
Dynamic Parallel Tree Contraction∗

John H. Reif†and Stephen R. Tate‡

Abstract

Parallel tree contraction has been found to be a useful and quite
powerful tool for the design of a wide class of efficient graph algorithms.
We propose a corresponding technique for the parallel solution of prob-
lems with incremental changes in the data. In dynamic tree contraction
problems, we are given an initial tree T , and then an on-line algorithm
processes requests regarding T . Requests may be either incremental
changes to T or requests for certain values computed using the tree.
A simple example is maintaining the pre-order numbering on a tree.
The on-line algorithm would then have to handle incremental changes
to the tree, and would also have to quickly answer queries about the
pre-order number of any tree node.

Our dynamic algorithms are based on the prior parallel tree con-
traction algorithms, and hence we call such algorithms incremental tree
contraction algorithms. By maintaining the connection between our in-
cremental algorithms and the parallel tree contraction algorithm, we
create incremental algorithms for tree contraction.

We consider a dynamic binary tree T of ≤ n nodes and unbounded
depth. We describe a procedure, which we call the dynamic parallel tree
contraction algorithm, which incrementally processes various parallel
modification requests and queries: (1) parallel requests to add or delete
leaves of T , or modify labels of internal nodes or leaves of T , and also
(2) parallel tree contraction queries which require recomputing values
at specified nodes. Each modification or query is with respect to a set
of nodes U in T . We make use of a random splitting tree as an aid

∗This paper is a revised version of the conference proceedings extended abstract: John
H. Reif and Steve R. Tate, Dynamic Parallel Tree Contraction, 5th Annual ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA’94), Cape May, NJ, June 1994.
pp. 114-121.
†Department of Computer Science, Duke University, Durham, NC , USA and Adjunct,

Faculty of Computing and Information Technology (FCIT), King Abdulaziz University
(KAU), Jeddah, Saudi Arabia
‡Department of Computer Science, University of North Carolina at Greensboro,

Greensboro, NC

1

in sudividing the tree. The parallel updates are done in three stages:
consist of a update location step, updating step, and a step answering
the queries.

As our parallel computational model, we assume a variant of the
CRCW PRAM where we can dynamically activate processors by a
forking operation. Our dynamic parallel tree contraction algorithm
is a randomized algorithm that takes O(log(|U | log n)) expected par-

allel time using O(|U | logn
log(|U | logn)) processors. We give a large number

of applications (with the same bounds), including: (a) maintaining
the usual tree properties (such as number of ancestors, preorder, etc.
), (b) Eulerian tour, (c) expression evaluation, (d) least common an-
cestor, and (e) canonical forms of trees. Previously, there where no
known parallel algorithms for incrementally maintaining and solving
such problems in parallel time less than Ω(log n). In deriving our in-
cremental algorithms, we solve a key subproblem, namely a processor
activation problem within the same asymptotic bounds, which may be
useful in the design of other parallel incremental algorithms. This al-
gorithm uses an interesting persistent parallel data structure involving
a non-trivial construction. In a subsequent paper, we apply our dy-
namic parallel tree contraction technique to various incremental graph
problems: maintaining various properties, (such as coloring, minimum
covering set, maximum matching, etc.) of parallel series graphs,
outerplanar graphs, Helin networks, bandwidth-limited networks, and
various other graphs with constant separator size.

1 Introduction

Parallel tree contraction is broadly applicable technique for the parallel so-
lution of a large number of tree problems, and is used as an algorithm
design technique for the design of a large number of parallel graph algo-
rithms. Parallel tree contraction was introduced by Miller and Reif [26],
and has subsequently been modified (to improve efficiency and/or simplify
explanation) by He and Yesha [19], Gazit, Miller, and Teng [17], Kosaraju
and Delcher [24], and Abrahamso et al [1], and more recently Morihataa
and Matsuzakib [30] among many others. A textbook descriptions are given
by JáJá [20], and an excellent survey presentations are given by Karp and
Ramachandran [23] and and Reid-Miller et al rm:93. Tree contraction has
been used in designing many efficient parallel algorithms, including expres-
sion evaluation, finding least common ancestors, tree isomorphism, maximal
subtree isomorphism, common subexpression elimination, computing the 3-
connected components of a graph, and finding an explicit planar embedding
of a planar graph. In this paper, we are concerned with dynamic problems

2

on trees.

1.1 Prior Work on sequential incremental tree algorithms

Incremental algorithms respond to requests to either change a data structure
slightly, or answer queries to the data structure. We make a distinction be-
tween quantities that we exactly maintain, and quantities that we incremen-
tally maintain. A quantity is exactly maintained if after each incremental
step of the algorithm there are variables containing exactly the value that
we are interested in. In other words, to find the value, an algorithm only
needs to read the appropriate variable — no computation is necessary. For
example, in an algorithm in this paper we will exactly maintain the num-
ber of descendants in a certain tree; thus, after each step, each node has a
variable that says exactly how many descendants are below that node. On
the other hand, some quantities are incrementally maintained. These values
are not stored explicitly, but can be quickly calculated when needed. For
example, it is difficult to exactly maintain the pre-order numbering of a tree
because one small change to the tree can affect the pre-order numbering
of Ω(n) nodes in the tree. However, by exactly maintaining the number of
descendants in a balanced tree, we can quickly (in O(log n) sequential time)
compute the current pre-order number of any node in the tree. Early pio-
neering work on maintaining dynamic trees was done in the early 1980s by
Sleator and Tarjan [31, 32] and Frederickson [13].

