 1, 2,..., A(n) of the groups. Let E be the even E; UE, U " U E;,.
Then
Prob(E) > (1 —n™ @~V > | — j(mn~ ¢~V
>1—n"t"2

The event E means that each acceptor is proposed by (at least) A(n) proposers.
O

By conditioning on the events described in Lemmas 3.1, 3.2, 3.3, and the
corollaries, we have (for stage i)

1 logt
) BEn g e 1+ p)N, 2"

sl o~ s(i) o 5(i)

and that the other conditions of Remark A are satisfied (with overwhelming
probability), since

3 proposers = N; — A

)

- A-( U 1)
- (1+ ") logkn 3

—1>4logn for all i.

ie.,
o~ 5(i)

"=+ p)logtn
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So, we conclude that (conditioned on the events of Lemmas 3.1, 3.2, 3.3, and the
corollaries), at the end of stage i, each acceptor will be proposed by at least

m o - 5(i) 1
blogn b(1 + p")log"*'n blogn

proposers (with conditional prob > 1 — n~®~?). Therefore, the new size of the
formed supervertices will be at least

Qgs(i) )( o s(i) ) " s(i)
logn/\b(1 + p")logt*tn/ Blogn’

o s7(0) o 5%(i)
bl + ) log 2n = bR(L + B)log°n’

ie., at least

which is >s(i + 1) if we choose ¢ > 1. By multiplying probabilities of the events
described in Lemmas 3.1, 3.2, 3.3, and Remark A, we conclude that

REMARK B. There is a constant h > 2 such that the following event is true with
probability at least 1 — hn™2: “Each acceptor of phase i grows into a supervertex
of size > s(i + 1) at the end of phase i.”

Since almost all the proposers propose to the acceptors at phase i, we conclude
(by Lemmas 3.3 and 3.1 applied for phase i + 1) that: at least one-half of the nodes
which where in large supervertices at the beginning of phass i, end up in large
supervertices at the beginning of phase i + 1, with probability at least 1 — h'-n~?,
where h' = 3h > 6.

This concludes the proof of the induction step. O

(b3) What happens at the end of Stage 2? The induction of (b2) was carried out
because we assumed (in Lemma 3.2) that N, > s(i)a(f — 1). This inequality (let us
call it inequality (I)) certainly holds for i = 1. If the inequality holds throughout
the induction argument, then we conclude that, at the end of stage 2, there exists
a supervertex of size at least n/log® n with probability at least 1 — h'-n~ 2. This is
due to the induction hypothesis and to the fact that stage 2 lasts d, log log n phases.
Now let us assume that the inequality (I) is first violated during phase i of stage
2, and that there exists a supervertex of size greater than n/log’ n. Since the
induction is carried out until phase i, we can apply the inequality (x), i.e.,

nlogn-f

N,>—
2is(i)
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If y, is the number of supervertices (like B) which will connect to 4 in one phase,
then

Prob{y, =0} = (1 = #)J <e !,

Then the probability that there is no pair of such supervertices A, B which merge
is (1 — e~ Y)V7 < e~V with ¢" = —log(l — e~ 1). We conclude that, with over-
whelmingly high probability, some large supervertex will double its size in one
phase.

Working then as in Case 1, we conclude that stage 3 will need O(log log n) more
phases to complete the finding of the connected components. This completes the
proof of Lemma 3.6. O

The combined results of (a), (b), (c), and (d) complete the proof of Theorem 3.1. []

3.5. Improving the Number of Processors

(a) The CREW PRAM Case. We now assume the CREW PRAM model with
probabilistic choice instead of the WRAM. In the CREW PRAM we can run
Algorithm MERGE in O(log n-loglogn) expected time, by simulating each
probabilistic selection of a processor in a writeconflict by a tree of pairwise
selections.

It is shown by Chin et al. [1982] that a minimum of n elements can be computed
on a CREW PRAM in time T, where

T'= |:£:| —1+1logk for k< g, k = number of processors.

