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Strong k-connectivity in digraphs and random digraphs.

1 SUMMARY

This paper concerns an extension of the strong connectivity notion
in directed graphs. & digraph D is k-strongly connected if, for each
X,y vertices of D, there exist > k vertex disjeoint paths, from x to y and
also > k vertex disjoint paths fromy to x. & k-strong block of a digraph
D is a maximal k-strongly connected subgraph of D. We show here how many
results about the k-blocks in undirected graphs extend to k-strong blocks in
digraphs. (Separation lemma, overlapping of k=strong blocks, number of them,
sec [MATULA, 78].) We prove, for example, that the maximum number of
k-strong blocks for all k > 1 in any n-vertex graph is L(2n-l)/3j. We
also prove that two k-strong blocks cannot have more than k-1 vertices in
common. We furthermore present results bounding the cardinality of the big-
gest k-strong block iﬁ random digraphs of the Dn,p model. We show here that

the cardinality of the biggest k-strong bleck is > 0 - log n with probability

- I
>1-n (cl(k)2 X)

and ¢ (k) > 2k + 4, We also show that if
1 Z

log n
n

P > c(k) with c (k) 3_16k3 then the digraph Dn o is k-strongly con-

r

nected with very high probability (> 1 - —75%7£7 with 4'(k) > 1). This work
n
generalizes previous work of [REIF, SPIRAKIS, 81] on random undirected

graphs.

2 INTRODUCTION
-~ A digraph D = (V,E) consists of a finite nonempty set V of vertices

together with a prescribed subset E of V x V - {(u,u) :uev} (set of directed

edges). (We allow no loops neither multiple edges.) A digraph D is



k-strongly connected if, for each x,y vertices of D, there exist > k vertex
disjoint paths-from x to y and also > k vertex disjoint paths from y to x.
D has strong connectivify k(D) = kx if D is k-strongly connected but not
K + 1 - strongly connected. A k-strong block of a digraph D is a maximal
k-strongly connected subgraph of D. A k-strong block is trivial if it
has only one vertex. We extend here the definitions of [MATULA, 78]
for k-connectivity and k4blocks.in digraphs in a natural way. k-strong con-
nectivity seems to be an interesting property of a graph, in addition to
being a natural extension of a mathematical structure. In [KLEINROCK, 72]
it is related to message flow in computer networks. The so-called associa-
tion graphs used in socioclogy and data cluster analysis may use the theory
of strong k-connectivity ([MaTura, 77], [JARDINE, SIBSON, 71]). We give
here alternative characterization theorems of the k-strong blocks. We
prove various structural properties of k-strong blocks, namely limited
overlap, the k-strong block separation lemma (providing also an o(n*)
algorithm for finding all k-strong blocks in an n-vertex digraph) and we pfo-
vide an achievable upper bound on the number of k-strong blocks for all
k > 1 in any n-vertex graph. (This bound is equal to L(2n—l)/3J.) All
these results are generalizations and extensions of the corresponding results
of [MATULA, 78] on k-blocks in undirected graphs.

We also examine k-strong connectivity in the model D, P of random

14

digraphs, defined precisely as follows: For O < p <1l andn >0 let Dn o

be a random variable whose values are digraphs on the vertex set {1,2,...,n}.

If e = (u,v) and u,v are vertices, then Prob{e is an edge} = p and these

probabilities are independent for different ordered pairs e. Extending the



previous'undirected graph results of [ERDOS, RENYI, 60] and [KARP, TARJAN,
80] for k= 1,2 and [REIF, SPIRAXIS, 81] for general k in undirected
graphs, we prove that for each constant k >0 and any € (0 < € < 1) and

o > 1 there is a c(k,c,e ) > 0 such that the random digraph Dn,p with

o) Z_E—has a k-strong block of cardinality > e-n with probability at least
l1-e . We also show that for any g(n) = o(n) there are constants
c(k) > 4k and d(k) > 2 such that the size of the biggest k-strong block is

d (k)