Frederickson [11] notes that his algorithm for dynamic tree maintenance
clusters tree nodes in a manner very similar to that of tree contraction, and
performs sequential updates in O(log n) time. The problem of maintain-
ing dynamic expression trees was studied first by Mayr [25] and then by
Cohen and Tamassia [9], who gave an algorithm with O(log n) update and
query time. Fredrickson applies his dynamic tree data structure to many
interesting dynamic graph problems, including dynamic expression evalua-
tion [14], giving O(log n) bounds for all incremental requests. In fact, his
algorithm does cluster nodes in a similar manner to the original versions of
tree contraction (those with both rake and compress operations), but in this
paper we consider clustering nodes in a manner more similar to the later,
simplified version of tree contraction due to Kosaraju and Delcher [24]. Our
data structure is in turn considerably simpler and easier to maintain than
the dynamic tree structures of Frederickson. Furthermore, by making the
connection between tree contraction and our dynamic tree maintenance al-
gorithms clear, we are able to easily apply our incremental tree contraction
procedure to the wide variety of problems that have used standard parallel

3

tree contraction.
More recent work on incremental tree algorithms includes the work of

[18, 14, 12, 7, 33, 8, 34]. Werneck has overviewed and surveyed the field of
dynamic tree algorithms in [35, 36].

General techniques for tranforming static algorithms to dynamic algo-
rithms are described by Acar et al [2, 4, 4, 5].

Applications to dynamic graph algoriuthms are given in [21, 22], and a
survey of dynamic graph algorithms is given by Eppstein et al [12].

1.2 Parallel incremental algorithms

In this paper, we consider the problem of performing incremental updates
on a dynamic tree using a parallel machine (a CRCW PRAM) for the up-
dates. In fact, we consider the more general case where a set of updates
is to be performed concurrently by a parallel machine. We give algorithms
that can perform a set of updates in O(log(|U | log n)) expected time with

O(|U | logn
log(|U | logn)) processors, where |U | denotes the size of the set of concurrent

updates that have been requested. For a constant number of updates (i. e.
, when |U | = O(1)), notice that the updates are performed in O(log log n)
expected time using O(logn

log logn) processors. Also notice that with the known
sequential algorithms, a sequence of |U | queries or update requests takes
O(|U | log n) time, so our parallel algorithms are work-optimal with respect
to these bounds.

1.3 Dynamic parallel tree contraction

We consider a dynamic binary tree T of ≤ n nodes and unbounded depth.
We define a procedure, namely the dynamic parallel tree contraction algo-
rithm, which incrementally processes parallel requests to add or delete leaves
of T , modify labels of internal nodes or leaves of T , and also incrementally
processes parallel tree contraction queries that recompute values at specified
nodes. Each modification or query is with respect to a set of parallel up-
date requests specified at a set of nodes U in T . Our dynamic parallel tree
contraction algorithm will initially need to solve the following incremental
problem. Given a tree PT of size n, and a small set of leaves U , define the
parse tree of U(denoted PT (U)) to be the set containing all of the leaves
in U , and all of their ancestors. We need to maintain data structures so
that, given any set U , we can quickly identify and activate processors for
the nodes of PT (U). We will show solve this problem in Section 2, and
how to solve the remaining problems required for dynamic parallel tree con-

4

traction in Section 4. The result is a randomized algorithm that runs in
O(log(|U | log n)) expected time, using O(|U | logn

log(|U | logn)) processors.

1.4 The Self-Healing Paradigm: Terminology for Dynamic
Algorithms Based on Tree Contraction

For our dynamic algorithms, we use a scenario, concepts and terminology
which we will we borrow from the movie Terminator 2. In that movie, there
is a robot made of a liquid metal. The robot exhibits a very interesting self
healing property, which can be adopted to dynamic algorithms. Projectiles
which entering the robot may cause wounds running completely through
the robot. Nevertheless, the robot rapidly restructures itself to adapt to the
change, and heal the wound (the response to the attack is rapid as well).
Our deterministic dynamic algorithms based on tree contraction have the
property that a set of parallel requests (insertions or deletions)may require
the tree to be restructured. The parts to be restructured form a subtree of
the parse tree. We will call the parts to be restructured the wound.

(Step 1) Wound Location and Process Activation: The first step will be
to identify the location of the wound, which(in dynamic tree contraction in
processing the query) can run from a query node up to the root. Also in this
step we must activate processes which will be used in subsequent steps (this
step in our case is harder than might be expected, and is solved inSection 2).

(Step 2) Wound Healing: The next step in processing the query will be
to heal the wound using the processes activated in step 1. In our case, this
is the process of restructuring the parallel tree contraction parse tree. This
will be done by a call to a our dynamic parallel tree contraction algorithm,
as described in Section 4 using the processes activated in step 1.

(Step 3) Answering the Query: The final step in processing will be to
respond to the query . In our case we will need simply to re-evaluate the
fragment of the parallel tree contraction parse tree healed (restructured) in
step 2. This can be done in our case by the usual (non-dynamic) parallel
tree contraction using the processes activated in step 1. The above concept,
scenario, and terminology are quite useful in the case where we have a dy-
namic processes which persists indefinitely, and must heal itself in a dynamic
manner. Note: We feel it is important that a commonly used, widely ap-
plicable terminology be adopted for processes such as described above. We
use the replicant terminology of the movie Blade Runner for description of
a (rather different) class of randomized dynamic algorithms where processes
cycle through periods of reincarnation: activation, death, total rebuilding,
and reactivations.

