MINIMUM s - t CUT OF A PLANAR UNDIRECTED NETWORK IN $O\left(n \log ^{2}(n)\right)$ TIME

JOHN H. REIF \dagger

Abstract

Let N be a planar undirected network with distinguished vertices s, t, a total of n vertices, and each edge labeled with a positive real (the edge's cost) from a set L. This paper presents an algorithm for computing a minimum (cost) $s-t$ cut of N. For general L, this algorithm runs in time $O\left(n \log ^{2}(n)\right)$. For the case when L contains only integers $\leqq n^{O(1)}$, the algorithm runs in time $O(n \log (n) \log \log (n))$. Our algorithm also constructs a minimum $s-t$ cut of a planar graph (i.e., for the case $L=\{1\}$) in time $O(n \log (n))$. Our algorithm can also be used to compute a minimum cut for a general undirected planar network.

The fastest previous algorithm for computing a minimum $s-t$ cut of a planar undirected network (Itai and Shiloach [SIAM J. Comput., $8(1979)$, pp. 135-150]) has time $O\left(n^{2} \log (n)\right)$; the $s-t$ cut is a byproduct of the maximum flow computed by their algorithm. The best previous time bound for minimum s - t cut of a planar graph (Cheston, Probert and Saxton [report, Dept. Computer Science, Univ. Saskatchewan, 1977]) was $O\left(n^{2}\right)$.

Key words. planar, network, minimum s-t cut, graph algorithm

1. Introduction. The importance of computing a minimum $s-t$ cut of a network is illustrated by Ford and Fulkerson's [6], [7] theorem which states that the value of the minimum $s-t$ flow of a network is precisely the minium $s-t$ cut. The best known algorithm (Sleator [12] and Sleator and Tarjan [13]) for computing the maximum $s-t$ flow or minimum s - t cut of a sparse directed or undirected network (with n vertices and $O(n)$ edges) has time ${ }^{1} O\left(n^{2} \log (n)\right)$. This paper is concerned with a planar undirected network N, which occurs in many practical applications.

Ford and Fulkerson [6], [7] have an elegant maximum $s-t$ flow algorithm for the case N is (s, t)-planar (both s and t are on the same face) which when efficiently implemented by priority queues as described in Itai and Shiloach [9] has time $O(n \log (n))$. Moreover, $O(n)$ executions of their algorithm suffice to compute the maximum flow of a general planar network in total time $O\left(n^{2} \log (n)\right)$. Also, Cheston, Probert and Saxton [3] have an $O\left(n^{2}\right)$ algorithm for the minimum s - t cut of a planar graph and Shiloach [9] gives an $O(n \log (n))^{2}$ algorithm for the minimum cut of a planar graph.

Let $Q_{L}(n)$ be the asymptotic time complexity to maintain a priority queue of $O(n)$ elements with costs from a set L of nonnegative reals, and with $O(n)$ insertions and deletions. For the general case, $Q_{L}(n)=O(n \log (n))$ as described in Aho, Hopcroft and Ullman [1]. For the special case when L is a set of positive integers $\leqq n^{O(1)}$, Boas, Kaas and $\mathrm{Zijlstra}[2]$ show $Q_{L}(n)=O(n \log \log (n))$. It is obvious that if L is of constant cardinality then $Q_{L}(n)=O(n)$.

A key element of the Ford and Fulkerson [6], [7] algorithm for (s, t)-planar networks was an efficient reduction to finding a minimum cost path between two vertices in a sparse network. Dijkstra [4] gives an algorithm for a generalization of this problem (to find a minimum cost path from a fixed "source" vertex s to each other vertex). Dijkstra's algorithm may be implemented (see Aho, Hopcroft and

[^0]Ullman [1]) in time $O\left(Q_{L}(n)\right)$ for a sparse network with n vertices, and L is the set of nonnegative reals labeling the edges.

Our algorithm for computing the minimum $s-t$ cut of a planar undirected network has time $O\left(Q_{L}(n) \log (n)\right)$. This algorithm also utilizes an efficient reduction to minimum cost path problems. Our fundamental innovation is a "divide and conquer" approach for cuts on the plane.

The paper is organized as follows: The next section gives preliminary definitions of graphs, networks, minimum cuts, maximum flows, and duals of planar networks. Section 3 gives the Ford-Fulkerson algorithm for (s, t)-planar graphs. Section 4 describes briefly an efficient algorithm due to Itai and Shiloach [9] for finding a minimum cut intersecting a given face of the primal network. Our divide and conquer approach is described and proved in $\S 5$. Section 6 presents our algorithm for minimum $s-t$ cuts of planar networks. Finally, § 7 concludes the paper.

