MINIMUM s-t+ CUT OF A PLANAR UNDIRECTED NETWORK
IN O(n log® (n)) TIME

JOHN H. REIFt

Abstract. Let N be a planar undirected network with distinguished vertices s, ¢, a total of n vertices,
and each edge labeled with a positive real (the edge’s cost) from a set L. This paper presents an algorithm
for computing a minimum (cost) s-¢ cut of N. For general L, this algorithm runs in time O(n log® (n)). For
the case when L contains only integers =n°Y the algorithm runs in time O(n log (n) log log (n})). Our
algorithm also constructs a minimum s-f cut of a planar graph (i.e., for the case L = {1}) in time O(n log (n)).
Our algorithm can also be used to compute a minimum cut for a general undirected planar network.

The fastest previous algorithm for computing a minimum s-¢ cut of a planar undirected network (Itai
and Shiloach [SIAM J. Comput., 8 (1979), pp. 135-150]) has time O(n”log (n)); the s~ cut is a byproduct
of the maximum flow computed by their algorithm. The best previous time bound for minimum s-¢ cut of
a planar %raph (Cheston, Probert and Saxton [report, Dept. Computer Science, Univ. Saskatchewan, 1977])
was O(n”).

Key words. planar, network, minimum s-¢ cut, graph algorithm

1. Introduction. The importance of computing a minimum s-¢ cut of a network
is illustrated by Ford and Fulkerson’s [6], [7] theorem which states that the value of
the minimum s-¢ flow of a network is precisely the minium s-¢ cut. The best known
algorithm (Sleator [12] and Sleator and Tarjan [13]) for computing the maximum s-¢
flow or minimum s-¢ cut of a sparse directed or undirected network (with n vertices
and O(n) edges) has time’ O(n®log (n)). This paper is concerned with a planar
undirected network N, which occurs in many practical applications.

Ford and Fulkerson [6], [7] have an elegant maximum s- flow algorithm for the
case N is (s,?)-planar (both s and ¢ are on the same face) which when efficiently
implemented by priority queues as described in Itai and Shiloach [9] has time
O(n log (n)). Moreover, O(n) executions of their algorithm suffice to compute the
maximum flow of a general planar network in total time O(n? log (n)). Also, Cheston,
Probert and Saxton [3] have an O(n?) algorithm for the minimum s-f cut of a planar
graph and Shiloach [9] gives an O(n log (n))* algorithm for the minimum cut of a
planar graph.

Let Q.(n) be the asymptotic time complexity to maintain a priority queue of
O(n) elements with costs from a set L of nonnegative reals, and with O(n) insertions
and deletions. For the general case, Qr.(n) = O(n log (n)) as described in Aho, Hopcroft
and Ullman [1]. For the special case when L is a set of positive integers=n ", Boas,
Kaas and Zijlstra [2] show Qr(n) = O(n log log (r)). It is obvious that if L is of constant
cardinality then Qp(n)= O(n).

A key element of the Ford and Fulkerson [6], [7] algorithm for (s, t)-planar
networks was an efficient reduction to finding a minimum cost path between two
vertices in a sparse network. Dijkstra [4] gives an algorithm for a generalization of
this problem (to find a minimum cost path from a fixed ‘“‘source” vertex s to each
other vertex). Dijkstra’s algorithm may be implemented (see Aho, Hopcroft and

supported in part by the National Science Foundation under grant NSF-MCS79-21024 and the Office of
Naval Research under contract N00014-80-C-0647.
+ Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.

! We assume throughout this paper that our machine model is a unit cost criteria RAM (see Aho,
Hopcroft and Ullman [1]).

71
Preprint of paper appearing in SIAM Journal on Computing,
12, No. 1, February 1983, pp. 71-81.

Vol.

72 JOHN H. REIF

Ullman [1]) in time O(Q(n)) for a sparse network with n vertices, and L is the set
of nonnegative reals labeling the edges.

Our algorithm for computing the minimum s-¢ cut of a planar undirected network
has time O(Qr(n)log(n)). This algorithm also utilizes an efficient reduction to
minimum cost path problems. Our fundamental innovation is a ‘‘divide and conquer”
approach for cuts on the plane.