5

2 The Random Splitting Tree

A binary splitting tree (BST) is a binary tree in which each node has either
zero or two children (also called a full binary tree). Many O(log n) time
parallel algorithms have an underlying computational structure that resem-
bles such a tree, and either proceeds from the root of the tree to the leaves
(as in quick sort or flashsort), or from the leaves to the root (as in an n
element summation), or perhaps even both (the contraction and expansion
phases of tree contraction). By considering how to maintain such a splitting
tree under incremental changes, we can hope to derive parallel incremental
algorithms for a large class of problems. Given a BST PT with n leaves
(which we will call a parse tree for reasons that become apparent later), and
a subset U(called the update set) of the leaves, define the parse tree of the set
U (denoted PT (U)) to be the subtree of PT that is made up of the leaves
in U and all of the ancestors of nodes in U . It is fairly easy to see that for
balanced trees, PT (U) cannot be too large — in fact, if the depth of PT is
O(log n), then we can bound the size by |PT (U)| = O(|U | log n). We would

like to perform operations on PT (U) in parallel, using only O(|U | logn
log(|U | logn))

processors, which raises the processor allocation problem: namely, in a tree
of size O(n) how can we quickly activate a small set (size O(|U | logn

log(|U | logn)))

of processors, one for each node in the parse tree (by quickly, we mean
O(log(|U | log n)) time). For example, consider the case in which U contains
a single leaf of a balanced tree, and so PT (U) consists of the O(log n) nodes
on the path from this leaf to the root. If we have no supplemental informa-
tion about our tree T , then the best we can do is follow the parent links,
giving an Θ(log n) time, or Θ(|U | log n)time algorithm (in particular, we
cannot do the standard “pointer jumping” because we don’t know which set
of O(log n) nodes are involved in the operations — in fact, identifying these
nodes is our goal!). To solve the processor activation problem, we supple-
ment our tree with the following information: at each node v, store a flag
ACTIVEvwhich is initially 0 for all nodes (the purpose of this flag will be
explained later), the depth of the node dv (the root has depth 0), the number
nv of nodes in the subtree rooted at v, and for every node whose subtree has
depth greater than log log n we store an array with mv = blog dvc entries
sv,1, sv,2, · · · , sv,mv (called shortcuts), where sv,i is the unique ancestor of v
such that

dsv,i =

⌈
dv

(
1−

(
1

2

)i
)⌉

.

6

For uniformity of later arguments, we assume that sv,0 is the root node of the
tree T . Note that if only O(n

log logn) nodes of a depth O(log n) tree T have
subtrees of depth greater than log log n (as is true in most trees), then all of
this information can be stored in O(n) space. We call this data structure a
binary splitting tree with shortcuts (BSTS), and it can be used to solve the
processor activation problem as described in the following theorem.

Theorem 2.1 Given a O(log n) depth BSTS and a set of nodes U , we
can identify the nodes of PT (U) in parallel time O(log(|U | log n)) using

O(|U | logn
log(|U | logn)) processors.

Proof : Initially, we start out with |U | processors active, each process or
associated with an element of U . As a first stage, every processor follows par-
ent pointers up the tree, setting the ACTIVE flag for each node visited, until
it finds a node that contains a shortcut list. This uses O(|U |) processors and
O(log log n) time. The next stage of the activation process uses the shortcut
information to quickly identify the remaining nodes of PT (U). Processors
will be activated by a forking procedure — for example, a processor may
discover (by a method to be described later) a node of PT (U) that has not
been previously identified, and so will start a new process or that will be as-
sociated with that node. A processor can be activated for a tree node v only
if the corresponding ACTIVEv flag is 0, and when the processor is started
ACTIVEv is set to 1. After an update set U is fully processed, and the pro-
cessors of PT (U) are being deactivated, each processor resets it’s ACTIVE
flag to 0 for the next round. At time t of the startup procedure, each pro-
cessor manipulates a range of depth values denoted `v,t · · ·uv,t, where each
processor initially starts off with range `v,0 = 0 · · · dv = uv,0. Each node
also maintains a position in its shortcut list pv,t, initialized to pv,0 = 0. At
every step, we will maintain the property that `v,t = dsv,pv,t . To advance the
startup procedure by onestep, we set pv,t+1 = pv,t + 1 and set `v,t+1 to the
corresponding value. Next, we activate a processor for node w = sv,pv,t+1 (if
necessary). For the new node and processor, initialize uw,t+1 = `v,t+1, and
initialize `w,t+1 by setting pw,t+1 to the unique value k such that

dsw,k
≤ `v,t and dsw,k+1

> `v,t.

In essence, we are taking a range of depths, and starting a new processor
to activate nodes in the smallest half of the depths. It can easily be shown
that pw,t+1 can only be pv,t or pv,t+1, so pw,t+1 can be found in constant
time by checking both of the possible values. At time t + 1, the range of
depths for both v and w are at most 2/3 of the range of v at time t, so

7

consequently the largest range present in the tree goes down by a constant
factor at each step. We repeat this basic step until every range contains at
most log(|U | log n) values. Now each processor can sequentially traverse up
the tree to the next higher activated location, marking nodes as being in
PT (U) as it goes, which takes at most log(|U | log n) steps. Thus, it follows
that for any leaf v ∈ U , all of the dv + 1 nodes on the path from v to the
root get identified within time

O

(
log

(
max
v∈U

dv

)
+ log(|U | log n)

)
= O(log(|U | log n)).