> n - g(n) with probability > 1 - (log n)/n for p > c(k) (log n)/n

An immediate corollary of that is that Dn p is almost surely k-strongly
connected for such high values of p. Finally, we prove that for any

g{n) = o(n) there is a constanf ¢ (k) = max(3, ¢ (k)) and a function
1

t(n) > (%(k) (log n))/g(n) such that if p > t(n)/n then the size of the

biggest k-strong block is > n - g(n) with probability > 1 - -k
- - et(n)g(n)
+ 1 as n > », An immediate corollary of that is that Dn P with p 3_(c1(k))/n
. . ‘s -c_(k)+1
has an n-log n size k-strong block with probability > 1 - n 3 .

Similar results were proved for undirected graphs in [REIF, SPIRAKIS, 81].

3 PROPERTIES OF k-STRONG BLOCKS

Proposition 1 If D is a digraph and G is the undirected version of D, then

k(D) < k(G) < 2-k(D), where k(G) is the connectivity of G.

Proof By Menger's theorem an undirected graph is k-connected if every pair

of points is joined by at least k vertex-disjoint paths.

Proposition 2 Each k-strong block has at least k vertices or it is trivial.




Proof Easy by proposition 1 and the corresponding property of undirected

k-blocks (see [MATUIA, 78]).

Lemma 1 The minimum number of vertices separating vertex s from vertex t
in the direction s to t, is the maximum number of vertex disjoint s to t

paths.

For the proof, see the Appendix. It is a modification of Dirac's proof to

Menger's theorem.

Theorem 1 The digraph D is k-strongly connected if for every vertex x
and for every vertex y, there are vertex cuts from x to y and from y to x of

size at least k.
Proof ' By Lemma 1 and the definition of k-strong connectivity.

Theorem 2 Let D be a k-strongly connected digraph and let x be a single
vertex graph with no edges. Let vl, ceer Vo be k distinct vertices of D.
Construct the digraph D' which has vertex set consisting of vertices

(D) u {x} and edge set the union of the edge set of D and {(v, ,x), (x,v )
1 1

i=1, ..., k}. Then D' is k-strongly connected.
Proof Immediate by Theorem 1 (see figure 1)).

Theorem 3 Two k-strong blocks Bl, B2 cannot have more than k-1 vertices

in common.

Proof Assume, by contradiction, that they have > k vertices in common,

V., eees V

1 h > k (see figure 2).

hl



Let x be any vertex of B1 and y be any vertex of B2, while neither x nor y
is a common vertex v., 1 < i <h. Then we claim that we cannot find a

vertex cut from x to y or from y to x of size < k.

Proof of claim: If we could, let S be the set of vertices in the cut,

IS[ < k. Let Sl, Sz, Sc be the intersections of S with V(Bl) - {ul, ...,uh},
V(Bé) -'{ul, ceer ul and {ul..., u } respectively. Clearly lsll <k,
ISZI <k, lsc| < k. By taking the set S_ out, at least one of the u, (call
it u) remains in the digraph. x had > k disjoint paths to u and hence the re-
moval of S u Sc leaves at least one path from x to u. Similarly, the re-
moval of SCV 32 leaves out at least one path from u to y. Similarly for
the direction y x. Hence the set S is not a cut set, which contradicts to
our assumptioh.

By using the just proved claim we remark that BllJB' should be k-strongly

2
connected if h # k. But this contradicts to the maximality of each of them. QED.

Definition Let D be a digraph (V,E) and let S € V be a vertex set. With -

<S> we denote the directed subgraph induced by S on D.

4 STRUCTURE AND ENUMERATION OF k-STRONG BLOCKS
Definition A separating set S of the digraph D is a vertex set S © V(D)
such that D - S is not (one)-strongly connected.
The strongly connected components of D - S are denoted by <A1>, sees <Am>

where m 2_2.

