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Ullman [1]) in time O(QL(n)) for a sparse network with n vertices, and L is the set
of nonnegative reals labeling the edges.

Our algorithm for computing the minimum s-t cut of a planar undirected network
has time O(QL(n log (n )). This algorithm also utilizes an efficient reduction to
minimum cost path problems. Our fundamental innovation is a "divide and conquer"
approach for cuts on the plane.

The paper is organized as follows: The next section gives preliminary definitions
of graphs, networks, minimum cuts, maximum flows, and duals of planar networks.
Section 3 gives the Ford-Fulkerson algorithm for (s, t)-planar graphs. Section 4
describes briefly an efficient algorithm due to Itai and Shiloach [9] for finding a
minimum cut intersecting a given face of the primal network. Our divide and conquer
approach is described and proved in 5. Section 6 presents our algorithm for minimum
s-t cuts of planar networks. Finally, 7 concludes the paper.

2. Preliminary definitions
2.1. Graphs. Let a graph G (V, E) consist of a vertex set V and a collection

of edges t7.. Each edge e E connects two vertices u, v V (edge e is a loop if it
connects identical vertices). We let e {u, v} denote edge e connects u and v. Edges
e, e’ are multiple if they have the same endpoints. Let a path be a sequence of edges
p =el,’", ek such that ei ={/3i-1, vi} for 1,..., k (we say p traverses vertices
v0, ’, vk). Let p be a cycle if v0 v (cycles containing the same edges are considered
identical). A path p’ is a subpath of p if p’ is a subsequence of p. Let G be a standard
graph if G has neither multiple edges nor loops and is triconnected. Generally we let
n VI be the number of vertices of graph G. If G is planar, then by Euler’s formula
G contains at most 6n- 12 edges.

2.2. Networks. Let an undirected network N (G, c) consist of an undirected
graph G (V, E) and a mapping c from E to the positive reals. For each edge
e v, c (e) is the cost of e. For any edge set E’

_
E, let c (E’) Ye’ C (e). Let the cost

k
of path p el,""’, e be c(p)= i=1 c(ei). Let a path p from vertex u to vertex v be
minimum if c(p) <=c(p’) for all paths p’ from u to v. Let N (G, c, s, t) be a standard
network if (G, c) is an undirected network, with G (V, E) a standard graph, and s,
are distinguished vertices of V (the source, sink, respectively). Note that triconnectivity
can easily be achieved by adding O(n) edges with cost 0.

2.3. Minimum cuts and maximum flows in networks. Let N (G, c, s, t) be a
standard network with G (V, E). An edge set X

___
E is an s-t cut if (V, E-X) has

no paths from s to t. Let s-t cut X be minimum if c(X)<-c(X’) for each s-t cut X’.
See Fig. 1.

18 ’’1
FIG. 1. A network N with source and sink t. The heavily drawn edges indicate a minimum s-t cut

{{v2, v3}, {v3, v4}, {v4, t}, {v4, v7}, {v6, v7}} with cost 5.
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Let A be the set of directed edges {(u, v)l{u, v } E}. A function f mapping A to
the nonnegative reals is a flow if

(i) For all e A, f(e <-_ c (e ), and
(ii) For all v V, if v {s, t} then IN (f, v)= OUT (f, v), where

IN(f,v)= E f(u,v) and OUT(f,v)= E f(v,u).
(u,v)A (v,u)eA

The value of the flow f is OUT (f, s)- IN (f, t). The following motivates our work on
minimum s-t cuts:

THEOREM 1 (Ford and Fulkerson [7]). The maximum value of any flow is the
cost of a minimum s-t cut.

2.4. Planar networks and duals. Let G (V, E) be a planar standard graph, with
a fixed embedding on the plane. G partitions the plane into connected regions. Each
connected region is called a face and has a corresponding cycle of edges which it
borders. For each edge e E, let D (e) be the corresponding dual edge connecting the
two faces bordering e. Let D(G) (, D(E)) be the dual graph of G, with vertex set
:= the faces of G, and with edge set D(E)= UD(e). Note that the dual graph is
not necessarily standard (i.e., it may contain multiple edges and loops), but is planar.
Let a cycle q of D(G) be a cut-cycle if the region bounded by q contains exactly one
of s or t. Note that a cycle is a cut-cycle independent of the way in which the dual
graph is embedded in the plane, although a particular embedding may change which
of s or the cycle contains. See Figs. 1 and 2. The following proposition is trivial to
derive"

PROPOSITION 1. D induces a 1-1 correspondence between the s-t cuts of G and
the cut-cycles of D(G).