Furthermore, leaf v ∈ U starts at most O(dv
log(|U | logn)) processors, so the

total number of processors used by this procedure is O(|U | logn
log(|U | logn)). QED

We can define a probability distribution on binary splitting trees by the
following construction procedure: For the n leaves v1, v2, · · · , vn, pick a ran-
dom integer k in the range 1, 2, · · · , n − 1. Create a node w (this will be
the root of the BST), and split the leaves into two sets (v1, · · · , vk) and
(vk+1, · · · , vn). Recursively construct trees for these two sets, and the roots
of the constructed trees will be the children of node w. If, at some point in
time, a BST is really a random tree with exactly this distribution, then we
call the tree a random binary splitting tree (RBST);furthermore, if the tree
is a random variable with this distribution and the shortcut information is
present in the tree, we call the treea random binary splitting tree with short-
cuts (RBSTS). We relax the condition on where shortcut information must
be in a RBSTS —shortcut information is only required in nodes with sub-
trees of depthat least 2 log log n, and should not be in nodes with depthless
than 1

2 log log n. Note that a RBST or a RBSTS with n leaves has expected
depth O(log n). We show below that we can efficiently construct a RBSTS
from a list of leaves, including computing all of the shortcuts.

Lemma 2.1 Given a list of n values, we can construct a RBSTS in O(log n)
expected time using O(n

logn) processors.

Proof : The construction proceeds in two stages: building the tree, and
making the shortcut lists. Building the tree is a straightforward procedure
in which new processors are started for each subtree, until at most n

logn
processors have been started. At this point, each remaining subtree has
expected size O(log n), so the remaining splittings are done sequentially
within each of these subtrees. Once the tree is constructed, tree contraction
can be performed on the tree to optimally compute the depth of the subtree
rooted at each node. Next, stage 2 will construct a shortcut list for every

8

node that is the root of a subtree of depth greater than log log n. To see
how to construct a shortcut list efficiently, consider the shortcut lists for two
nodes v and w, where v is a parent of w. Since dw = dv + 1, it must be
true that for all shortcut entries j, sw,j can only be either sv,j or sv,j + 1.
Thus, one time step after v has computed sv,j , node w can, in constant
time, compute sw,j . Computation of the shortcut list for nodes at depth d
is started at time-step d of stage 2, and a node at depth d can immediately
start computing its shortcut values from the values already computed at
its parent. The total time for a node on level d to initialize its shortcut
list is d + log d — since the expected depth of the tree is O(log n), the
total expected time for stage 2 is O(log n + log log n) = O(log n). The total
number of processors required is the total expected number of nodes with
subtrees of depth greater than log log n, which is O(n

logn). QED
Note that Theorem 2.1 applies to a RBSTS, so we may quickly identify

and activate parse trees in a RBSTS. The benefit of the randomized structure
is that a RBSTS is easy to dynamically maintain, as we will explain next.
First, we consider adding new leaves to a RBSTS, and maintaining all of
the shortcut and supplemental information, in addition to maintaining the
correct distribution on the set of possible BST’s. The idea is essentially this:
if a new leaf z is inserted between leaves vk and vk+1, then with probability
n−1
n simply recursively insert z in the subtree that contains vk. However,

with probability 1
n throw away the old tree structure and build a new tree

RBSTS with root w and subtrees containing the leaves (v1, · · · , vk) and
(z, vk+1, · · · , vn). In the worst case, this procedure can be very expensive,
but the worst case only occurs with probability 1

n ; the following theorem
generalizes the addition procedure to the insertion of a set of nodes, and
shows that the expected running time is small.

Theorem 2.2 A set U of new leaves can be inserted into an existing RBSTS
in O(log(|U | log n)) expected time using O(|U | logn

log(|U | logn)) processors, resulting
in agrown, valid RBSTS with high probability.

Proof : Let S a random variable representing the size of the subtree to be
rebuilt. By Lemma 2.1, we can perform the tree restructuring in expected
time O(E[logS]) using an expected number of processors of O(E[S

logS]).
Since the both of these functions are concave in S, we know that E[logS] ≤
log(E[S])and E[S

logS] ≤ E[S]
log(E[S]) , so we will concentrate on finding E[S]. For

any node v ∈ PT (U), recall that nv is the number of descendants of v in T
(the full tree, not just PT (U)). From the description of the tree restructuring
procedure, the probability of restructuring the subtree rooted at v is at most

9

1/nv, and the number of nodes involved in such a restructuring would be
nv. Therefore,

E[S] ≤
∑

v∈PT (U)

1

nv
· nv = |PT (U)| ≤ |U | log n,

which is exactly the bound we need to prove our theorem. There is one prob-
lem with this construction, as exemplified by the following case: consider
many additions to the right side of a tree. When the left side of the tree is
initially created, the tree has a certain number of nodes, say N , and the set
of nodes containing shortcut information is determined from this value (i. e.
, the nodes with shortcut information are those whose subtrees have depth
at least log logN). Now after additions to the right side, there are n > N
nodes in the tree, and if the left side of the tree has not been rebuilt, there
are shortcuts on nodes with subtrees of less than log log n depth. However,
for shortcuts to exist on nodes with subtrees of less than 1

2 log logn depth,
the tree must have grown so that n > N logN — if the tree grows this much, it
will be entirely rebuilt (including the left side) with high probability. QED

Deletions can be handled similarly, and will be completely described in
the full paper. This section can be summarized by the following theorem.

Theorem 2.3 Given a RBSTS and a set U of leaves, we can (a) iden-

tify the parse tree for U and activate |U | logn
log(|U | logn) processors, (b) add new

leaves at the positions of U , or (c) delete the leaves in U , all in expected

time O(log(|U | log n)), using O(|U | logn
log(|U | logn)) processors. In all cases, a valid

RBSTS is output with high probability.