Using the above technique, we have that the total expected time is

loglogn t
Yy (% —1+log k) < O(g + (log log n) log k).

t=0

Selecting k = n/(log n-log log n) we have the optimal value O(log n-log log n) of
the expected total time with an expected number of nk = n?/( log n-loglog n)
Processors.

CoROLLARY 3.3. The expected parallel time for connected components of the
random graph G, , with p > c¢/n is O(log n-log log n) in the CREW PRAM model
and the expected number of processors is n*/(log n-log log n).

(b) The WRAM Case. By Theorem 3.1, Algorithm MERGE needs O(pn® + n)
processors on the average. This is O(n) in the case p = ©(1/n).
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For the cases of nonsparse graphs (i.e., p = (¢/n)- w(n) with w(n) — c0 as n — o0)
we modify the algorithm as follows:

1. We use cn = (pn*/w(n)) processors to select a total of cn of the edges of the
input G, ,. This can be done in O(1) time and a new, sparser, graph is
constructed, G, ., with p’ ~ ¢/n.

2. We run Algorithm MERGE on this (sparse) graph by using O(p'n* + n) = O(n)
processors and construct its connected components.

3. At this stage, O(log n) components have been constructed (with probability
tending to 1 as n — oo). They consist of a giant component and O(log n) “small”
components with at most en vertices (¢ < 1) in all of them (as we showed in the
analysis of stage 3).

Then, by studying only the edges emanating out of the small components (O(n)
of them on the average) and not used in step 2, we can complete the construction
of the connected components of the original graph. This requires running a
deterministic connectivity algorithm on a multigraph of O(log n) vertices and O(n)
edges on the average. By using O(1) time to collapse multiple edges among each
two components into one edge, we can then complete the process in O(log log n)
time in the WRAM.

By considering steps 1-3 we have

CoRrOLLARY 34. The expected parallel time for connected components of the
random graph G, , with p > c/n is O(loglogn) in the WRAM model, and the
expected number of processors is O(n).

Acknowledgments We apologize to U. Vishkin and Y. Shiloah for stating in a
previous version of this paper that their parallel connectivity algorithm could be
easily derived from a previously known algorithm.

Appendix. The Depth of a Random Graph G,, and of a Random Digraph

D, , We prove here Theorems 1.1 and 1.2.

LemMMa A.Q. Theorem 1.1 implies Theorem 1.2.

Proor. Let D be any instance of D, ,. The depth of D cannot exceed twice the
depth of the underlying undirected version G of D (which is produced from D by
removing all edge directions) with high probability. In fact, it can be easily shown
that the depth of D is less than or equal to ((the depth of G) + «-log n), with
probability at least 1 — n™% where o is any constant > 1. However, G is an instance
of G, , with p’ = 2p — p*. Theorem 1.1 holds for G, . for p’ in the range

where ¢, is a fixed constant (to be determined in the proof of Theorem 1.1). Hence,
Theorem 1.2 holds for D, , for p determined by p' = 2p — p*€R.
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From this inequality and the complement of (I), we get

nflogn
2is(i)

<N;<s((f—1)

which implies that

nflogn

m < Sz(i),

ie, that s(i) > y\/ﬁ log n where

v/
Jatp— 1)

We can certainly choose f to get y > 1. So we conclude that

LEMMA 3.5. After the end of stage 2, with probability at least 1 — n™ 2%, we either
have a supervertex which is bigger than nflog® n vertices in size, or we have less than

\/ﬂ supervertices, each of size at least y\/ﬂ log n, with y > 3.

Proor. By Lemma 3.1, 3.2, 3.3, 3.4, and by the remarks of part (c) of the analysis.
a

Now we prove our full theorem, in part (c) of the analysis.

(¢) Analysis of Stage 3

LEMMA 3.6. At most O(log log n) phases of stage 3 leave O(log® n) supervertices
around, with probability at least 1 — n™3. Then the algorithm of stage 3 finds the
connected components of the graph in O(log log n) time.