The paper is organized as follows: The next section gives preliminary definitions
of graphs, networks, minimum cuts, maximum flows, and duals of planar networks.
Section 3 gives the Ford-Fulkerson algorithm for (s, f)-planar graphs. Section 4
describes briefly an efficient algorithm due to Itai and Shiloach [9] for finding a
minimum cut intersecting a given face of the primal network. Our divide and conquer
approach is described and proved in § 5. Section 6 presents our algorithm for minimum
s-t cuts of planar networks. Finally, § 7 concludes the paper.

2. Preliminary definitions

2.1. Graphs. Let a graph G =(V, E) consist of a vertex set V and a collection
of edges E. Each edge e € E connects two vertices u,v eV (edge ¢ is a loop if it
connects identical vertices). We let e = {u, v} denote edge ¢ connects u and v. Edges
e, e¢' are multiple if they have the same endpoints. Let a path be a sequence of edges
p=e1, " ,e such that ¢, ={v,_1,v;} for i=1, .-,k (we say p traverses vertices
vo, * * *, k). Let p be a cycle if vo = vy (cycles containing the same edges are considered
identical). A path p’ is a subpath of p if p' is a subsequence of p. Let G be a standard
graph if G has neither multiple edges nor loops and is triconnected. Generally we let
n =|V| be the number of vertices of graph G. If G is planar, then by Euler’s formula
G contains at most 6n — 12 edges.

2.2. Networks. Let an undirected network N =(G, ¢) consist of an undirected
graph G =(V, E) and a mapping ¢ from E to the positive reals. For each edge
e €v,c(e) is the cost of e. For any edge set E'c E, let c(E') =Y., g c(e). Let the cost
of pathp=eq, -+, e, be c(p) =Zf=1 c(e;). Let a path p from vertex u to vertex v be
minimum if c(p)=c(p') for all paths p' from u to v. Let N =(G, ¢, s, t) be a standard
network if (G, c¢) is an undirected network, with G = (V, E) a standard graph, and s, ¢
are distinguished vertices of V' (the source, sink, respectively). Note that triconnectivity
can easily be achieved by adding O(n) edges with cost 0.

2.3. Minimum cuts and maximum flows in networks. Let N =(G,c,s,t) be a
standard network with G = (V, E). An edge set X < E is an s-t cut if (V, E—X) has
no paths from s to ¢. Let s-f cut X be minimum if ¢(X)=c(X') for each s-¢ cut X'.
See Fig. 1.

Q"’f 8 \Ue) 1

F1G. 1. A network N with source s and sink t. The heavily drawn edges indicate a minimum s-t cut
{{va, v}, {v3, va}, {va, t}, {v4, v7}, {v6, v7}} with cost S.

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 73

Let A be the set of directed edges {(u, v)|{u, v}€ E}. A function f mapping A to
the nonnegative reals is a flow if

(i) Forallee A, f(e)=c(e), and

(ii) For all v e V, if v€{s, t} then IN (f, v) = OUT (f, v), where

IN(f,v)= ZAf(u,v) and OUT(f,v)= Y f(v,u).

(u,v)e (v,u)eA

The value of the flow f is OUT (f, s) —IN (£, t). The following motivates our work on
minimum s-¢ cuts:

TueoRrREM 1 (Ford and Fulkerson [7]). The maximum value of any flow is the
cost of a minimum s-t cut.

2.4. Planar networks and duals. Let G =(V, E) be a planar standard graph, with
a fixed embedding on the plane. G partitions the plane into connected regions. Each
connected region is called a face and has a corresponding cycle of edges which it
borders. For each edge e € E, let D(e) be the corresponding dual edge connecting the
two faces bordering e. Let D(G) = (%, D(E)) be the dual graph of G, with vertex set
F = the faces of G, and with edge set D(E)= U, . D(e). Note that the dual graph is
not necessarily standard (i.e., it may contain multiple edges and loops), but is planar.
Let a cycle g of D(G) be a cut-cycle if the region bounded by g contains exactly one
of s or t. Note that a cycle is a cut-cycle independent of the way in which the dual
graph is embedded in the plane, although a particular embedding may change which
of s or t the cycle contains. See Figs. 1 and 2. The following proposition is trivial to
derive:

PROPOSITION 1. D induces a 1-1 correspondence between the s-t cuts of G and
the cut-cycles of D(G).