3 Incremental List Prefix

Before considering the more difficult problem of incremental tree contrac-
tion, we introduce the ideas that we will be using by considering the easier
problem of incremental list prefix sum. The incremental list prefix prob-
lem is known as the prefix sum problem, where the input is a linked list of
nodes containing the input values (we use this terminology rather than “list
ranking” to avoid confusion with the fact that list ranking usually refers
to computing suffix sums). We will see that this problem is easy, given the
dynamic random splitting tree methods of the previous section. To solve the
incremental list prefix problem, we maintain a RBSTS in which the linked
list nodes are the leaves of the RBSTS, and we maintain additional infor-
mation at each node of the RBSTS. In particular, any internal node v of the

10

RBSTS corresponds to a sub-list of values from the maintained linked list
(i. e. , the leaves of the subtree rooted at that node), and we store the sum
of all the values in that sub-list at the internal node (call this SUMv). Given
this information, it is easy to answer in parallel requests for the prefix sum
at a set of nodes U . In particular, we first identify the parse tree PT (U)
for the set U , as described in the preceding section. Next we will build a
secondary parse tree, P̂ T (U), that is an extension of PT (U)(this tree is re-
ally a conceptual help, and doesn’t have to actually be constructed). Every
node v ∈ PT (U) has two children in the full tree T , call them w1 and w2,
at least one of which must be in PT (U). If one of the children, say w1, is
not in PT (U) we add w1 as a child of v in P̂ T (U) — w1 is a leaf node of
P̂ T (U), and we give it the value SUMw1 . In effect, this one leaf node re-
places the entire subtree rooted at w1 as far as this parse tree is concerned.
The extended tree P̂ T (U) has at most twice as many nodes as PT (U), so
|P̂ T (U)| = O(|PT (U)|). To compute all the requested prefix sum values,
first use the Euler tour technique to obtain an ordered list of the leaves of
P̂ T (U). This requires O(log |P̂ T (U)|) time and O(|P̂ T (U)|) work. Due to
the way that P̂ T (U) was constructed, performing the standard prefix sum
algorithm on this list will give the desired prefix sums for the nodes in U . The
complexity of this step is the same as the complexity of computing the list
of leaves (and in fact could be done as a side-effect of the Euler tour compu-
tation), so once the parse tree is identified, the prefix sums can be computed
in deterministic time O(log |PT (U)|)with O(|PT (U)|) work. It remains to
be seen how to exactly maintain the SUMvvalues, which we now describe.
When a sub-tree is rebuilt, computation of the SUMv values can be done
by performing a tree contraction and expansion on the re-built tree. For a
size Stree, this can be done in O(logS) time using O(S) work. In theRB-
SBS maintenance routines, we saw that E[S] ≤ |U | log n, so this step can

be done in O(log(|U | log n)) expected time, with O(|U | logn
log(|U | logn))processors.

In addition, whenever leaf values are changed we need to recompute all the
SUMv values on the path from the updated leaves to the root. However,
this can easily be done by performing a tree contraction and expansion on
the extended parse tree P̂ T (U). The results of this section can be summed
up in the following theorem.

Theorem 3.1 We can perform a set of concurrent queries or updates on a
set ofnodes U of our incremental list prefix data structure in O(log(|U | log n))

expected time using O(|U | logn
log(|U | logn)) processors.

Note: Notice that if |U | = O(1) then the update is performed in O(log log n)
expected time using O(logn

log logn) processors.

11

4 Dynamic parallel tree contraction

The incremental tree contraction algorithms that we design are based on
the parallel tree contraction algorithm of Kosaraju and Delcher [24] (also
see [20] for a textbook description of tree contraction). This algorithm
operates by finding an Euler tour of the expression tree, performing a list
ranking to order the leaves of the tree from left to right, and then repeatedly
performs a rake on the leaves in odd numbered positions of this ordering.
Torake a leaf, both the leaf and it’s parent are removed from the tree,
and the value of the leaf’s grandparent is updated to reflect the removal
of the these two nodes. Since only leaves in odd numbered positions are
raked by this algorithm, it is guaranteed that no two sibling with both
try to simultaneously rake and remove their common parent. Notice that
in this step, both a leaf and an internal nodeare removed from the tree,
which is why the tree size is reduced at such a rapid rate. After this step,
only half of the original leaves remain, and the process is repeated using
the leaves in odd numbered positions on this new, smaller set of leaves.
Repeating this O(log n) times reduces the tree to a single node. Kosaraju
and Delchers how how to update the sibling label during a rake so that
after the entire procedure the single remaining node is labeled with the
valueof the entire expression tree. For a tree with n nodes, the contraction
takes a total of O(log n) time with O(n/ log n)processors. This process is
known as the CONTRACTION phase of theparallel tree contraction process.
Most tree contraction algorithms require a second phase, the EXPANSION
phase. The EXPANSION phase can be viewed as the logical reversal of
the CONTRACTION phase. In particular, the rake operations are done in
reverse order, with values propagating down the tree from the root. After
the EXPANSION phase, the original tree is entirely reconstructed, with
each internal node labeled with the value of the sub-expression rooted at
that node. For complete details, see [24].

4.1 Overview of dynamic parallel tree contraction

We consider a dynamic binary tree T of ≤ n nodes and unbounded depth.
We define a procedure, namely the incremental parallel tree contraction
algorithm, which incrementally processes requests to modify or query T ,
where the requests can be any of the following.

1. Add two new children below a current leaf.

2. Delete two leaf children of a node.

12

3. Modify labels of internal nodes or leaves of T .

4. Processes parallel tree contraction queries that recompute values at
specified nodes.

Each modification or query is with respect to a set of parallel update
requests specified at a set of nodes U in T . The dynamic parallel tree
contraction algorithm maintains a contraction parse tree PT with leaves
that correspond to the nodes of the expression tree T . The updates will be
done on the subtree PT (U) induced from PT consisting of the paths from
the root to each node in U. Again, note that PT (U) denotes exactly those
nodes that may be wounded by an update request. These updates can cause
the incremental tree contraction algorithm to add or delete at most Unodes.
Our final result is stated below, which we will prove in the next subsection.