ProOF. By Lemma 3.5, either we already have a very large supervertex of size
at least nflog® n at the end of stage 2, or we have < ﬁ supervertices of sizes at

least y\/;z log n each, and the probability of the disjunction is >1 — n~2. Stage 3
examines random edges with density ¢'/n. We now examine two cases:

Case 1. 1In the case of the existence of a large supervertex S of size >n/log’ n,
in O(log log n) phases, we claim that all but log® n of the remaining vertices will
join S with high probability. To prove this, we work as follows: The probability
that one particular vertex does not join with S directly is at most

¢ nflog®n c
g o1
n log® n
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ie., the probability g that a particular vertex joins with § directly is at least
c'flog? n.

If x, is the number of vertices which join directly, we have (from the Chernoff
bounds)

—gNé§?
Prob{x; > (1 —0)gN} =1 — exp( q2 ),

where N = n — n/log® n is the total number of vertices not in §, in the worst case,
and & is a constant in (0, 1). We conclude that

c'n 3 [ cn
Prob >(1—96)- >1- - — "
o {"1 20 o8 } = exp( 2 (]035 ))

where § < & < 1. By choosing § suitably, we can make ¢'(1 — &') > 1. Hence, we

conclude that
& §
Prob{x; > ns }zl—exp— cn: .
log’ n 2 \log’n

That is, S doubles in the first phase of stage 3, with probability >1 — exp(—d&°c'n)/
(21og® n)). While |S| <n/2, S will continue to double with at least the same
probability in each phase, since the first phase is the most difficult. Hence, in
O(log log n) phases, S will become of size > n/2, with

2cn

5

—_—]2z1- e (Remark 1)
2log’n

probability = 1 — O(log log n)-exp(—

As soon as S is of size >n/2, the probability that a particular vertex will
fail to join in one phase will be at most (1 — (¢'//m)"* < e™“/%. This implies
that, if N’ < n/2 is the total number of vertices not in § now, at least (1 — )N
(1 — e”<7) of them will join § in the next step, with probability >1 — exp(—(%/2)
(1 — e"“/?)N’). Assuming that initially N’ is > log® n, stage 3 needs at most
O(log log n) additional phases to make S of size at least n — log® n, with probability
at least 1 — O(log log n)-n~* (Remark 2).

Finally, the remaining vertices out of S are at most log® n (with probability at
least 1 —n™3, by combining the previous two remarks). It will now take an
additional O(log log n) parallel time for stage 3 to complete the finding of the
connected components.

Case 2. Consider two particular supervertices A, B of sizes at least yﬁ logn
each. The probability that B connects to A (assuming that B has at least one edge

out of it) is at least 1 /\/;1, since there are at most ﬂ large supervertices around.
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A.l. Proof of Theorem 1.1 for p = @(1/n). We prove here Theorem 1.1 for
undirected graphs. This provides an upper bound on both the average depth and
the depth distribution of G, , for all p = @(1/n) except those p in

¢ 20 (<)

n’ n n) [
where ¢, is the cutoff constant for paths of length d log n, d > 2. This provides a
partial answer to the problem of finding the depth of G, , for p = ©(1/n), open
up to now. The remaining cases of p = o(1/n) and p = Q(1/n) can easily be derived

by results of Erdos and Renyi [1959] (see Sections A.2 and A.3).
In addition Bollobas [1984] showed that, for

1
, Clogn

n

(and ¢ such that G, , becomes almost surely connected), the mean depth d of G, ,
satisfies

&S|'logn+6—’+3
loglogn

In fact, Bollobas also showed that, for any

d(n)

T

with d(n) — log n — oo as n — oo, the mean depth of G, , satisfies

7k Pog_ﬂ 5 4
log d(n)

Although Bollobas conjectured that his results hold also for p = ©(1/n), his proof
techniques do not carry out in that case, since they are heavily based on the fact
that pn > logn.