“Proposition 3 A minimum separating set has |s] = x(D).




Proof By theorem 1, at least k(D) vertices are needed to be removed to

disconnect two points x, y in at least one of the directions xy, yxX.

ILemma 2 (Block separation lemma) Let S € V(G) be a minimum separating set of
the digraph D (with <Af ¢ oeess <Am>, m > 2the strongly connected components

of D - <8>) and let k > k(D) + 1. Then each k-strong block of D is a k-strong
block of <Ai U s> for precisely one value of i and each k-strong block of

<Ai U s>, Vi is a k-strong block of D.

Proof It is immediate for D not strongly connected. Let D be a strongly
connected digraph with some minimum separating set S and let k > k(D) + 1.
Let B be a k-strong block of D. Since V(B) N1 S is not a separating set of
B and since !V(B)l > [S], B must be a k=-strong subgraph of preciéely one
strongly connected component, <AiLJS>, of D - S, B then is a subgraph of
precisely one k-strong block, B*, of <Ai U s>, and B* is then a k-strong
subgraph of D containing B. But B is maximal with respect to k~strong
connectivity in D. Hence B = B*, so B is a k-strong block of <Ai U s>,
For any i, let B* be a k-strong block of <Ai U s> with k > k(D) + 1.
B* then is a subgraph of some k-strong block B of D. Since B cannot be
separated by V(B) N S we conclude that V(B) 55\7(<Ai U s>). Thus B is a

k-strong subgraph of <Ai U S> containing B” as a subgraph. By maximality

of B* we get B = B¥, proving the lemma. QED

Definition For n > 1 let w(D,n) be the number of k-strong blocks of D

for k > n. Define w(D) = w(D,1).



It is obvious that, for a strongly connected D

m
w(D) = w(D,k(D) =1+ ) w(A>US, k(D) + 1)
i=1

(decomposition formula)

Lemma 3

w(D,n)

| A

L2(v(D)-n) + 1)/3) for 1 < n < V(D) - 1
=0 for n > V(D)

Proof The verification of the above formula is obvious for complete D
and for D with IV(D)I < 3.

By induction, let it hold for all digraphs D with 1 S_IV(D)] <j-1
and let Dj be a particular noncomplete j-vertex digraph.

Let S be a minimum separating set of Dj with <A1>, ceey <Am>, m 3_2,
the strongly connected components of Dj - S.

Consider three cases depending on n and w (<Ai U s>, n).

(i) Suppose n > k (Dj) + 1 and that there is one i € {1, ..., m} such

that
w (<Ai Usg>, n)y =0

For k > n (from the block separation lemma) the k-strong blocks of Dj are
precisely the k-strong blocks of Dj - <Ai>.
Thus

- w (D.,n) = w(D, -~ <A.>, n)
] J 1



-8-

and since IV(Dj —<Ai>)| < j = 1, the inequality follows by the induction

hypothesis.

(ii) For n > k(D) + 1 for every digraph D, we have from the separation lemma

m
w (D,n) = Z w (<AiU s>,n)
i=1
Let n>|s| +1=k () + 1
Let also wi<a, U s>, n}) >1 v, =1, ...om
This , [V(<Ai Us>}| >n+1 vVi=1, ..., m
So
m m
w(D n) = E w(<a, Us>n) < Z [2]v(a,us) {-2n+1) /3]
i=1 i=1
(by the induction hypothesis)
m
< Z L2|lva,y] + 2|s|] - 2n + 1)/3]
R i
i=1
< 123 + 2@@-1)]s]| - 2mn + m) /3]

< 123 - 2n+1)/3], oED
(Note that 2(m—l)|S| -2mn +m<2-m-2n < -2n, since m > 2.)