Theorem 4.1 The dynamic parallel tree contraction algorithm takes O(log(|U | log n))

expected parallel time, using O(|U | logn
log(|U | logn)) processors.

4.2 Details of Dynamic Parallel Tree Contraction

In this section we extend the ideas of a RBSTS to the more complex problem
of incremental tree contraction. We apply a randomized version of the tree
contraction algorithm of Kosaraju and Delcher [24] that works as follows.

1. First, create a list of the leaves of the tree T in left to right order.
Create a RBSTS(call it PT) for the set of leaves, and we will use the
RBSTS to guide the sequence of rakes on T . In particular, we consider
the set S of nodes of the RBSTS that have two leaf nodes (in PT) as
children. Let L be the set of left children from S, and we will rake the
corresponding nodes in the original tree T .

2. Now we remove all nodes in S from PT , making each exposed parent
node correspond to the unraked right child. Similar to Kosaraju and
Delcher’s algorithm, this can never rake two siblings in one time step,
so is a valid rake sequence.

Since one level of PT is removed at each step, the number of parallel steps
is exactly the depth of PT , which has expected value O(log n). It should
be noted that by first raking subtrees of size O(log n) consecutive nodes
sequentially, using O(n/ log n) total processors, we can make this an ex-
pected work-optimal tree contraction algorithm. We can turn this into an
incremental algorithm by maintaining the RBSTS as described inSection 2.

13

We maintain a second data structure called the raketree (denoted RT) to
keep track of how the tree evaluation labels are manipulated by the tree
contraction algorithm.

Observe that in the list prefix data structure, the required computations
are easily derived from the RBSTS; however, for tree contraction this is not
the case. In this tree contraction process, we must carefully keep track of
labels of internal nodes of T , which do not even exist in the RBSTS (recall
that only leaves of T are represented in the RBSTS). For incremental tree
contraction, the rake tree exactly reflects the changes to internal node labels
that need to occur in order to heal a wounded tree. Consider a single rake
of the original tree contraction algorithm to be in two parts. Let v be the
node we are raking, and let p denote its parent and w denote its sibling.
First, we do what is called a“small-rake”, where v is raked into its parent
p, and the label of p is updated accordingly. Secondly, p is removed by
merging it with w, and the label of w is updated to reflect this contraction.
We expand rakes like this so that all operations on labels during the tree
contraction phase are binary. The rake is now a binary operation on the
labels of v and p, followed by a binary operation on the label of w and
the new label of p. The rake tree is structured as follows. Any time the
tree contraction algorithm modifies a node’s label, it must be by a binary
operation on two labels (by the preceding paragraph) so join the rake tree
nodes corresponding to those two labels under a single parent node, and the
parent node corresponds to the new label produced by the binary operation.
The node is then labeled with the function that produces the new label
from the old ones. This is clearly a binary tree, and there is a one-to-one
correspondence between the nodes of this tree and all the labels assigned by
the tree contraction algorithm. Since each internal node of RT corresponds
to a rake operation, and eachleft child in the RBSTS also corresponds to
a rake operation, we maintain links between the rake tree nodes and the
nodes of the RBSTS. Thus by identifying a wound in the RBSTS, we can in
parallel quickly discover the corresponding wounded nodes in RT . Clearly,
a tree evaluation on the rake tree will compute the values of the labels of
all nodes in T at all times during the tree contraction process. To be able
to perform concurrent updates, we next need to show that the functions
labeling the nodes of RT are valid tree contraction operations, and we show
this in the proof of the following theorem:

Theorem 4.2 We can perform a set of updates on a set of nodes U of
our incremental tree contraction data structure in O(log(|U | log n)) expected

time using O(|U | logn
log(|U | logn)) processors. We can also perform a single update

14

with a single processor in O(log n) time.

Proof : The sequential algorithm single update is simple: we start at the
leaves and propagate the updates that are required toward the root, re-
quiring O(log n) time for a single processor. The parallel updates using

O(|U | logn
log(|U | logn)) processors will be done on our data structure in two phases:

1. Wound Location and Process Activation: First, we must locate the
wound (i. e. , PT (U)) in the RBSTS. This phase proceeds exactly
as in the incremental list ranking problem. In particular, adding a
new leaf to the tree T involves adding a new leaf to the RBSTS,
which is accomplished as described inSection 2. It is in this phase that
processors get allocated to the parts of the tree that will be changing,
exactly as in the case of the list prefix problem. These processors
remain activated after this phase to complete the relabeling described
below. It is trivial to make the corresponding updates to RT , once
PT (U)has been activated. Note that if the request to the incremental
algorithm is either a query or simply a node label update, then there
are no structural changes to the RBSTS or the rake tree. In this case,
the first stages imply identifies the wound and activates processors for
the second phase.

2. Wound Healing: When the first phase is over, we have done all the
required updates to the structure of the RBSTS and the rake tree, but
the labels in RTmay need to be updated. Let W denote the set of
all wounded nodes in RT , and let RT (W) denote the subtree of RT
consisting of all paths from a node of W to the root of RT . For a
node v not in RT (W), neither the node itself or any of its descendants
have changed, so the label of v can not be changed by this update, and
so all the changes in RT due to an incremental update occur in the
subtree RT (W). For any node w in RT (W), we first make sure both
of its children are in RT (W). If they are not, then they are added
as new leaves of RT (W) — these leaves are labeled with their values
from the previous incremental step, and as we have shown that these
values cannot be changed in the current step. It is clear then that
evaluating the resulting tree will give the correctly updated labels for
all nodes in RT (W), and thus all of RT will have correct labels. This
can easily be done sequentially in optimal O(|RT (W)|)time.