2. Preliminary definitions

2.1. Graphs. Let a graph $G=(V, E)$ consist of a vertex set V and a collection of edges E. Each edge $e \in E$ connects two vertices $u, v \in V$ (edge e is a loop if it connects identical vertices). We let $e=\{u, v\}$ denote edge e connects u and v. Edges e, e^{\prime} are multiple if they have the same endpoints. Let a path be a sequence of edges $p=e_{1}, \cdots, e_{k}$ such that $e_{i}=\left\{v_{i-1}, v_{i}\right\}$ for $i=1, \cdots, k$ (we say p traverses vertices v_{0}, \cdots, v_{k}). Let p be a cycle if $v_{0}=v_{k}$ (cycles containing the same edges are considered identical). A path p^{\prime} is a subpath of p if p^{\prime} is a subsequence of p. Let G be a standard graph if G has neither multiple edges nor loops and is triconnected. Generally we let $n=|V|$ be the number of vertices of graph G. If G is planar, then by Euler's formula G contains at most $6 n-12$ edges.
2.2. Networks. Let an undirected network $N=(G, c)$ consist of an undirected graph $G=(V, E)$ and a mapping c from E to the positive reals. For each edge $e \in v, c(e)$ is the cost of e. For any edge set $E^{\prime} \subseteq E$, let $c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c(e)$. Let the cost of path $p=e_{1}, \cdots, e_{k}$ be $c(p)=\sum_{i=1}^{k} c\left(e_{i}\right)$. Let a path p from vertex u to vertex v be minimum if $c(p) \leqq c\left(p^{\prime}\right)$ for all paths p^{\prime} from u to v. Let $N=(G, c, s, t)$ be a standard network if (G, c) is an undirected network, with $G=(V, E)$ a standard graph, and s, t are distinguished vertices of V (the source, sink, respectively). Note that triconnectivity can easily be achieved by adding $O(n)$ edges with cost 0 .
2.3. Minimum cuts and maximum flows in networks. Let $N=(G, c, s, t)$ be a standard network with $G=(V, E)$. An edge set $X \subseteq E$ is an s - t cut if $(V, E-X)$ has no paths from s to t. Let s - t cut X be minimum if $c(X) \leqq c\left(X^{\prime}\right)$ for each s - t cut X^{\prime}. See Fig. 1.

Fig. 1. A network N with source s and sink t. The heavily drawn edges indicate a minimum s-t cut $\left\{\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, t\right\},\left\{v_{4}, v_{7}\right\},\left\{v_{6}, v_{7}\right\}\right\}$ with cost 5 .

Let A be the set of directed edges $\{(u, v) \mid\{u, v\} \in E\}$. A function f mapping A to the nonnegative reals is a flow if
(i) For all $e \in A, f(e) \leqq c(e)$, and
(ii) For all $v \in V$, if $v \notin\{s, t\}$ then $\operatorname{IN}(f, v)=\operatorname{OUT}(f, v)$, where

$$
\operatorname{IN}(f, v)=\sum_{(u, v) \in A} f(u, v) \quad \text { and } \quad \operatorname{OUT}(f, v)=\sum_{(v, u) \in A} f(v, u) .
$$

The value of the flow f is $\operatorname{OUT}(f, s)-\mathrm{IN}(f, t)$. The following motivates our work on minimum $s-t$ cuts:

Theorem 1 (Ford and Fulkerson [7]). The maximum value of any flow is the cost of a minimum s-t cut.
2.4. Planar networks and duals. Let $G=(V, E)$ be a planar standard graph, with a fixed embedding on the plane. G partitions the plane into connected regions. Each connected region is called a face and has a corresponding cycle of edges which it borders. For each edge $e \in E$, let $D(e)$ be the corresponding dual edge connecting the two faces bordering e. Let $D(G)=(\mathscr{F}, D(E))$ be the dual graph of G, with vertex set $\mathscr{F}=$ the faces of G, and with edge set $D(E)=\bigcup_{e \in E} D(e)$. Note that the dual graph is not necessarily standard (i.e., it may contain multiple edges and loops), but is planar. Let a cycle q of $D(G)$ be a cut-cycle if the region bounded by q contains exactly one of s or t. Note that a cycle is a cut-cycle independent of the way in which the dual graph is embedded in the plane, although a particular embedding may change which of s or t the cycle contains. See Figs. 1 and 2. The following proposition is trivial to derive:

Proposition 1. D induces a 1-1 correspondence between the s-t cuts of G and the cut-cycles of $D(G)$.