Let N (G, c, s, t) be a planar standard network, with G (V, E) planar. Let
the dual network D(N)= (D(G), D(c)) have edge costs D(c), where the edge cost of
each dual edge D(e) is the cost of the original edge e E. (Generally we will use just
c in place of D(c) where no confusion will result.) See Fig. 3. For each face F ,
let a cut-cycle q in D(N) be F-minimum if q contains F on (rather than inside) the
cycle q and c (q) -< c (q’) for all cut-cycles q’ containing F. The next proposition is easy
but tedious to prove.

PROPOSITION 2. A minimum s-t cut has the same cost as a minimum cost cut-cycle
olD(G).

FIG. 2. The same planar network N as in Fig. 1, with faces El,’’ ", Flo, and with a nonminimal s-t
cut X {{rE, v3}, {v2, v4}, {v4, v6}, {v6, v7}} of cost 6, indicated by heavily drawn edges.
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FIG. 3. The dual network D(N) derived from the planar network N ofFigs. and 2. The heavily drawn
edges give an F2-minimum cut cycle D(X) {{Flo, F3}, {F3, F2}, {F2, F6}, {F6, F10}} which is the dual of the
s-t cut X given in Fig. 2.

3. Ford and Fulkerson’s minimum s-t cut algorithm for (s,t)-planar
networks. Let N=(G, c,s, t) be a planar standard network. G (as well as N) is
(s, t)-planar if there exists a face Fo containing both s and t. Let planar network N’
be derived from N by adding on edge e0 connecting s and with cost . Let eo be
embedded onto a line segment from s to in Fo, which separates Fo into two new
faces F1 and F2. Ford and Fulkerson [6] have the following elegant characterization
of the minimum s-t cut of (s, t)-planar network N.

THEOREM 2. There is a 1-1 correspondence between the s-t cuts of N and the
paths of D(N’) from F2 to FI and avoiding D(eo). Furthermore, this correspondence
preserves edge costs. Therefore, the minimum s-t cuts ofN correspond to the minimum
cost paths in D(N’) from F2 to Fa.

By use of Dijkstra’s [4] shortest path algorithm, we have"
CORbILAr 2. A minimum cut of (s, t)-planar network N with n vertices may be

computed in time O(OL)(n)), where L range (c).
Note that applications of this corollary include the O(n log (n)) time minimum

s-t cut algorithm of Itai and Shiloach [9] for (s, t)-planar undirected networks, and
the O(n) time minimum s-t cut algorithm of Cheston, Probert and Saxton [3] for
(s, t)-planar graphs.

4. An efficient algorithm for F-minimum cut cycles. Let N (G, c, s, t) be a
planar standard network, with G (V, E) and L range (c). Our algorithm for
minimum s-t cuts will require efficient construction of an F-minimum cut-cycle for a
given face F. For completeness, we very briefly describe here an algorithm for this,
due to Itai and Shiloach [9].

Let -s be the set of faces bordering s and let 5gt be the faces bordering t. Let a

tx (s, t) path be a minimum cost path in D(N) from a face of 5gs to a face of
PlOPOSrrION 3 (Itai and Shiloach [9]). Let Ix be a Ix(s, t) path traversing faces

F1, , Fa. Let D (Xi) be a Fi-minimum cut-cycle ofD (N) for 1, , d. Then Xio
is a minimum s-t cut of N, where c (Xio) min {c (Xi)li 1,. ., d}.
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To compute a Ix (s, t) path in time O(QL(n)), let M be the planar network derived
from D(N) by adding new vertices vs, vt and an edge connecting v to each face in
s and an edge connecting each face in t to yr. Let the cost of each of these edges
be 1. Let p be a minimum cost path in M from v to yr. Then p, less its first and last
edges, is a Ix (s, t) path. See Fig. 4.

FIG. 4. Network M derived from the dual network D(N) given in Fig. 3. The heavily drawn edges are
the I (s, t)-paths.

Let Ix be a Ix (s, t) path in D(N) traversing faces F1,’’ ", Fd. By viewing Ix as a
horizontal line segment with s on the left and on the right for each edge D(e) of
D(N) which is not in Ix (s, t) but is connected to a face F, D(e) may be considered
to be connected to Fi from below or above (or both). Let Ix’ be a copy of Ix traversing
new vertices xl,..., Xd. Let D’ be the network derived from D(N) by reconnecting
to xi each edge entering Fi from above. See Fig. 5. If p is a path of D’, then a
corresponding path/3 in D(N) is constructed by replacing each edge and face appearing
in Ix’ with the corresponding edge or face of Ix. Clearly, c(p)= c().