3. Answering the Query: We next show that the tree evaluation can
be done by parallel tree contraction. We consider the case of T be-
ing over a commutative ring (which is the case for the vast majority

15

of tree contraction applications), likein the paper of Kosaraju and
Delcher [24]. In such a case, the label at each node of the tree T con-
sists of an operation label(which never changes), and a pair (A,B).
The meaning of this label is that if x is the value of the subtree rooted
at this node, then Ax + B is the value of this contracted node. Ini-
tially, all internal nodes are given the pair (1, 0) as a label, and all
leaves are given the pair (0, v), where v is the value of that leaf in
the expression tree. There are three basic label manipulation func-
tions that label the internal nodes of RT . First, if p is an internal
node of RTwith children v (the leaf being raked) and w, and p cor-
responds to a“small-rake”, then the exact operation depends on the
ring operation opw labeling w in T . Let (A,B) be the label of v and
(C,D) be the label of w. Then if opw is an addition, the function
labeling node p takes (A,B) and (C,D) as input, and produces label
(C,CB + D). If opw is a multiplication, then the function must pro-
duce label (CB,D). Finally, if p is corresponds to a “small-compress”,
and has children v (the node in T being removed) and w with labels
(A,B) and (C,D), respectively, then the label update function must
produce the new label (AC,AD + B). The important point to notice
about all the label update functions is that the function for each la-
bel component is linear in the input components. Since composition
of linear functionals is associative, this is all we need in order to be
able to perform tree contraction on RT . Thus we can recompute all
the changed labels of RT in O(log |RT (W)|) = O(log(|U | log n)) time

using O(|RT (W)|
log |RT (W)|) = O(|U | logn

log(|U | logn)) processors.

QED

5 Applications of Dynamic Parallel Tree Contrac-
tion

Here we show that dynamic parallel tree contraction is a broadly applicable
technique for the design of dynamic parallel algorithms. Standard parallel
tree contraction has been shown to provide a basis for many efficient parallel
algorithms, and we can use many of the reductions to the tree contraction
problem in designing dynamic algorithms. We list below a sampling of the
applications that can be derived using our dynamic parallel tree contraction
algorithms:

• Incrementally maintaining the standard tree properties, (such as pre-

16

order, number of ancestors), as well as Eulerian tour and expression
evaluation using our dynamic parallel tree contraction algorithm takes
expected parallel time O(log(|U | log n)) using O(|U | logn

log(|U | logn)) proces-
sors.

• Incrementally maintaining least common ancestor and canonical forms
of trees using our incremental parallel tree contraction algorithm takes
O(log(|U | log n)) expected parallel time using O(|U | logn

log(|U | logn)) proces-
sors.

6 Future Work and Acknowledgements

In the future, it appears possible to apply our dynamic parallel tree con-
traction techniques to various incremental problems on graphs with constant
separator size, for example: parallel series graphs, outer planar graphs, He-
lin networks, bandwidth-limited networks, etc. In these restricted graph
problems, it may be possible to incrementally maintain in parallel various
properties, such as maximum matching. It remains an interesting open prob-
lem to incrementaly maintain solution of NP complete problems for general
graphs, such as coloring and minimum covering set.

This research was supported by DARPA/ISTO Grant N00014-91-J-1985,
Subcontract KI-92-01-0182 of DARPA/ISTO prime ContractN00014-92-C-
0182, NSF Grant NSF-IRI-91-00681, NASA subcontract 550-63of prime
Contract NAS5-30428, and US-Israel Binational NSF Grant88-00282/2.

References

[1] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, T. Przytycka, “A simple
parallel tree contraction algorithm”, Journal of Algorithms, Volume 10,
Issue 2, pp. 287302, June 1989

[2] A. Acar, G. E. Blelloch, and J. L. Vittes. “Separating structure from
data in dynamic trees”. Technical report, Department of Computer
Science, Carnegie Mellon University,)2003).

[3] Acar, U.A., Blelloch, G.E., Harper, R., Vittes, J.L., Woo, S.L.M.: “Dy-
namizing static algorithms, with applications to dynamic trees and his-
tory independence”. In: Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 524533. SIAM (2004).

17

[4] Acar, U.A., Blelloch G. E., Robert H. R., Jorge L. Vittes, J.L., Woo
S.L.M. “Dynamizing Static Algorithms”, with Applications to Dynamic
Trees and History Independence Proceeding Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms (SODA ’04), pp.
531-540, Society for Industrial and Applied Mathematics Philadelphia,
PA, (2004). ISBN:0-89871-558-X

[5] Acar, U.A., Blelloch, G.E., Vittes, J.L.: “An experimental analysis
of change propagation in dynamic trees”. In: Proceedings of the 7th
Workshop on Algorithm Engineering and Experiments (ALENEX), pp.
4154 (2005).

[6] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[7] Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: “Minimiz-
ing diameters of dynamic trees”. In: Proceedings of the 24th In-
ternational Colloquium on Automata, Languages and Programming
(ICALP), Bologna, Italy, 711 July 1997. Lecture Notes in Computer
Science, vol. 1256, pp. 270280. Springer (1997).

[8] Alstrup, S., Holm, J., Thorup, M., de Lichtenberg, K.: “Maintaining
information in fully dynamic trees with top trees”. ACM Trans. Algo-
rithms 1(2), 243264 (2005).

[9] R. F. Cohen and R. Tamassia. “Dynamic expression trees and their ap-
plications”. In Proceedings of the 2nd Annual ACM-SIAM Symposium
on Discrete Algorithms(SODA91), pages 5261, (1991). ISBN:0-89791-
376-0 .