Let $N=(G, c, s, t)$ be a planar standard network, with $G=(V, E)$ planar. Let the dual network $D(N)=(D(G), D(c))$ have edge costs $D(c)$, where the edge cost of each dual edge $D(e)$ is the cost of the original edge $e \in E$. (Generally we will use just c in place of $D(c)$ where no confusion will result.) See Fig. 3. For each face $F_{i} \in \mathscr{F}$, let a cut-cycle q in $D(N)$ be F_{i}-minimum if q contains F_{i} on (rather than inside) the cycle q and $c(q) \leqq c\left(q^{\prime}\right)$ for all cut-cycles q^{\prime} containing F_{i}. The next proposition is easy but tedious to prove.

Proposition 2. A minimum s-t cut has the same cost as a minimum cost cut-cycle of $D(G)$.

N
Fig. 2. The same planar network N as in Fig. 1, with faces F_{1}, \cdots, F_{10}, and with a nonminimal s-t cut $\boldsymbol{X}=\left\{\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{6}, v_{7}\right\}\right\}$ of cost 6 , indicated by heavily drawn edges.

D(N)
Fig. 3. The dual network $D(N)$ derived from the planar network N of Figs. 1 and 2. The heavily drawn edges give an F_{2}-minimum cut cycle $D(X)=\left\{\left\{F_{10}, F_{3}\right\},\left\{F_{3}, F_{2}\right\},\left\{F_{2}, F_{6}\right\},\left\{F_{6}, F_{10}\right\}\right\}$ which is the dual of the s-t cut X given in Fig. 2.
3. Ford and Fulkerson's minimum s - t cut algorithm for (s, t)-planar networks. Let $N=(G, c, s, t)$ be a planar standard network. G (as well as N) is (s, t)-planar if there exists a face F_{0} containing both s and t. Let planar network N^{\prime} be derived from N by adding on edge e_{0} connecting s and t with cost ∞. Let e_{0} be embedded onto a line segment from s to t in F_{0}, which separates F_{0} into two new faces F_{1} and F_{2}. Ford and Fulkerson [6] have the following elegant characterization of the minimum $s-t$ cut of (s, t)-planar network N.

Theorem 2. There is a 1-1 correspondence between the s-t cuts of N and the paths of $D\left(N^{\prime}\right)$ from F_{2} to F_{1} and avoiding $D\left(e_{0}\right)$. Furthermore, this correspondence preserves edge costs. Therefore, the minimum s-t cuts of \mathbf{N} correspond to the minimum cost paths in $D\left(\boldsymbol{N}^{\prime}\right)$ from F_{2} to F_{1}.

By use of Dijkstra's [4] shortest path algorithm, we have:
Coróllary 2. A minimum cut of (s, t)-planar network N with n vertices may be computed in time $O\left(Q_{L}\right)(n)$), where $L=$ range (c).

Note that applications of this corollary include the $O(n \log (n))$ time minimum $s-t$ cut algorithm of Itai and Shiloach [9] for (s, t)-planar undirected networks, and the $O(n)$ time minimum s - t cut algorithm of Cheston, Probert and Saxton [3] for (s, t)-planar graphs.
4. An efficient algorithm for \boldsymbol{F}-minimum cut cycles. Let $N=(G, c, s, t)$ be a planar standard network, with $G=(V, E)$ and $L=$ range (c). Our algorithm for minimum s-t cuts will require efficient construction of an F-minimum cut-cycle for a given face F. For completeness, we very briefly describe here an algorithm for this, due to Itai and Shiloach [9].

Let \mathscr{F}_{s} be the set of faces bordering s and let \mathscr{F}_{t} be the faces bordering t. Let a $\mu(s, t)$ path be a minimum cost path in $D(N)$ from a face of \mathscr{F}_{s} to a face of \mathscr{F}_{t}.

Proposition 3 (Itai and Shiloach [9]). Let μ be a $\mu(s, t)$ path traversing faces F_{1}, \cdots, F_{d} Let $D\left(X_{i}\right)$ be a F_{i}-minimum cut-cycle of $D(N)$ for $i=1, \cdots, d$. Then $X_{i_{0}}$ is a minimum s-t cut of N, where $c\left(X_{i_{0}}\right)=\min \left\{c\left(X_{i}\right) \mid i=1, \cdots, d\right\}$.

To compute a $\mu(s, t)$ path in time $O\left(Q_{L}(n)\right)$, let M be the planar network derived from $D(N)$ by adding new vertices v_{s}, v_{t} and an edge connecting v_{s} to each face in \mathscr{F}_{s} and an edge connecting each face in \mathscr{F}_{t} to v_{t}. Let the cost of each of these edges be 1 . Let p be a minimum cost path in M from v_{s} to v_{t}. Then p, less its first and last edges, is a $\mu(s, t)$ path. See Fig. 4.