Consider the following two-stage experiment: Draw an instance of G, , with

’

c
pi=— (>0
n

Then, for each edge which failed to appear, draw again with probability

/

c

P2i=
n
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The result of the combined experiments is an instance of the graph G, , with
p=p; + (1 = p)p, = 2¢/n — (c'/n)* = O(c'/n). The first stage of the above experi-
ment constructs an instance I of G, .

Let E be the event “the instance I has a path of length J -log n (where ¢ is a fixed
constant)” and let E’ be the complement of E. Let us consider the probability of
E. We need the following lemma:

LemmA Al.1 [Erdos and Renyi, 1960]. Given G, , with p = ¢/n, let T;.1,4, be the
number of paths of length 6-logn in G, ,. Then

lim Prob{rs. s =0} =¢*

n—+oo
with

(élog n}é-logn—z

A= (2C}é-logn—1
(6-logn)!

The above lemma can be used to prove that “there exists ¢, > 0: for ¢ > ¢, the
graph G, , with p = ¢/n has at least one path of length 4 -log n with probability — 1
as n—o0” and for ¢ < ¢, the G, , with p = ¢/n has no such path with prob-
ability - 1 as n— oo (to prove that, find the ¢, such that A — o0 if ¢ > ¢, and
A—=0 if ¢c<cy for n— o0). Assume in our construction that ¢’ >c¢,. Then
Prob(E) > 1 — n~*€), where «/(c))> 2 is a constant depending on ¢’. Let us
condition the following on the event E.

We start from the vertices of the path T of length -log n (at least such a path
exists, by E) and use them as the initial border set B, for a breath-first-search (BFS)
process in the graph induced on the vertices of G, , by just the second stage of
the experiment.

Let |B,| = 6-log n and let us find the distribution of the number of vertices to
which the vertices of T are immediate neighbors. The set of these vertices will be
the new border set of the second stage of BFS, and let us call it B;. We are
interested in estimating the Prob{|B,| > 2-6-log n}. Let |S,| be equal to |By| =
5 -log n (the number of visited vertices at the beginning of the first stage of BFS).
The number of unvisited vertices is n — |Sy| = n — d-log n and each of them has
probability

ho=1—(1— pa)’le

to be connected to B,. Hence

Pl’Ob{|Bl{ = x} s (n —xlSo|) ,6(1 . ho)n—alagn*x’
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but hy =1 — (1 — ¢//n)>"°#" and since log n/n —0 as n — oo we have that hy, —
(c'0 log n)/n as n — c0. The mean value of |B,| is

15210 2
(n—1Sehy =c'd logn—c———g—j——»c’é log n as n— oo.
n

Let ¢’ > 2 and let us find the probability Prob{|B,| < 2é-log n = 2|B,|}. From
p. 140 of [Feller, 1968] this is less than

n— |8l - o
e hz«ilogn 1 —h)" dlogn—2dlogn .
Q (25 log n) 0 ( 0) r,

where

(n —dlogn — 26 logn + 1)k,
(n—dlogn + 1)h, — 25logn’

which is asymptotically equal to

c'dlogn

c'dlogn —25logn’

tending to ¢'/(¢" — 2) as n — oo. Then Q is asymptotically equal to

n__alogn c’5 logn 2dlogn 1 c’5logn n—SJIan. C’
26 logn n # ¢ —2

i.e., Q is less than or equal to

n — dlogn\?®°e"('5logn 2&l°g"n—c'a. ¢
25logn n ¢ =2’

ie.,

Q < nz&log(c‘fl) . n—c'ﬁ .

ie.,
Q < n—é(c’—Zlog(c',ﬂ‘Z))-I-log(c',t‘(c'*?.))p‘logn
which implies Q < n™* for any p > d(c’ — 2 log(c’/2)). Hence,

Prob{|B,| > 2|Bo|} > 1 —n"".
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We now inductively form sets S, and By such that S, = By u B; U - U By and
he=1—(1—py 1%,

and | B, | being selected according to the density
— |8
PIOb{lBk+1| = x} - (n | kl)hf(l - hk)n—ls.kl-x-
x

(This models the BFS process.) We claim that while |S,| < n/2,
Prob{|B;| > 2|B;_,| given F} > 1 —n"%,
where
i-1
B j/=\1(|B,-1 > 2|B;_4l).