[10] R. Cole and U. Vishkin. “Deterministic Coin Tossing with Applications
to Optimal Parallel List Ranking”, Inform. and Control, Vol. 70, pp.
32–53, 1986.

[11] G. N. Frederickson. “Ambivalent Data Structures for Dynamic 2-Edge-
connectivity and k Smallest Spanning Trees”, FOCS, pp. 632–641,
1991.

[12] D. Eppstein, Z. Galil, and G. F. Italiano. “Dynamic graph algorithms”.
In CRC Handbook of Algorithms and Theory of Computation, Chapter
22. CRC Press, 1997.

18

[13] Frederickson, G.N., “Data structures for on-line update of minimum
spanning trees, with applications”. SIAM J. Comput. 14(4), 781798
(1985).

[14] G. N. Frederickson. “A Data Structure for Dynamically Maintaining
Rooted Trees”, Proceedings of the fourth annual ACM-SIAM Sym-
posium on Discrete algorithms (SODA93), pp. 175-184, Jan. 1993,
ISBN:0-89871-313-7. Published in J. Algorithms 24(1), 3765 (1997).

[15] Frederickson, G.N., “Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees”. SIAM J. Comput. 26(2),
484538 (1997).

[16] Frederickson, G.N., “A data structure for dynamically maintaining
rooted trees”. J. Algorithms 24(1), 3765 (1997).

[17] H. Gazit, G. L. Miller, and S. H. Teng. “Optimal Tree Contraction in
the EREW Model”, in Concurrent Computations: Algorithms, Archi-
tecture, and Technology, Plenum, New York, pp. 139–156, 1988.

[18] Goldberg, A.V., Grigoriadis, M.D., Tarjan, R.E.: “Use of dynamic trees
in a network simplex algorithm for the maximum flow problem”. Math.
Progr. 50, 277290 (1991)

[19] X. He and Y. Yesha. “Binary Tree Algebraic Computation and Parallel
Algorithms for Simple Graphs”, Journal of Algorithms, Vol. 9, pp.
92–113, 1988.

[20] J. JáJá, An introduction to parallel algorithms, Addison-Wesley, 1992.

[21] Henzinger, M.R., King, V.: “Randomized fully dynamic graph algo-
rithms with polylogarthmic time per operation”. In: Proceedings of
the 27th Annual ACM Symposium on Theory of Computing (STOC),
pp. 519527 (1997).

[22] J. Holm and K. de Lichtenberg. “Top-trees and dynamic graph algo-
rithms”. Technical Report DIKU-TR-98/17, Department of Computer
Science, University of Copenhagen, (Aug. 1998).

[23] R. M. Karp and V. Ramachandran. “Parallel Algorithms for Shared-
Memory Machines”, in Handbook of Theoretical Computer Science, Vol-
ume A: Algorithms and Complexity, Jan Van Leeuwen, ed. , The MIT
Press, pp. 869–943, 1990.

19

[24] S. R. Kosaraju and A. L. Delcher, “Optimal Parallel Evaluation ofTree-
Structured Computations by Raking”, Proc. 3rd AegeanWorkshop on
Computing, Springer Verlag Lecture Notes in ComputerScience, Vol.
319, pp. 101–110, 1988.

[25] Mayr E.W., “The Dynamic Tree Expression Problem”, Report No.
STAN-CS-87- f lS6, Department of Computer Science, Stanford Uni-
versity, Stanford, CA, (May 2, 1987).

[26] G. L. Miller and J. H. Reif. “Parallel Tree Contraction Part 1: Fun-
damentals”, in Randomness and Computation, Vol. 5, S. Micali, ed. ,
JAI Press, Greenwich, CT, pp. 47–72, 1989.

[27] G. L. Miller and J. H. Reif. “Parallel Tree Contraction Part 2: Further
Applications”, SIAM J. Comput. , Vol. 20, No. 6, pp. 1128–1147,
1991.

[28] M. Reid-Miller, G. L. Miller, and F. Modugno. “List Ranking and Par-
allel Tree Contraction”, In John Reif, editor, Synthesis of Parallel Al-
gorithms, pp. 115194, Morgan Kaufmann, 1993.

[29] J. I. Munro, T. Papadakis, and R. Sedgewick. “Deterministic
SkipLists”, SODA, pp. 367–375, 1991.

[30] A. Morihataa and K. Matsuzakib, “A Practical Tree Contraction Algo-
rithm for Parallel Skeletons on Trees of Unbounded Degree”, Proceed-
ings of the International Conference on Computational Science (ICCS
2011), Procedia Computer Science, Volume 4, pp. 716, 2011.

[31] D. Sleator and R. E. Tarjan. “A Data Structure for Dynamic Trees”,
Journal of Computer and System Sciences, Vol. 26(3), pp. 362–391,
1983.

[32] D. D. Sleator and R. E. Tarjan. “Self-adjusting binary search trees”.
Journal of the ACM, 32(3):652686, (1985).

[33] Tarjan, R.E.: “Dynamic trees as search trees via Euler tours, applied
to the network simplex algorithm”. Math. Prog. 78, 169177 (1997).

[34] Tarjan, R.E., Werneck, R.F.: Dynamic trees in practice. In: Proceed-
ings of the 6th Workshop on Experimental Algorithms (WEA). Lecture
Notes in Computer Science, vol. 4525, pp. 8093 (2007).

20

[35] Werneck, R.F., “Design and Analysis of Data Structures for Dynamic
Trees”. Ph.D. thesis, Princeton University (2006).

[36] Renato F. Werneck, “Dynamic Trees”, Encyclopedia of Algorithms, pp.
1-99 (2008).

21