Let N =(G,c,s,t) be a planar standard network, with G = (V, E) planar. Let
the dual network D(N)=(D(G), D(c)) have edge costs D(c), where the edge cost of
each dual edge D/(e) is the cost of the original edge e € E. (Generally we will use just
¢ in place of D(c) where no confusion will result.) See Fig. 3. For each face F; € %,
let a cut-cycle q in D(N) be F-minimum if q contains F; on (rather than inside) the
cycle g and c(q) =c(q’) for all cut-cycles q' containing F;. The next proposition is easy
but tedious to prove.

PROPOSITION 2. A minimum s-t cut has the same cost as a minimum cost cut-cycle
of D(G).

N

F1G. 2. The same planar network N as in Fig. 1, with faces Fy, - -, Fyo, and with a nonminimal s-t
cut X ={{v,, v}, {va, v}, {v4, v6}, {vs, v7}} Of cost 6, indicated by heavily drawn edges.

74 JOHN H. REIF

DIN)

F1G. 3. The dual network D(N) derived from the planar network N of Figs. 1 and 2. The heavily drawn
edges give an Fy-minimum cut cycle D(X) = {Fy0, F3}, {F3, F,}, {F, Fe}, {Fe, F1o}} which is the dual of the
s-t cut X given in Fig. 2.

3. Ford and Fulkerson’s minimum s-¢t cut algorithm for (s, ¢)-planar
networks. Let N=(G,c,s,t) be a planar standard network. G (as well as N) is
(s, t)-planar if there exists a face F, containing both s and t. Let planar network N’
be derived from N by adding on edge ¢, connecting s and ¢ with cost 0. Let e, be
embedded onto a line segment from s to ¢ in Fy, which separates F, into two new
faces F, and F,. Ford and Fulkerson [6] have the following elegant characterization
of the minimum s-¢ cut of (s, t)-planar network N.

THEOREM 2. There is a 1-1 correspondence between the s-t cuts of N and the
paths of D(N') from F, to F, and avoiding D (e,). Furthermore, this correspondence
preserves edge costs. Therefore, the minimum s-t cuts of N correspond to the minimum
cost paths in D(N') from F, to F;.

By use of Dijkstra’s [4] shortest path algorithm, we have:

COROLLARY 2. A minimum cut of (s, t)-planar network N with n vertices may be
computed in time O(Qr)(n)), where L =range (c).

Note that applications of this corollary include the O(n log (n)) time minimum
s-t cut algorithm of Itai and Shiloach [9] for (s, t)-planar undirected networks, and
the O(n) time minimum s-¢ cut algorithm of Cheston, Probert and Saxton [3] for
(s, t)-planar graphs.

4. An efficient algorithm for F-minimum cut cycles. Let N =(G,c,s,t) be a
planar standard network, with G =(V, E) and L =range (¢). Our algorithm for
minimum s-¢ cuts will require efficient construction of an F-minimum cut-cycle for a
given face F. For completeness, we very briefly describe here an algorithm for this,
due to Itai and Shiloach [9].

Let % be the set of faces bordering s and let %, be the faces bordering ¢. Let a
w (s,) path be a minimum cost path in D(N) from a face of %, to a face of %..

ProrosITION 3 (Itai and Shiloach [9]). Let w be a w(s, t) path traversing faces
Fy, -+, Fy Let D(X;) be a Fi-minimum cut-cycle of D(N) fori=1,---,d. Then X,
is a minimum s-t cut of N, where ¢(X;,)) =min {c(X})|i=1,- -, d}.