(iii) Let n = |s| = k(D) > 1

- Then [<AiUS>|in+1 v. =1, ..o m

So, by the decomposition formula of page 7 and by the induction hypothesis



m
w (Dy.n) =1+ ) w (a>Us, n+1)
i=1
m
< 1+ cz: ((2[Ai| + 2|s| - 2n - 1)/3) ]
i=1
< 1+ 1025 - 2n - my/3)
< 23 - 2n + 1) /3] OED
Corollary

w(D) < max w(D,1) = [(2n - 1)/3]

n

|v D) |
We now show that this upper bound is achievable.
Lemma 4 There exists a digrarh DW such that
w (D) = Lt2n - 1)/3]

Proof Consider the following digraph Dw'

. n+2 n+l;
v (Dw) = al, ceey @ L—E-j' bl' ...; b t—g—j, Cl' ee., C [n/3J

Let E (Dw) be the union of the following sets:
‘l(ai, a) U (ay, ai)g 1<i<i< Ln+2)/3],
_ z(ai, by), (bj, ai)g 1<i<j< L(n+1)/3],
}(ai, ey (cj.ai)% 1<i<j< Lns3l,
‘(bi, ;) (g, bi): 1<i< |n/3]

l
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For any 1 <k < [_(n-l)/3_| ., the subgraph

D, - {bl, ceer By gy Clr e ck-l} is a k-strong block of

Dw and there are no other k-strong blocks for that value of k, except
trivial k-strong blocks.

We have also to count the k-strong blocks with no (k + 1l)-strong
blocks ingide. For n =0,1 (mod 3) the complete subgraphs
{b., c., a az, ...ai} 1<iz< [n/3] are the only kind of these

1 1

k-blocks. For n = 2 (mod 3) we have also to add the clique

{b__+_1 38 eer By
3 I 3
So, the maximum number of the k-strong blocks with no (k+1)-strong blocks

. . . +
inside is equal to I.P-:—}j for n > 2.

So the total number of k-blocks in Dw is

n+1 n-1 _ 2n-1
l_3J+l-3—J_[3J for n > 2

5 GIANT k-STRONG BLOCKS IN RANDOM GRAPHS
Theorem 5 For every € €(0,1), a > 1 and k > 0 there is a ck.a,e)> 0

such that, for p i% , the random digraph Dn P with p i;cl- has a k-strong

4

. g -an
block of vertex cardinality > €-n with probability at least 1-e on-

Proof Let D = (V,E) be an instance of Dn o Let €1 be the event "D has

’

no k-strong block of cardinality > E&n". Assume 5’ be true on D. Construct
1
a digraph H with the k-strong blocks as vertices and an edge from the
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k-strong block b1 to k-strong block b2 only if there is no vertex cut

of size < k-1 separating b1 from b2 to the direction b = b2. (Note that
1

at least one such vertex cut, either.to the direction b b or to b b exists,
1l 2

2 4
and it is of cardinality < k-1.) Clearly H is acyclic and hence not
strongly connected. Let the set S be initially empty. Add to S the
k-blocks of D one-by-one, following the reverse topological order of
H. Each addition of a k-strong block to S, adds at most (k-1) vertices to
the border-set of S (being the set of the vertices of S having edges to
the outside of S) and at least one vertex to the rest of S (since each k-strong
block has at least k-vertices if it is no trivial) or causes the transformation
of a vertex of the border-set of S to a vertex of the rest of S. Thus,
at least 1/k of the vertices of S have no edges to the outside of S.

n
Continue the above construction, just until S has cardinality > e'5  where

€' = min(es 1-g). Then (by our assumption that é' holds)
1

e s < Is| < e'% + en

So, s -B(5)] > £_n
- 2k
where B(S) is the border-set of S.

Also,

Jvip)y - s| > n(1- e—% €') >0

Let A =8 - B(S), B =V -85,

Then |A| > €_-n, IBI > € *n
- 1 Z
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with € =

1
€2—1-€—5

and no edge exists from A to B.