Fig. 4. Network M derived from the dual network $D(N)$ given in Fig. 3. The heavily drawn edges are the $\mu(s, t)$-paths.

Let μ be a $\mu(s, t)$ path in $D(N)$ traversing faces F_{1}, \cdots, F_{d}. By viewing μ as a horizontal line segment with s on the left and t on the right for each edge $D(e)$ of $D(N)$ which is not in $\mu(s, t)$ but is connected to a face $F_{i}, D(e)$ may be considered to be connected to F_{i} from below or above (or both). Let μ^{\prime} be a copy of μ traversing new vertices x_{1}, \cdots, x_{d}. Let D^{\prime} be the network derived from $D(N)$ by reconnecting to x_{i} each edge entering F_{i} from above. See Fig. 5. If p is a path of D^{\prime}, then a corresponding path \hat{p} in $D(N)$ is constructed by replacing each edge and face appearing in μ^{\prime} with the corresponding edge or face of μ. Clearly, $c(p)=c(\hat{p})$.

Theorem 3 (Itai and Shiloach [9]). If p is a minimum cost path connecting F_{i} and x_{i} in D^{\prime}, then \hat{p} is an F_{i}-minimum cut-cycle of $D(N)$.

By applying Corollary 2 to Theorem 3 we have:
Corollary 3. This is an $O\left(Q_{L}(n)\right)$ time algorithm to compute an F_{i}-minimum cut-cycle for any face F_{i} of a $\mu(s, t)$ path in $D(N)$.
Note that for restricted L this may be more efficient than the $O(n \log n)$ upper bound given by Itai and Shiloach [9]; for example this gives an $O(n)$ time algorithm for an F_{i}-minimum cut-cycle of a planar graph.
5. A divide and conquer approach. Let μ be a $\mu(s, t)$ path of $D(N)$ traversing faces F_{1}, \cdots, F_{d} as in $\S 4$. Note that any $s-t$ cut of planar network N must contain an edge bounding on a face in $\left\{F_{1}, \cdots, F_{d}\right\}$. The algorithm of Itai and Shiloach [9] for computing a minimum s - t cut of N is to construct an F_{i}-minimum cut-cycle $D\left(X_{i}\right)$ in $D(N)$ for each $i=1, \cdots, d$. This may be done by $d=O(n)$ executions of the $O\left(Q_{L}(n)\right)$ time algorithm of Corollary 3. Then by Proposition $3, X_{i_{0}}$ is a minimum $s-t$

Fig. 5. Network D^{\prime} derived from dual network $D(N)$ of Fig. 3 using the $\mu(s, t)$-path of Fig. 4. The heavily drawn edges give the F_{2}-minimum cut-cycle $D(X)$ of Fig. 3.
cut where $c\left(X_{1_{0}}\right)=\min \left\{c\left(X_{1}\right), \cdots, c\left(X_{d}\right)\right\}$. In the worst case, this requires $O\left(Q_{L}(n) \cdot n\right)$ total time. This section presents a divide and conquer approach which utilizes recursive executions of an F_{i}-minimum cut algorithm.

Lemma 1. Let F_{i}, F_{j} be distinct faces of μ, with $i<j$. Let p be any F_{j}-minimum cut-cycle of $D(N)$ such that the closed region R bounded by p contains s. Then there exists an F_{i}-minimum cut-cycle q contained entirely in R. (See Fig. 6.)

Fig. 6. $F_{1}, F_{2}, \cdots, F_{d}$ is a $\mu(s, t)$ path in $D(N) . p=\left(F_{j}, x_{1}, x_{2}, \cdots, x_{k}\right)$ is a F_{j}-minimum cut-cycle enclosing region R. The F_{i}-minimum cut-cycle $q=\left(F_{i}, y_{1}, y_{2}, \cdots, y_{l}\right)$ is contained in R.