This is so, since the first extension (from the smallest border set B,, with
|By| = 8-log n) is the most difficult. Then the event

k+1
E; = A(Bi| =22|B;_|)
i=1
has probability at least
k+1

[Ta=n"f=1-n"F*,
j=1

and let k be the last index for which |S,;| < n/2. Set |S,| = (n/2)(1 — &), with |B;| >
|S/2 = (n/8)(1 — €). From |S,| = |Bo| + = + |Be| 2 |Bo| + 2|Bo| + - + 2*| By|
we get |S,| > (2" — 1)| B, |, implying

15, ) J
k=|logl —+1]—-1
L°g(|Bo| * ’
|, (1=
k= I\log(zé Jogn + 1) — IJ,

1—c¢
26

ie.,

ie.,

k= Llog n + log —log log n — IJ.
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Hence,
n n
|Sk+ 1] =[Skl + [Bis 1| = |8i] + 2| Byl 25(1 — &) +§(1 — & =n(l —e).

So, we proved that

LemMMA Al1.2.  Conditioned on the event E, the BFS process will visit at least n(1 — ¢)
nodes of G, ,, in at most log n stages, with probability at least 1 — n~#*1.
DeriniTION.  Let T, be the number of stages needed by the BFS in order to visit
at least n(1 — &) nodes of G, ,,. Let V; be the set of visited vertices. We just proved
that, with probability at least 1 — n~#*!, there exists a path of size O(log n) between
any two nodes of ¥, in G, ,, (conditioned on the event E).

Let us consider the subgraph G, of G, ,, induced by the set of vertices not visited
by the BFS in T, stages (i.e., the vertices in ¥ — V). Consider a spanning tree
1;,,..., T, in each of the connected components CC,,...,CC,, of G,. Let us
partition each tree T, (j = 1,...,m) in a set = of connected pieces of size q-log n
(where g is an appropriate constant, to be determined). There may be some pieces
of smaller size which, however, connect to at least a piece of size g-log n (or they
belong to a very small connected component, of size less than ¢ - log n). The number
of pieces of this partition is less than n. Consider a particular connected piece P
of size g-log n. The probability that there is no edge connecting a node of P to
anode of V, is (1 — p,)"d~9algn j e equal to (1 — ¢//m)* ~ Dalogn je <p=cal=e)

Since the number of such pieces is less than n, the probability that there is such
a piece, with no edge connecting any of its nodes to any node of V, is
<n gt ettt

Let E, be the event “there exists a path of size O(log n) between any two nodes
of ¥, in G, ,.” Let E, be the event “for every piece of the partition 7, there is at
least one edge between some node of that piece and some node of V,.”

We have proved that

Prob{E} > 1—n"%, &>2
Prob{E; givenE} > 1 —n~f*1,
and
PI‘Ob{EZ given E, El} o pocal-a+1
Hence,

Prob{E and E, and E,} > 1 — 0(n™* + n ##1 4 pcati-atl)

but E and E, and E, together imply that G, , has depth which is <2glogn +
1+ 2logn+ élogn,ie., O(logn).
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We conclude that

LEMMA Al3. The depth of G, , with p>2c'/n—(c'/n)* is <(2q + ¢ +2)log
n + 1, with probability at least 1 — O(n™* + n~F*1 4 p=<d1 -0 4 1),

Note that 6 >1 is arbitrary, ¢’ can be picked up by Lemma Al.l,
B =0d(c' —2log(c'/2)), and g, ¢ can be picked up in an arbitrary manner. By
selecting them suitably, we can guarantee a probability of at least 1 — n™7, with
y > 2, for the event that the depth of G, , is O(log n).