This event's probability is bounded above by

Z Prob {no edge from A to B}

alla,B
1 €.,N€E_n
n
< = . 4 - 1_
b (1-p)
1 -€ £ ¢,n -on
2 FW@e 1727) fe
c o + loge 4
for p > = and c >
—n - £ E
1 2z
and any o > 1.
so, prob (£) <e *" QED.
[ =

6 k-STRONG BLOCKS OF DENSE RANDOM DIGRAPHS

This section considers random digraphs of the model Dn with
14

p>c log n

n

Theorem 6 For any constant integer k > 0 and any n and m < %%- there

constants c(k), d(k) > O such that, the cardinality X of the biggest

1
k-strong block of the digraph D o with p > c(k) *2%—2

r

satisfies the

proprety

Prob {X = n - m} __Il—m'd(k)

are
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14

Proof ILet D be an instance of Dn o and let the event X = n-m be true in

that instance. Let A be a k-strong block with IAI = X. For every

u £ V-aA, at least one of the following two inequalities holds

| (u,v,) € E(D) : VE Al <kx -1 (*)

| (v,u,) € E(D) : VE Al <k -1 (**)

So, for at least one-half of the vertices of V-A the same inequality
holds (either (*) or (**). This is so, since failure of both (*) and (**)
for u would imply that u € A by theorem 2. Without loss of generality,

let (*)} be the property holding for 3_%'of the vertices of V-A, c(Call the

set of these vertices U.

So, |ul 3_% [v-a| = % m

and Va€Uu |{(u,v) € E(D) : V€ A| < k-1
Let A1 ={veaA|l3u€ U: (uv) € EMD?
Then 2 | < k-1) Ju} < x-1) +m

Let A =2 - Al. We get |A2| >n-m- (k-1)m
or |A | >n - xm.

Furthermore, there is no edge from U to A .
2

Let € be the above event. The probability of € is bounded above by the
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n n-m
u(n,m) = (1 - p) (n = %km) (m/2) (***)
m - km

’ n-nm n
(Note the way this upper bound is formed. We use n -km iu( ) since ()
1 - km X

. . - n . s s .
is decreasing for x > 3 and n - km is the minimum value possible > % )

We have to use the minimum exponent of (i-p).

But 1-p <1 -c¢ }%

log n .
n since p > ¢

n-m
Also ( ) < e(k-l)m log (n-m) since (k-1)m < 2 ; 3
n - km

n
Also() iem log n since m < %
m

l_cl_os_nge-ciog_nVn

Finall
inally = 0
So, u(n,m)<;1d(n'm)
where dn,m) = 4 1 - Eg-m -m=- (k-1)m lgg_iﬁlﬂl
2 n log n
km
2%“‘ ( -7 ) P (k-m
2 g—m - km (by our assumption)
> md (k) where d(k) = 7 - k
Note that da(k) > 0 iff c(k) > 4k
So
~m-d (k) QED.

prob (£) <n

Theorem 7 For any constant interger k > ¢ and any n >> k there is a
constant c(k) > 0 and a d{k) > 0 such that the cardinality X of the biggest

satisfies the

k-strong block of the digraph Dn o with p > c(k) lc;g 2

4

property
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Prob {X < n - log n} < op{t=1og n d(ky)

Proof We have (by using theorem 6) .
. n-2k

that Prob {1og n<n-Xc« -zni} =§ : n-m°d(k)
' m=1log n

c (k)

with dk) = -k > 0 for c(k) > 4k

So

Prob {log n<n-2Xc< é%} <n . g tog n-dlk)

< n1 - log n - d(k)

Also, from theorem 5, and by using

for any a>1 and c (k) Z.a + 109: 4

€ €
12
1 3
and £ = . _ 3
1 E":z 4k? (l 4k)

So, for

€ €

c(k) > max (4](, a__+__];°ii4_>
1

(or c(k) > 16k3)
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we get
Prob {logn<n- X} < e—an + 1'11 - log n - 4(k)
or
Prob {X <n-1logn}<2 nl - log n - d{(k)
for sufficiently large n.
QED.
NOTE

Theorem 7 says that, for p > c(k) lO—g—-x1]:-l'1e digraph Dn p has a

r

k-strong block with prob=+l as n-— .