Proof. Let q be any F_{i}-minimum cut-cycle. Let q^{\prime} be the cut-cycle derived from q by repeatedly replacing subpaths of q connecting faces traversed by μ with the appropriate subpaths of μ (only apply replacements for which the resulting q^{\prime} is a cut-cycle). Observe $c\left(q^{\prime}\right) \leqq c(q)$ (else we can show μ is not a $\mu(s, t)$ path). Let R^{\prime} be the closed region bounded by q^{\prime}. Suppose $R^{\prime} \not \subset R$. Then there must be a subpath q_{1} of q^{\prime} connecting faces F^{a}, F^{b} of p such that q_{1} only intersects R^{\prime} at F^{a} and F^{b}. Let p_{1} be the subpath of p connecting F^{a} and F^{b} in R^{\prime}. We claim $c\left(p_{1}\right) \leqq c\left(q_{1}\right)$. Suppose $c\left(p_{1}\right)>c\left(q_{1}\right)$. By our construction of q^{\prime}, either q_{1} avoids $F_{j}, F_{j}=F^{a}$ or $F_{j}=F^{b}$. In any
case, we may derive a cut-cycle p^{\prime} from p by substituting q_{1} for p_{1}. But this implies $c\left(p^{\prime}\right)<c(p)$, contradicting our assumption that p is an F_{i}-minimum cut-cycle. Now substitute p_{1} for q_{1} in q^{\prime}. The resulting cut-cycle is no more costly than q^{\prime}, since $c\left(p_{1}\right) \leqq C\left(q_{1}\right)$. See Fig. 7. The lemma follows by repeated application of this process.

Fig. 7. $F_{1}, F_{2}, \cdots, F_{d}$ is a $\mu(s, t)$-path, $p=p_{1} \cdot p_{2}$ is a cut-cycle containing $F_{j} . q=q_{1} \cdot q_{2}$ is a cut-cycle containing F_{i}. If $c\left(q_{1}\right)<c\left(p_{1}\right)$, then $p^{\prime}=q_{1} \cdot q_{2}$ is a cut-cycle containing F_{i} and with cost $c\left(p^{\prime}\right)<c(p)$.

The above lemma implies a method for dividing the planar standard network N, given an s - t cut X. The network derived from N by deleting all edges of X can be partitioned into two networks N^{s}, N^{t}, where no vertex of N^{s} has a path to t, and no vertex of N^{t} has a path to s. Also, each edge $e \in X$ must have connections to a vertex of N^{s} and a vertex of N^{t}.

Let $N_{0}=\operatorname{DIVIDE}(N, X, s)$ be the standard planar network consisting of N^{s},
(i) with a new vertex t_{0} and
(ii) a new edge $\left\{u, t_{0}\right\}$ with $\operatorname{cost} c(\{u, v\})$, for each edge $\{u, v\} \in X$ such that u is a vertex of N^{s} and v is a vertex of \boldsymbol{N}^{t};
(iii) finally (to insure N_{0} is standard) merging multiple edges and setting the cost of each resulting edge to be the sum of the costs of the multiple edges from which it was derived. See Figs. 8 and 9.

Fig. 8. The merging into a single edge of multiple edges connected to vertex x and vertex y.

Similarly, let $N_{1}=\operatorname{DIVIDE}(N, X, t)$ be the standard planar network consisting of N^{t},
(i) with a new vertex s_{1}, and
(ii) for new edge $\left\{s_{1}, v\right\}$ with cost $c(\{u, v\})$, for each edge $\{u, v\} \in X$ such that u is a vertex of N^{s} and v is a vertex of N^{t}, and finally applying step (iii) above. See Fig. 9.

N_{0}

N_{1}

Fig. 9. The networks $N_{0}=\operatorname{DIVIDE}(N, X, s)$ and $N_{1}=\operatorname{DIVIDE}(N, X, t)$ derived from the network N and s-t cut X given in Fig. 2. N_{0} and N_{1} will be further subdivided by the cuts X_{0}, X_{1} respectively, indicated by heavily drawn edges.

Let E be the set of edges of network N and let Y be a subset of the edges of $N_{0}=\operatorname{DIVIDE}(N, X, s)$ or of $N_{1}=\operatorname{DIVIDE}(N, X, t)$. Then let $E(Y)$ be the set of edges of E that were mapped into edges of Y when N_{0} or N_{1} was created. The next theorem follows immediately from the above Lemma 1 and Proposition 3.