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 75

To compute a u (s, ¢) path in time O(QL(n)), let M be the planar network derived
from D(N) by adding new vertices v, v, and an edge connecting v, to each face in
%, and an edge connecting each face in %, to v,. Let the cost of each of these edges
be 1. Let p be a minimum cost path in M from v, to v. Then p, less its first and last
edges, is a w (s, t) path. See Fig. 4.

F1G. 4. Network M derived from the dual network D(N) given in Fig. 3. The heavily drawn edges are
the w (s, t)-paths.

Let w be a u(s,) path in D(N) traversing faces Fy, - -+, F;. By viewing u as a
horizontal line segment with s on the left and ¢ on the right for each edge D(e) of
D(N) which is not in u (s, ¢) but is connected to a face F;, D(e) may be considered
to be connected to F; from below or above (or both). Let u' be a copy of u traversing
new vertices xq, * *, x5 Let D' be the network derived from D(N) by reconnecting
to x; each edge entering F; from above. See Fig. 5. If p is a path of D’, then a
corresponding path p in D (N) is constructed by replacing each edge and face appearing
in u' with the corresponding edge or face of w. Clearly, c(p)=c(p).

THEOREM 3 (Itai and Shiloach [9]). If p is a minimum cost path connecting F;
and x; in D', then p is an Fr-minimum cut-cycle of D(N).

By applying Corollary 2 to Theorem 3 we have:

CoROLLARY 3. This is an O(QL(n)) time algorithm to compute an F-minimum
cut-cycle for any face F; of a u(s, t) path in D(N).

Note that for restricted L this may be more efficient than the O(n log n) upper bound
given by Itai and Shiloach [9]; for example this gives an O(n) time algorithm for an
F-minimum cut-cycle of a planar graph.

5. A divide and conquer approach. Let u be a u(s, ¢) path of D(N) traversing
faces Fy, - -+, F, as in § 4. Note that any s-¢ cut of planar network N must contain
an edge bounding on a face in {Fi, - - -, F;}. The algorithm of Itai and Shiloach [9]
for computing a minimum s-¢ cut of N is to construct an F;-minimum cut-cycle D (X))
in D(N) for each i =1, --,d. This may be done by d =O(n) executions of the
O(Q¢(n)) time algorithm of Corollary 3. Then by Proposition 3, X, is a minimum s-¢

76 JOHN H. REIF

FIG. 5. Network D' derived from dual network D(N) of Fig. 3 using the (s, t)-path of Fig. 4. The
heavily drawn edges give the F»-minimum cut-cycle D(X) of Fig. 3.

cut where c¢(Xi,)=min{c(X1), ,c(Xy)}. In the worst case, this requires
O(Qr(n) - n) total time. This section presents a divide and conquer approach which
utilizes recursive executions of an F;-minimum cut algorithm.

LEMMA 1. Let F, F; be distinct faces of u, with i <j. Let p be any F-minimum
cut-cycle of D(N) such that the closed region R bounded by p contains s. Then there
exists an Fi-minimum cut-cycle q contained entirely in R. (See Fig. 6.)

als,
L

FI1G. 6. Fy,F,,- -+ ,F;is a u(s,t) path in D(N). p=(Fj, x1, X2, **, x) is a F-minimum cut-cycle
enclosing region R. The Fi-minimum cut-cycle q = (F;, y1, y2,* * *, Y1) is contained in R.

region R

Proof. Let q be any F-minimum cut-cycle. Let q' be the cut-cycle derived from
q by repeatedly replacing subpaths of g connecting faces traversed by u with the
appropriate subpaths of w (only apply replacements for which the resulting q' is a
cut-cycle). Observe c(q') =c(q) (else we can show u is not a u(s, t) path). Let R’ be
the closed region bounded by q'. Suppose R’ Z R. Then there must be a subpath g, of
q' connecting faces F°, F° of p such that q; only intersects R’ at F* and F°. Let p,
be the subpath of p connecting F* and F” in R'. We claim ¢(p;) =c(q1). Suppose
¢(p1)>c(q1). By our construction of q', either g, avoids F;, F; =F* or F; =F" In any

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 77

case, we may derive a cut-cycle p' from p by substituting q; for p;. But this implies
c(p')<c(p), contradicting our assumption that p is an F-minimum cut-cycle. Now
substitute p; for q; in q'. The resulting cut-cycle is no more costly than q’, since
c(p1)=C(q1). See Fig. 7. The lemma follows by repeated application of this
process. 0

F1G. 7. Fy,Fy, -+« ,Fyis a u(s, t)-path, p = p, * p» is a cut-cycle containing F;. q = q; * q2 is a cut-cycle
containing F;. If c(q1) <c(py), then p' = q, * q2 is a cut-cycle containing F; and with cost c(p')<c(p).