THEOREM 3 (Itai and Shiloach [9]). If p is a minimum cost path connecting Fi
and xi in D’, then is an Fi-minimum cut-cycle ofD(N).

By applying Corollary 2 to Theorem 3 we have"
COROLLARY 3. This is an O(QL(n)) time algorithm to compute an Fi-minimum

cut-cycle for any face Fi of a tx (s, t) path in D(N).
Note that for restricted L this may be more efficient than the O(n log n) upper bound
given by Itai and Shiloach [9]; for example this gives an O(n) time algorithm for an
Fi-minimum cut-cycle of a planar graph.

5. A divide and conquer approach. Let Ix be a Ix(s, t) path of D(N) traversing
faces F,..., Fa as in 4. Note that any s-t cut of planar network N must contain
an edge bounding on a face in {F,..., Fd}. The algorithm of Itai and Shiloach [9]
for computing a minimum s-t cut of N is to construct an Fi-minimum cut-cycle D (Xi)
in D(N) for each i= 1,..., d. This may be done by d O(n) executions of the
O(O(n)) time algorithm of Corollary 3. Then by Proposition 3, Xio is a minimum s-t
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FIG. 5. Network D’ derived from dual network D(N) of Fig. 3 using the/x(s, t)-path of Fig. 4. The
heavily drawn edges give the F2-minimum cut-cycle D(X) ofFig. 3.

cut where c(Xlo)=min{c(X1),...,c(Xa)}. In the worst case, this requires
O(QL(n)" n) total time. This section presents a divide and conquer approach which
utilizes recursive executions of an Fi-minimum cut algorithm.

LEMMA 1. Let Fi, F be distinct faces of tx, with <j. Let p be any Fi-minimum
cut-cycle of D(N) such that the closed region R bounded by p contains s. Then there
exists an F-minimum cut-cycle q contained entirely in R. (See Fig. 6.)

region R

/

FIG. 6. F1, F2,""" ,Fa is a /x(s, t) path in D(N). p =(F/,xl, x2,’’’ ,Xk) is a Fi-minimum cut-cycle
enclosing region R. The Fi-minimum cut-cycle q (Fi, yl, Y2, ", Y) is contained in R.

Proof. Let q be any F-minimum cut-cycle. Let q’ be the cut-cycle derived from
q by repeatedly replacing subpaths of q connecting faces traversed by /z with the
appropriate subpaths of/ (only apply replacements for which the resulting q’ is a
cut-cycle). Observe c(q’)<=c(q) (else we can show/x is not a tz(s, t) path). Let R’ be
the closed region bounded by q’. Suppose R’ R. Then there must be a subpath ql of
q’ connecting faces Fa, Fb of p such that q only intersects R’ at F and Fb. Let p
be the subpath of p connecting F and Fb in R’. We claim c(p)<=c(q). Suppose
c(pl) >c(qx). By our co.nstruction of q’, either q avoids F/, F. =F or F. =Fb. In any
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case, we may derive a cut-cycle p’ from p by substituting ql for pl. But this implies
c(p’)<c(p), contradicting our assumption that p is an F-minimum cut-cycle. Now
substitute pl for q in q’. The resulting cut-cycle is no more costly than q’, since
c(pl)<=C(q). See Fig. 7. The lemma follows by repeated application, of this
process.

.oooo’.. ..o.

FIG. 7. Fa, F2, ,Fa is a i(s,t)-path, p =Pa "P2 is a cut-cycle containing Fi. q =qa q2 is a cut-cycle
containing Fi. If c(qa) < c(p), then p’ qx q2 is a cut-cycle containing Fi and with cost c(p’) < c(p).

The above lemma implies a method for dividing the planar standard network N,
given an s-t cut X. The network derived from N by deleting all edges of X can be
partitioned into two networks Ns, Nt, where no vertex of N has a path to t, and no
vertex of N has a path to s. Also, each edge e X must have connections to a vertex
of N and a vertex of Nt.

Let No DIVIDE (N, X, s) be the standard planar network consisting of N,
(i) with a new vertex to and
(ii) a new edge (u, to} with cost c ({u, v}), for each edge {u, v } s X such that u is

a vertex of N and v is a vertex of N’’
(iii) finally (to insure No is standard) merging multiple edges and setting the cost

of each resulting edge to be the sum of the costs of the multiple edges from
which it was derived. See Figs. 8 and 9.