Theorem 4. Let \boldsymbol{X} be an s-t cut of a planar standard network N such that $\boldsymbol{D}(\boldsymbol{X})$ is an F-minimum cut-cycle, for some face F in a $\mu(s, t)$ path of $D(N)$. Let X_{0} be a minimum $s-t_{0}$ cut of $N_{0}=\operatorname{DIVIDE}(N, X, s)$ and let X_{1} be a minimum $s_{1}-t$ cut of $N_{1}=\operatorname{DIVIDE}(\boldsymbol{N}, \boldsymbol{X}, t)$. Then $E\left(X_{0}\right)$ or $E\left(X_{1}\right)$ is a minimum s-t cut of N.
6. The minimum s-t cut algorithm for planar networks. Theorem 4 yields a very simple but efficient divide and conquer algorithm for computing minimum $s-t$ cut of a planar standard network. We assume the Ford and Fulkerson [6] algorithm given in § 3:
(i) (s, t)-PLANAR-MIN-CUT (N) which computes a minimum $s-t$ of (s, t) planar standard network N in time $O\left(Q_{L}(n)\right)$.
We also assume algorithms (given in § 4):
(ii) $\mu(s, t) \operatorname{PATH}(D(N))$ computes a $\mu(s, t)$ path of $D(N)$ in time $O\left(Q_{L}(n)\right)$.
(iii) F-MIN-CUT $\left(N, F_{i}, \mu\right)$ computes q, where $D(q)$ is an F_{i}-minimum cycle of N (for any F_{i} in $\mu(s, t)$ path $\left.\mu\right)$, in time $O\left(Q_{L}(n)\right)$.
Recursive algorithm PLANAR-MIN-CUT (N, μ).
input planar standard network $N=(G, c, s, t)$, where $G=(V, E)$, and $\mu(s, t)$
path μ.
begin
Let F_{1}, \cdots, F_{d} be the faces traversed by μ. if $d=1$ then return (s, t)-PLANAR-MIN-CUT (N); else begin
$X \leftarrow F$-MIN-CUT $\left(N, F_{\lfloor d / 2\rfloor}, \mu\right)$
$N_{0} \leftarrow \operatorname{DIVIDE}(N, X, s) ; N_{1} \leftarrow \operatorname{DIVIDE}(N, X, t) ;$
Let μ_{0} and μ_{1} be the subpaths of μ contained in N_{0} and N_{1}, respectively
$X_{1} \leftarrow$ PLANAR-MIN-CUT $\left(N_{1}, \mu_{1}\right) ; X_{0} \leftarrow$ PLANAR-MIN-CUT $\left(N_{0}, \mu_{0}\right)$
if $c\left(E\left(X_{0}\right)\right) \leqq c\left(E\left(X_{1}\right)\right)$ then return $E\left(X_{0}\right)$ else return $E\left(X_{1}\right)$;
end;
end

Associated with this recursive algorithm we define a call tree T whose root is N and whose descendants are the networks input to the algorithm on recursive calls. Let d be the number of faces traversed by μ, the $\mu(s, t)$ path of N. If $d=1$ then root N has no children. Otherwise, N has left child N_{0} and right child N_{1}, as computed in the algorithm, and so on.

For any $\omega \in\{0,1\}^{*}$ inductively let $N_{\omega}=\left(G_{\omega}, c_{\omega}, s_{\omega}, t_{\omega}\right)$ be the planar standard network and let μ_{ω} be the $\mu\left(s_{\omega}, t_{\omega}\right)$ path in N_{ω} defined by some recursive calls to PLANAR-MIN-CUT. Suppose PLANAR-MIN-CUT ($\boldsymbol{N}_{\omega}, \mu_{\omega}$) is called. If μ_{ω} contains only one face, then let $N_{\omega 0}$ and $N_{\omega 1}$ be empty networks, and let $\mu_{\omega 0}$ and $\mu_{\omega 1}$ be empty paths. Else let X_{ω} be the set $s_{\omega}-t_{\omega}$ cut of N_{ω} computed by the call to F-MIN-CUT(\cdot), let $N_{\omega 0}, N_{\omega 1}$ be the planar standard networks constructed by the calls to DIVIDE, and let $\mu_{\omega 0}, \mu_{\omega 1}$ be the subsets of μ contained in $N_{\omega 0}, N_{\omega 1}$. Then it is easy to verify that $\mu_{\omega 0}$ is a $\mu\left(s_{\omega 0}, t_{\omega 0}\right)$ path in $N_{\omega 0}$ and $\mu_{\omega 1}$ is a $\mu\left(s_{\omega 1}, t_{\omega 1}\right)$ path in $N_{\omega 1}$, and the length of $\mu_{\omega 0}$ and the length of $\mu_{\omega 1}$ are each $\leqq\left\ulcorner\frac{1}{2} d_{\omega}\right\urcorner$, where d_{ω} is the length of μ_{ω}. Hence there can be no more than $\ulcorner\log (d)\urcorner$ mutually recursive calls, so the call tree T has depth at most $\ulcorner\log (d)\urcorner \leqq\ulcorner\log (n)\urcorner$, where n is the number of nodes in N.

Let m be the number of edges of N and let m_{ω} be the number of edges of N_{ω}. The following theorem provides an upper bound of $2 m+2^{r}$ on the number of edges of networks of depth r in the call tree T.