The above lemma implies a method for dividing the planar standard network N,
given an s-¢ cut X. The network derived from N by deleting all edges of X can be
partitioned into two networks N°, N, where no vertex of N° has a path to ¢, and no
vertex of N* has a path to s. Also, each edge e € X must have connections to a vertex
of N° and a vertex of N'.

Let No=DIVIDE (N, X, s) be the standard planar network consisting of N*,

(i) with a new vertex ¢, and
(ii) a new edge {u, to} with cost ¢ ({u, v}), for each edge {u, v}€ X such that u is
a vertex of N° and v is a vertex of N*;
(iii) finally (to insure Ny is standard) merging multiple edges and setting the cost
of each resulting edge to be the sum of the costs of the multiple edges from
which it was derived. See Figs. 8 and 9.

G

(e N

° o — C) 2Ci ()

Fig. 8. The merging into a single edge of multiple edges connected to vertex x and vertex y.

Similarly, let N; =DIVIDE (N, X, t) be the standard planar network consisting
of N,
(i) with a new vertex sq, and
(ii) for new edge {s1, v} with cost ¢ ({u, v}), for each edge {u, v}€ X such that u
is a vertex of N°* and v is a vertex of N', and finally applying step (iii) above.
See Fig. 9.

78 JOHN H. REIF

FI1G. 9. The networks No=DIVIDE (N, X, s) and N, = DIVIDE (N, X, t) derived from the network N
and s-t cut X given in Fig. 2. No and Ny will be further subdivided by the cuts X,, X, respectively, indicated
by heavily drawn edges.

Let E be the set of edges of network N and let Y be a subset of the edges of
No=DIVIDE (N, X, s) or of N;=DIVIDE (N, X, t). Then let E(Y) be the set of
edges of E that were mapped into edges of Y when N, or Ny was created. The next
theorem follows immediately from the above Lemma 1 and Proposition 3.

THEOREM 4. Let X be an s-t cut of a planar standard network N such that D(X)
is an F-minimum cut-cycle, for some face F in a w(s,t) path of D(N). Let X, be a
minimum s-to cut of No=DIVIDE (N, X, s) and let X; be a minimum s,-t cut of
N;=DIVIDE (N, X, t). Then E(X,) or E(X) is a minimum s-t cut of N.

6. The minimum s-¢ cut algorithm for planar networks. Theorem 4 yields a very
simple but efficient divide and conquer algorithm for computing minimum s-z cut of
a planar standard network. We assume the Ford and Fulkerson [6] algorithm given
in § 3:

(i) (s, t)-PLANAR-MIN-CUT(N) which computes a minimum s-t of (s, t)-
planar standard network N in time O(Qy(n)).
We also assume algorithms (given in § 4):
(ii) m (s, t) PATH(D(N)) computes a w (s, ¢t) path of D(N) in time O(Q¢(n)).
(iii) F~-MIN-CUT(N, F;, u) computes q, where D(q) is an F-minimum cycle of
N (for any F; in u (s, t) path w), in time O(Q.(n)).