C1

Fig. 8. The merging into a single edge of multiple edges connected to vertex x and vertex y.

Similarly, let Na DIVIDE (N, X, t) be the standard planar network consisting
Of Nt,

(i) with a new vertex s, and
(ii) for new edge (s, v} with cost c((u, v}), for each edge (u, v} X such that u

is a vertex of N and v is a vertex of Nt, and finally applying step (iii) above.
See Fig. 9.
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NO
FIG. 9. The networks No DIVIDE (N, X, s) and N1 DIVIDE (N, X, t) derived from the network N

and s-t cut X given in Fig. 2. No and N1 will be further subdivided by the cuts Xo, X1 respectively, indicated
by heavily drawn edges.

Let E be the set of edges of network N and let Y be a subset of the edges of
No DIVIDE (N, X, s) or of N1 DIVIDE (N, X, t). Then let E(Y) be the set of
edges of E that were mapped into edges of Y when No or N1 was created. The next
theorem follows immediately from the above Lemma 1 and Proposition 3.

THEOREM 4. Let X be an s-t cut of a planar standard network N such that D (X)
is an F-minimum cut-cycle, for some face F in a ix(s, t) path of D(N). Let Xo be a
minimum S-to cut of No DIVIDE (N, X, s) and let Xa be a minimum s a-t cut of
Na DIVIDE (N, X, t). Then E(Xo) or E(X) is a minimum s-t cut of N.

6. The minimum s-t cut algorithm for planar networks. Theorem 4 yields a very
simple but efficient divide and conquer algorithm for computing minimum s-t cut of
a planar standard network. We assume the Ford and Fulkerson [6] algorithm given
in3"

(i) (s, t)-PLANAR-MIN-CUT(N) which computes a minimum s-t of (s, t)-
planar standard network N in time O(QL(n)).

We also assume algorithms (given in 4):
(ii) /x(s, t) PATH(D(N)) computes a/z(s, t) path of D(N) in time O(Q.(n)).
(iii) F-MIN-CUT(N, Fi,/x) computes q, where D(q) is an Fi-minimum cycle of

N (for any F in/x (s, t) path/x), in time O(Q(n)).

RECURSIVE ALGORITHM PLANAR-MIN-CUT(N, /x ).
input planar standard network N (G, c, s, t), where G (V, E), and/x (s, t)
path .
begin

Let FI,""", Fd be the faces traversed by
if d 1 then return (s, t)-PLANAR-MIN-CUT (N);
else begin
X - F-MIN-CUT (N, F ld/21, tx)
No - DIVIDE (N, X, s); N1 - DIVIDE (N, X, t);
Let/xo and/x be the subpaths of/x contained in No
and N, respectively
X1 - PLANAR-MIN-CUT (N1,/x 1); Xo - PLANAR-MIN-CUT (No,
if c(E(Xo))<-_c(E(X)) then return E(Xo) else return E(X);
end;

end
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Associated with this recursive algorithm we define a call tree T whose root is N
and whose descendants are the networks input to the algorithm on recursive calls.
Let d be the number of faces traversed by/z, the/z (s, t) path of N. If d 1 then root
N has no children. Otherwise, N has left child No and right child N1, as computed
in the algorithm, and so on.

For any o){0, 1}* inductively let No =(Go, co, So, to) be the planar standard
network and let/zo be the /z (so, to) path in No defined by some recursive calls to
PLANAR-MIN-CUT. Suppose PLANAR-MIN-CUT (No,/zo) is called. If/zo contains
only one face, then let No0 and No be empty networks, and let/zoo and/zo be empty
paths. Else let Xo be the set so-to cut of No computed by the call to F-MIN-CUT(.),
let No0, N, be the planar standard networks constructed by the calls to DIVIDE,
and let/zoo,/zol be the subsets of/z contained in No0, No1. Then it is easy to verify
that /zoO is a /z (so0, too) path in No0 and/zol is a/z (Sol, to1) path in No1, and the
length of/zoo and the length of/z,,1 are each =<F1/2do-n, where do is the length of/zo.
Hence there can be no more than Flog (d)n mutually recursive calls, so the call tree
T has depth at most Flog (d)-n <--Flog (n)n, where n is the number of nodes in N.

Let m be the number of edges of N and let mo be the number of edges of No.
The following theorem provides an upper bound of 2m + 2 on the number of edges
of networks of depth r in the call tree T.