Theorem 5. For each $r \geqq 0, \sum_{\omega \in\{0,1\}^{r}} m_{\omega} \leqq 2 m+2^{r}$.
Proof. Note that by definition of DIVIDE, the edges of $N_{\omega 0}$ or $N_{\omega 1}$ are derived from disjoint sets of edges of N_{ω}. Fix an edge e of N. Let e_{ω} be the edge (if it exists) of N_{ω} derived from a set of edges of N containing e. Let edge e contribute to N_{ω} if $e \neq\left\{s_{\omega}, t_{\omega}\right\}$ and let e fully contribute to N_{ω} if e_{ω} contains neither s_{ω} nor t_{ω}. For each $r \geqq 0$, let $B_{r}(e)=\left\{e_{\omega} \mid e_{\omega} \neq\left\{s_{\omega}, t_{\omega}\right\}\right.$ and $\left.\omega \in\{0,1\}\right\}$. Thus $\left|B_{r}(e)\right|$ is the number of networks of depth r in T to which edge e contributes.

Let the strings of $\{0,1\}^{*}$ be ordered lexicographically. We require a technical lemma.

Lemma 2. $\left|B_{r}(e)\right| \leqq 2$, and furthermore if $B_{r}(e)=\left\{e_{\omega}, e_{z}\right\}$ for $\omega<z, z \in\{0,1\}$, then edge e_{ω} is connected to t_{ω} and edge e_{z} is connected to s_{z}.

This lemma states that e contributes to at most two networks of depth r in T, and e fully contributes to no two distinct networks of depth r. For example, consider edge $e=\left\{v_{2}, v_{3}\right\}$ of network N given in Fig. 2. Edge e fully contributes to N. In Fig. 9 , edge e contributes to N_{0} by edge $e_{0}=\left\{v_{2}, t_{0}\right\}$ and also contributes to N_{1} by edge $e_{1}=\left\{s_{1}, v_{3}\right\}$. Furthermore, in Fig. 10 edge e contributes to N_{00} by edge $e_{00}=\left\{v_{2}, t_{00}\right\}$ and in Fig. 11 edge e contributes to N_{11} by edge $e_{11}=\left\{s_{11}, v_{3}\right\}$ but e contributes to neither N_{01} nor N_{10}.

N_{00}
N_{01}
FIG. 10. Networks $N_{00}=\operatorname{DIVIDE}\left(N_{0}, X_{0}, s_{0}\right)$ and $N_{01}=\operatorname{DIVIDE}\left(N_{0}, X_{0}, t_{0}\right)$ derived from network N_{0} with s-t t_{0} cut X_{0} of Fig. 9.

FIG. 11. Networks $N_{10}=\operatorname{DIVIDE}\left(N_{1}, X_{1}, s_{1}\right)$ and $N_{11}=\operatorname{DIVIDE}\left(N_{1}, X_{1}, t_{1}\right)$ derived from network N_{1} with $s_{1}-t$ cut X_{1} of Fig. 9 .

Proof of Lemma 2 by induction. Suppose for some fixed r_{0}, this lemma holds for all $r \leqq r_{0}$. If $B_{r_{0}}(e)=\varnothing$ then clearly $B_{r_{0}+1}(e)=\varnothing$. Suppose $1 \leqq\left|B_{r_{0}}(e)\right| \leqq 2$ and consider any $e_{\omega} \in B_{r_{0}}(e)$. If $e_{\omega} \notin X_{\omega}$ then by definition of DIVIDE, either $e_{\omega}=e_{\omega 0}$ appears in $N_{\omega 0}$ or $e_{\omega}=e_{\omega 1}$ appears in $N_{\omega 1}$, but not both. On the other hand, if $e_{\omega} \in X_{\omega}$, then $e_{\omega 0}$ appears in $N_{\omega 0}$ connected to $t_{\omega 0}$ and also $e_{\omega 1}$ appears in $N_{\omega 1}$ connected to $s_{\omega 1}$. In either case, if $\left|B_{r_{0}}(e)\right|=1$, then $\left|B_{r_{0}+1}(e)\right| \leqq 2$. Otherwise suppose $\left|B_{r_{0}}(e)\right|=2$ so there exists some $e_{z} \in B_{r_{0}}(e)$ with $\omega<z$. By the induction hypothesis, e_{ω} is connected to t_{ω} and e_{z} is connected to s_{z}. Thus for $j=0,1$ edge $e_{\omega j}$ (if it exists) is connected to $t_{\omega j}$ and edge $e_{z j}$ (if it exists) is connected to $s_{z j}$. Hence if $e_{\omega} \in X_{\omega}$ then $e_{z 1}=\left\{s_{z 1}, t_{z 1}\right\}$. In each case, $\left|B_{r_{0}+1}(e)\right| \leqq 2$.