RECURSIVE ALGORITHM PLANAR-MIN-CUT(N, w).
input planar standard network N =(G,c, s, t), where G =(V, E), and w(s, t)

path w.

begin
Let Fy, - - -, F,; be the faces traversed by pu.
if d =1 then return (s, t)-PLANAR-MIN-CUT (N);
else begin

X « F-MIN-CUT (N, F 1472}, &)
Ny« DIVIDE (N, X, s); N;« DIVIDE (N, X, t);
Let wo and w1 be the subpaths of u contained in N
and N, respectively
X1 < PLANAR-MIN-CUT (Ny, w1); Xo« PLANAR-MIN-CUT (Ng, po)
if ¢(E (X)) =c(E(Xy)) then return E(X,) else return E(X);
end;
end

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 79

Associated with this recursive algorithm we define a call tree T whose root is N
and whose descendants are the networks input to the algorithm on recursive calls.
Let d be the number of faces traversed by w, the u (s, t) path of N. If d = 1 then root
N has no children. Otherwise, N has left child N, and right child N, as computed
in the algorithm, and so on.

For any w €{0, 1}* inductively let N, =(G., Cu, Su» t,) be the planar standard
network and let w, be the w(s,,?,) path in N, defined by some recursive calls to
PLANAR-MIN-CUT. Suppose PLANAR-MIN-CUT (N,,,) iscalled. If u,, contains
only one face, then let N0 and N,,; be empty networks, and let w0 and u.,1; be empty
paths. Else let X, be the set s,-t,, cut of N,, computed by the call to F-MIN-CUT(:),
let N0, N,1 be the planar standard networks constructed by the calls to DIVIDE,
and let w,0, 4.1 be the subsets of u contained in N, N,1. Then it is easy to verify
that w0 is a w (5,0, two) path in N,o and u,1 is @ w(Se1, to1) path in N,q, and the
length of .o and the length of w, are each ="3d, 7, where d,, is the length of u..
Hence there can be no more than Tlog (d)™ mutually recursive calls, so the call tree
T has depth at most "log (d)'="log (n)7, where n is the number of nodes in N.

Let m be the number of edges of N and let m,, be the number of edges of N,,.
The following theorem provides an upper bound of 2m +2" on the number of edges
of networks of depth r in the call tree T.

THEOREM 5. Foreachrz0, Y, 1y Mo =2m +2'.

Proof. Note that by definition of DIVIDE, the edges of N, or N,,; are derived
from disjoint sets of edges of N,. Fix an edge e of N. Let ¢, be the edge (if it exists)
of N, derived from a set of edges of N containing e. Let edge e contribute to N,, if
e #{s., t,} and let e fully contribute to N, if e, contains neither s, nor ¢,. For each
rz0,let B,(e)={es,|es # {Su, t.} and w € {0, 1}'}. Thus |B,(e)| is the number of networks
of depth r in T to which edge e contributes.

Let the strings of {0, 1}* be ordered lexicographically. We require a technical
lemma.

LEMMA 2. |B,(e)| =2, and furthermore if B,(e) ={e., .} for w <z, z €{0, 1}, then
edge e, is connected to t, and edge e, is connected 1o s..

This lemma states that e contributes to at most two networks of depth r in T,
and e fully contributes to no two distinct networks of depth r. For example, consider
edge e ={v,, v3} of network N given in Fig. 2. Edge e fully contributes to N. In Fig.
9, edge e contributes to N, by edge eo={v», to} and also contributes to N; by edge
e1 ={s1, v3}. Furthermore, in Fig. 10 edge e contributes to Noo by edge eqo = {v2, too}
and in Fig. 11 edge e contributes to N1; by edge e11 = {s11, v3} but e contributes to
neither Ny; nor Nyo.

Noo Not
Fi1G. 10. Networks Noo= DIVIDE (Ny, Xo, s9) and No; = DIVIDE (N, X, to) derived from network
N() with s-to cut XO othg 9.

80 JOHN H. REIF

F1G. 11. Networks N1o=DIVIDE (N4, X1, s1) and Ny; =DIVIDE (N3, X1, t;) derived from network
N with s,-t cut X, of Fig. 9.