THEOREM 5. For each r >- O, 2oe{0,1} Dlo 2m + 2r.
Pro@ Note that by definition of DIVIDE, the edges of No0 or No are derived

from disjoint sets of edges of No. Fix an edge e of N. Let eo be the edge (if it exists)
of No derived from a set of edges of N containing e. Let edge e contribute to No if
e {so, to} and let e )ully contribute to No if eo contains neither so nor to. For each
r _-> 0, let Br(e) {eoleo {so, to} and w {0, 1}r}. Thus [Br(e)] is the number of networks
of depth r in T to which edge e contributes.

Let the strings of {0, 1}* be ordered lexicographically. We require a technical
lemma.

LEMMA 2. [Br(e)[<=2, and furthermore if Br(e)={eo, ez} for oo <z, z {0, 1}r, then
edge eo is connected to to and edge ez is connected to sz.

This lemma states that e contributes to at most two networks of depth r in T,
and e fully contributes to no two distinct networks of depth r. For example, consider
edge e {v2, v3} of network N given in Fig. 2. Edge e fully contributes to N. In Fig.
9, edge e contributes to No by edge e0 {v2, to} and also contributes to Na by edge
el {s l, v3}. Furthermore, in Fig. 10 edge e contributes to Noo by edge eoo= {v2, too}
and in Fig. 11 edge e contributes to Naa by edge ell ={sa, v3} but e contributes to
neither N0 nor No.

100 101
FIG. 10. Networks Noo DIVIDE (No, Xo, So) and No1 DIVIDE (No, Xo, to) derived from network

No with S-to cut Xo o] Fig. 9.
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FIG. 11. Networks N10- DIVIDE (N1, X1, sl) and Nil DIVIDE (N, X, tl) derived from network
Nx with -t cut X1 of Fig. 9.

Proof ofLemma 2 by induction. Suppose for some fixed r0, this lemma holds for
all r <- r0. If Bro(e) Q5 then clearly Bro+ (e) . Suppose 1 -< IBo(e)l -<- 2 and consider
any eo e Bro(e). If e,ot:Xo then by definition of DIVIDE, either eo eoo appears in
N,o0 or e,o eo,1 appears in No 1, but not both. On the other hand, if eo e Xo, then eo0
appears in No0 connected to too and also eol appears in No1 connected to Sol. In
either case, if IBo(e)l 1, then IBo/(e)l =< 2. Otherwise suppose IBro(e)l 2 so there
exists some ez e Bro(e) with to < z. By the induction hypothesis,
and ez is connected to Sz. Thus for ] 0, 1 edge eoi (if it exists) is connected to toi and
edge ezi (if it exists) is connected to Szi. Hence if e,o e Xo then ezl {Szl, tzl}. In each
case, IBo+l(e)[-<- 2.

To complete the proof of Theorem 5, observe that I{{so, to,}lto e {0, 1}}l 2. Hence
Y re,o<-( ., IBr(e)l)+l{{so,t}lco{o, 1}r}l<=2m+2

o{0,1} eE

by Lemma 2.
THEOREM 6. Given a planar standard network N (G, c, s, t) with L range (c),

and Ix is a Ix(s, t) path of N then PLANAR-MIN-CUT (N, tz) computes a minimum
s-t cut ofN in time O(O(n) log (n)).

Proof. The total time cost is

O(O(mo,)) O(O(2m + 2r)) by Theorem 5,
{0,1}r 0<r_<--r-log(n

O__<r =<r-log(n)-n

O(Ot.(n) log (n)) since 2m + 2lg(n) O(rt).

By known upper bounds on the cost of maintaining queues (as discussed in the
Introduction), we also have’

COROLLARY 4. A minimum s-t cut of N is computed in time O(n log2 (n)) for
general L (i.e., a set ofpositive reals), in time O(n log (n) log log (n)) for the case where
L is a set of positive integers bounded by a polynomial in n and in time O(n log (n))
]’or the case where N is a graph with identically weighted edges.

7. Conclusion. We have presented a divide and conquer method for computing
a minimum s-t cut of a planar undirected network which improves on the running
time of the algorithm of Itai and Shiloach [9] by a factor of n/log n. An additional
attractive feature of this algorithm is its simplicity, as compared to other algorithms
for computing minimum s-t cuts for sparse networks (Galil and Naamad [8], Shiloach
[10] and Sleator and Tarjan [13]).
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