To complete the proof of Theorem 5, observe that $\left|\left\{\left\{s_{\omega}, t_{\omega}\right\} \mid \omega \in\{0,1\}^{r}\right\}\right|=2^{r}$. Hence

$$
\sum_{\omega \in\{0,1\}^{r}} m_{\omega} \leqq\left(\sum_{e \in E}\left|B_{r}(e)\right|\right)+\left|\left\{\left\{s_{\omega}, t_{\omega}\right\} \mid \omega \in\{0,1\}^{r}\right\}\right| \leqq 2 m+2^{r}
$$

by Lemma 2.
Theorem 6. Given a planar standard network $N=(G, c, s, t)$ with $L=$ range (c), and μ is a $\mu(s, t)$ path of N then PLANAR-MIN-CUT (N, μ) computes a minimum s - t cut of N in time $O\left(Q_{L}(n) \log (n)\right)$.

Proof. The total time cost is

$$
\begin{aligned}
\sum_{\substack{\omega \in\left\{0,1 Y^{r} \\
0 \leqq r \cong \log (n)\right\urcorner}} O\left(Q_{L}\left(m_{\omega}\right)\right) & =\sum_{0 \leqq r \leqq\ulcorner\log (n)\urcorner} O\left(Q_{L}\left(2 m+2^{r}\right)\right) \quad \text { by Theorem 5, } \\
& =O\left(Q_{L}(n) \log (n)\right) \quad \text { since } 2 m+2^{\log (n)}=O(n)
\end{aligned}
$$

By known upper bounds on the cost of maintaining queues (as discussed in the Introduction), we also have:

Corollary 4. A minimum s-t cut of N is computed in time $O\left(n \log ^{2}(n)\right)$ for general L (i.e., a set of positive reals), in time $O(n \log (n) \log \log (n))$ for the case where L is a set of positive integers bounded by a polynomial in n and in time $O(n \log (n))$ for the case where N is a graph with identically weighted edges.
7. Conclusion. We have presented a divide and conquer method for computing a minimum $s-t$ cut of a planar undirected network which improves on the running time of the algorithm of Itai and Shiloach [9] by a factor of $n / \log n$. An additional attractive feature of this algorithm is its simplicity, as compared to other algorithms for computing minimum s - t cuts for sparse networks (Galil and Naamad [8], Shiloach [10] and Sleator and Tarjan [13]).
[1] A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
[2] P. van Emde Boas, R. KaAs and E. Ziulstra, Design and implementation of an efficient priority queue, Math. Systems Theory, 10 (1977), pp. 99-127.
[3] G. Cheston, R. Probert and C. Saxton, Fast algorithms for determination of connectivity sets for planar graphs, Dept. Computer Science, Univ. Saskatchewan, 1977.
[4] E. Diskstra, A note on two problems in connections with graphs, Numer. Math., 1 (1959), pp. 269-271.
[5] S. Even and R. Tarjan, Network flow and testing graph connectivity, this Journal, 4 (1975), pp. 507-518.
[6] C. Ford and D. Fulkerson, Maximal flow through a network, Canad. J. Math., 8 (1956), pp. 399-404.
[7] ——, Flows in Networks, Princeton Univ. Press, Princeton, NJ, 1962.
[8] Z. GAlil And A. NAAMAD, Network flow and generalized path compression, in Proc. of Symposium on Theory of Computing, Atlanta, Georgia, 1979.
[9] A. Itai and Y. Shiloach, Maximum flow in planar networks, this Journal, 8 (1979), pp. 135-150.
[10] Y. Shiloach, $A n O\left(n I \cdot \log ^{2} I\right)$ maximum-flow algorithm, Computer Science Dept., Stanford Univ., Stanford, CA, 1978.
[11] ——, A multi-terminal minimum cut algorithm for planar graphs, this Journal, 9 (1980), pp. 214-219.
[12] D. Sleator, $\operatorname{An} O(n m \log n)$ algorithm for maximum network flow, Ph.D. dissertation, Stanford Univ., Stanford, CA, 1980.
[13] D. Sleator and R. Tarjan, A data structure for dynamic trees, 13th Annual ACM Symposium on Theory of Computing, 1981, pp. 114-122.

[^0]: supported in part by the National Science Foundation under grant NSF-MCS79-21024 and the Office of Naval Research under contract N00014-80-C-0647.
 \dagger Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.
 ${ }^{1}$ We assume throughout this paper that our machine model is a unit cost criteria RAM (see Aho, Hopcroft and Ullman [1]).