Proof of Lemma 2 by induction. Suppose for some fixed ro, this lemma holds for
all r =ro. If B,,(¢) = & then clearly B, .1(e) = &. Suppose 1 =|B,,(e)| =2 and consider
any e, € B, (e). If e, X, then by definition of DIVIDE, either e, =e,o appears in
N, or e, = e, appears in N, 1, but not both. On the other hand, if e, € X,,, then e,o
appears in N,o connected to f,o and also e,; appears in N,; connected to s,:. In
either case, if |B,,(¢)| =1, then |B,,1(e)| =2. Otherwise suppose |B,,(¢)|=2 so there
exists some e, € B, (¢) with w <z. By the induction hypothesis, ¢, is connected to ¢,
and e, is connected to s,. Thus for j =0, 1 edge e,,; (if it exists) is connected to ¢,; and
edge e,; (if it exists) is connected to s,;. Hence if ¢, € X,, then e,1={s,1, #,1}. In each
case, |B,+1(e)|=2. O

To complete the proof of Theorem 5, observe that |{{s., t,}jw € {0, 1}'}| =2". Hence

mu=(T 1B))+ s, tllw €00, 1¥Y S 2m +2
we{0,1}" ecE
by Lemma2. 0

THEOREM 6. Given a planar standard network N = (G, c, s, t) with L =range (c),
and w is a u(s, t) path of N then PLANAR-MIN-CUT (N, n) computes a minimum
s-t cut of N in time O(Qr(n) log (n)).

Proof. The total time cost is

Y O0@Qumy)= ¥ O(Qu2m+2") byTheorems5,

we{0,1}" 0=r="log(n)”
0=r="log(n)”

=0(Qr(n)log (n)) since 2m +2"%™ = 0(n). 0

By known upper bounds on the cost of maintaining queues (as discussed in the
Introduction), we also have:

COROLLARY 4. A minimum s-t cut of N is computed in time O(n log® (n)) for
general L (i.e., a set of positive reals), in time O (n log (n) log log (n)) for the case where
L is a set of positive integers bounded by a polynomial in n and in time O(n log (n))
for the case where N is a graph with identically weighted edges.

7. Conclusion. We have presented a divide and conquer method for computing
a minimum s-¢ cut of a planar undirected network which improves on the running
time of the algorithm of Itai and Shiloach [9] by a factor of n/log n. An additional
attractive feature of this algorithm is its simplicity, as compared to other algorithms
for computing minimum s-¢ cuts for sparse networks (Galil and Naamad [8], Shiloach
[10] and Sleator and Tarjan [13]).

MINIMUM s-t CUT OF A PLANAR UNDIRECTED NETWORK 81

[1] A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.
[2] P. vAN EMDE BoAs, R. KAAS AND E. ZULSTRA, Design and implementation of an efficient priority
queue, Math. Systems Theory, 10 (1977), pp. 99-127.
[3] G. CHESTON, R. PROBERT AND C. SAXTON, Fast algorithms for determination of connectivity sets
for planar graphs, Dept. Computer Science, Univ. Saskatchewan, 1977.
[4] E. DUKSTRA, A note on two problems in connections with graphs, Numer. Math., 1 (1959), pp. 269-271.
[5] S. EVEN AND R. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975), pp.
507-518.
[6] C. FORD AND D. FULKERSON, Maximal flow through a network, Canad. J. Math., 8 (1956), pp.
399-404.
[7] , Flows in Networks, Princeton Univ. Press, Princeton, NJ, 1962.
[8] Z. GALIL AND A. NAAMAD, Network flow and generalized path compression, in Proc. of Symposium
on Theory of Computing, Atlanta, Georgia, 1979.
[9] A. ITAI AND Y. SHILOACH, Maximum flow in planar networks, this Journal, 8 (1979), pp. 135-150.
[10] Y. SHILOACH, An O(nl - log® I') maximum-flow algorithm, Computer Science Dept., Stanford Univ.,
Stanford, CA, 1978.
[11] , A multi-terminal minimum cut algorithm for planar graphs, this Journal, 9 (1980), pp. 214-219.
[12] D. SLEATOR, An O(nm log n) algorithm for maximum network flow, Ph.D. dissertation, Stanford
Univ., Stanford, CA, 1980.
[13] D. SLEATOR AND R. TARJAN, A data structure for dynamic trees, 13th Annual ACM Symposium
on Theory of Computing, 1981, pp. 114-122.