Theorem 8 For any constant integer k > o and n >> k there are constants
c{k) >0, d'(k) >1 such that the random digraph D o with p > c(k) l_ong_l
is k-strongly connected with probability
-
>1-2n a'(x)

Proof Let R=n - X, X = cardinality of the biggest k-strong block of

D . By using theorems 5,6 and c(k) > 2 + max (4k, a_j—__lg_g_‘l)

€ €
1 2
withe o =L (15{.)
1 4 ak?

we get that

c
prob {1 <R} <e &7 P
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Let d'(k) = (1L-(c/4-k))(-1). Then d'(k)>1 for

0+ log 4
c(k) > 2 + max |4k, c Ee
172
and
- - ¥
Prob{1 <R} < e + nd (k)
-
< 2nd (k) for large n.
Hence

zd* (k)

Prob{rR=0}>1-2 . QED

7. k~STRONG BLOCKS FOR INTERMEDIATE EDGE DENSITIES

Let ¢/n<p<c'(log n/n). We wish to study the k-strong connectivity

of this class of random digraphs.

Theorem 9. For any constant k20 and any m=o(n) there is a constant
cl(k) >0 and a function t(n) >cl(k)log n/m such that if p2t(n)/n

then if X is the cardinality of the biggest k-strong block of D

n,p
nk
£<n-  — 5 »>00 |
Prob{X<n-m} < T @2 0 as n
Proof. Assume that in the instance D of D the cardinality X of

14

“the biggest k-strong block satisfies the inequality XS<n-m. Then we can
find two sets A,B (as in Proof of Theorem 6) such that IA] =1/2 m,
IB| =n-km and no edge from A to B (or from B to A). This event

is above bounded by the probability 1-gq, where
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g = Prob{for every pair of disjoint sets A,B of vertices of the
above sizes, there is at least one edge from A to B}. We shall show
that g>1 as n—=+® Let us enumerate all possible pairs of sets of
vertices of the above sizes. Call them

(All Bl)l (A2IB2)I"'I(AgI Bg)
where
n /{n-m n n-m
%-m n - km
We have by Baye's formula that

g = Prob{E(Al,Bl) EFOA ... AE(, By) #@}

where E(A,B) = set of edges from A to B.

So

‘E‘Az'Bz)ﬂ E(A_/B )P
g = Prob E(Al,Bl)#ﬂ Prob (W .o PIOblg'l

2 E(Ai,Bi)#¢

We need the following enumeration lemma:

Lemma 5. For every two sets Ai, Bi having at least one edge e from

Ai to Bi' there are at least

) n-2 )(n—Z—(m—l))
g =
1 (l m-1 (k=-1)m-1

2

pairs of sets of sizes 1/2 m, n-km which also contain this edge.
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This lemma can be proved easily by taking out the two vertices of e and

enumerating.

Corollagx.

There is a suitable enumeration of the sets in the g product

such that for every term i not equal to 1 the next (at least) 9 terms

(conditioned on the existence of an edge from Ai to Bi)

to 1.

Hence the value of q is

But

(In fact

Hence,

oxr

or

or

g Z2 [Prob{at least an edge from A
k
9 < (E) as  now
g m
1
k
jL-*(E) as n*®
gl m
k
i %-m-(n—km) (n/m)
q =2 Ll - (1-p)
[ 1 (n/m)k

p = m{n-km)
a2 |1-1a-p/Py 2

to Bl}]

g/gl

will be equal
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or

t
_[ (g)m -k logn] 5

g2 1l-e >1-n if o (k) > 2k +4.