Note also that, for p < ¢'/n, Lemma A1l.4 implies that

Prob{depth of G, , < é-log n}
tends to 1 as n— co. Hence, we managed to prove our result for any p not

in [c'/n, 2¢'/n — (c'/n)*], where ¢’ is the cutoff constant for paths of length &-log n,
0 > 2. This proves Theorem 1.1 with ¢, = ¢’. The problem is open for

pelc/n, 2¢/n — (c'/n)’]

and we conjecture that Theorem 1.1 holds for that range too. =

A.2. The Case of p=o(n™?)

LemMa A.2 [Erdos and Renyi, 1960]. Let the average valence of a graph of n
vertices and m edges be the number 2n/m. Let a graph be called balanced if its
average valence is greater than or equal to the average valence of any of its subgraphs.
Then the probability that G, , contains at least one member of the class B, , of
balanced graphs of k vertices and | edges is

Prob{|B, | > 1} = o(nf’w).

CoRrOLLARY A.1. Prob{depth of G, , <logn} -1 asn— oo for p=o(n=').
Proor. For p = o(n') we can always write p as p = (¢/(n- w(n))) where ¢ > 0 is
a constant and w(n) — 00 as n— 0. Let B = B, 1ogn-1 be the class of paths of

log n vertices. From Lemma A.2 we get

Prob{G, , contains at least one member of B}

c C
= O(n-m(n)-n_"”"’“‘""‘”) = O(co(n}) -0 as n— oo.

The above implies that the average depth of G, , is less than log n for p = o(n™")
and all n > n, for some n,. O
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A.3. The Case of p=Q(n™")

LemmA A.3 [Erdos and Renyi, 1960]. Let p = (c¢/n)* w(n) where ¢ > 0 is a constant
and w(n) — o0 as n — co. Then if | B, | is the number of balanced graphs of the class
By, (k vertices, | edges) contained in G, , we have

Prob{|By | < o(n)"} = O(L)

(n)

1 \»
Prob{|B, ;| = 0} = 0((m) )

COROLLARY A.2. The depth of G, , is <logn for p=Q(n™"), with probability
going to 1 as n — co. This implies that, for p = Q(n™"), the average depth of G, ,
is not more than log n for all n > ng, for some ny > 0.

implying

Proor. Let B, , be the class of binary balanced trees of n vertices, n — 1 edges.
Then

Prob{|B;,|=1}>1— 0((L)“).

w(n)

Hence
Prob{|B, | =1} =1 as n— . O
A.4. The Case of High Density p=>cn™ '3 ¢> 1

LEMMA A4. The depth of G, ,, for p > cn™ ', is <3, with probability tending to
1 as n goes to co. Here ¢ > 1 is a constant.

Proor. Consider any pair u, v of vertices of G, ,. Let S, (resp. S,) be the sets of
neighbors of u (resp. of v). Then, for any fe(0, 1),

Prob{|S,| = p(n — 1)(1 — f)} = 1 — e~ PFPC-1)2

by the Chernoff bounds [Chernoff, 1952]. For B = } we get

cn?/3 S
Prob< |S,| > (2 1 — @8,

Similarly,

2/3
ch S e—(cfS)nm
2 =

Prob{lS,,I >
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Hence

Cn2/3

2

Pfob{bothlSuI, 15, > } > 1 -9

Let E be the event “both |S,|, |S,| = cn*?/2.” Then
Prob{no edge between S,, S, given E}

¢ (c2/4)n*3 ,
< (1 _ p)|5u|'|SuL < (1 o _) < e"(ﬂ' /4]""'
n

Hence, combining terms,

Prob{there is a path of length <3 between u, v}
> (1 — 20" WPY] _ o= @Hm) > | _ 3o (/8 nS

Hence,

Prob{for each pair u, v there is a path of length <3 between them}
>1—3n%e " 51  as n- 0. O
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