(Since 1/2 t(n)m>1/2 cl(k) log n> (k+2)log n  only if ¢, (k) >2k+4.)

So,
-[——t (121)m -k log n]
Prob{X<n-m}<e + 0 as n->o
for the above values of c, (k). QED

Corollary. For each k>0, the digraph D with p2 c,(k)/n has a
nrp - [e; (X)1/2-K]

k~strong block of cardinality >n- log n, with probability >1-n .

Proof. Just set m=log n and t(n) >cl(k) in the previous theorem.
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APPENDIX

LEMMA 1. The minimum number of vertices separating vertex s from
vertex t in the direction s to t, is the maximum number of vertex

disjoint s to t paths.

Proof. (A variation of Dirac's Proof for a version of Menger's
Theorem.)

It is clear that if k points separate s from t then there can
be no more than k disjoint paths from s to t.

It remains to show that if it takes k points to separate s and
t (in the direction s-t) in the digraph D, then there are k disjoint
st paths in D. This is clearly true for k=1. Assume it is not true
for some k>1. Let h be the smallest such k and let F be a digraph
with the minimum number of veftices for which the theorem fails for h.
We remove edges from F until}We obtain a digraph D’ ‘such that h
vertices are required to separéte s,t (in the direction st) in D',
but for any edge x in D', only h-—l' vertices are required to separate
s,t in D'-x. Let us investigate properties of this D'.

By definition of D', for every x edge of D', there is a set S(x)
of h-1 vertices separating s,t (in the st direction) in D' - x.
Now, D'-S(x) contains at least one st path, since it takes h
vertices to separate s,t in D'. Fach such st path must contain the
-edge x= (u,v) since it is not a path in D'-x. So, u,vfS(x) and
if u#¥s, u#t then s(x)U {u} separates s from t (in the st

direction) in D'..
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If there is a vertex w such that (s,w),(w,t) are edges in D',
then D'-w requires h-1 wvertices to separate s,t and so it has h-1
disjoint st paths. Replacing w, we get h disjoint st paths in D°'.

So, we showed
(1) No such w exists in D',

Let W be any collection of h vertices separating s from t (in st
direction) in D'. An sW path is a path starting at s and ending in

some wiGZW and containing no other vertex of W. cCall the collection of
all sW paths and Wt paths Ps and Pt' respectively. Then each st

path begins with a member of Ps and ends with a member of Pt’ because
every such path contains a vertex of W. Moreover, the paths in PS and

Pt have the vertices of W and ﬁo others in common, since it is clear

that each wi is in at least one path in each collection and, if some

other vertex were in both an sW and an Wt path then there would be an

st path containing no vertex of W. Finally, either PS-—W=={S} or
Pt-W=={t} since, if not, thgn both Ps Plus the edges {(wl,t),(wz,t),---}
and P_ plus the edges {(s,wl),(s,wz),...} are digraphs with fewer
§ertices than D' in which s,t are nonadjacent and h-connected and
therefore in each there are h disjoint st paths. Combining the sW

and Wt portions of these paths, we can construct h disjoint st paths

in D', and thus have a contradiction. So

—(I1) Any collection W of h vertices separating s from t (to
the st direction) has the property : Vu€w:
(s,u) 1is an edge

or (u,t) is an edge.
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Now we complete the proof.
Let P={(s,ul),(ul,uz),...,(*,t)} be a shortest st path in D'
and let uyu, = x. By (I), uz#t.

Férm S(x) = {ul'uZ"""u’n-l} as above, separating s from t in

D'-x. By (I), (ul,t) gD', so by (II)
with W=8(x)U {ul} we get  (s,u,) €D', Vi.

Thus, by (I), (ui,t) €D', Vi. However, if we pick W=S(x) U {uz}
instead, we have by (II) that (s,u2) €D', contradicting our choice of P

as a shortest st path. QED
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