A TOPOLOGICAL APPROACH TO DYNAMIC GRAPH CONNECTIVITY *

John H. REIF **

Aiken Computation Laboratory, Division of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.

A dynamic connectivity problem consists of an initial graph, and a sequence of operations consisting of graph modifications
and graph connectivity tests. The size n of the problem is the sum of the maximum number of vertices and edges of the
derived graph, plus the number of operations to be executed. Each graph modification is a deletion of either an edge or an
isolated vertex. Each graph connectivity test is to determine if there exists a path in the current graph between two given
vertices (the vertices can vary for distinct tests). The best previously known time for this dynamic connectivity problem was

Q?).

Our main result is an O(ng+n log n) time algorithm for the dynamic connectivity problem in the case of the maximum

genus of the derived graph being g.

Keywords: Graph algorithm, connectivity, dynamic algorithm, planar graph

1. Introduction
1.1. Previous graph connectivity algorithms

Tarjan [15] and Hopcroft and Tarjan [10] have
given linear time depth-first search algorithms for
graph connectivity and biconnectivity, and di-
rected graph strong connectivity. Although these
algorithms are asymptotically optimal for a given
single input graph, they may be inefficient to
apply in the case of dynamic connectivity prob-
lems where the graph undergoes repeated modifi-
cations, and we require connectivity tests on each
of the derived graphs. Dynamic graph connectiv-
ity in the case of only edge additions can be

* This work was supported by the National Science Founda-
tion under Grant No. MCS-82-000269 and by the Office of
Naval Research.under Contract No. N00014-80-C-0647.

** Present affiliation: Department of Computer Science, Duke
University, Durham, NC 27706, U.S.A.

solved in O(na(n, n)) time for any graph by use of
the disjoint set union algorithm [16]. The al-
gorithm of Frederickson [6] can be used to solve
the dynamic graph connectivity problem for planar
graphs with edge insertions and deletions in
O((log n)?) time per update. However, there was
previously no efficient solution to the dynamic
connectivity problem, in the case of general graphs,
except to execute the known depth-first search
algorithms on each of the derived graphs. This
requires quadratic time.

1.2. Dynamic depth-first search

One approach to dynamic connectivity prob-
lems is to develop a dynamic algorithm for updat-
ing depth-first trees. However, Section 4 gives
evidence that this cannot be done efficiently (i.e,,
in less than linear time per update in the worst
case) since this would imply an efficient solution
of a number of other complete dynamical prob-
lems.

Preprint of paper appearing in Information Processing 65
letters, Volume 25, Issue 1, 20 April 1987, Pages 65-70.

1.3. Our topological approach to dynamic
connectivity

Our basic approach is to assume graph G to be
embedded on an oriented surface. In this case,
connectivity properties of G can be computed
from topological properties of the embedding, such
as the genus and the number of faces. Further-
more, modifications to the graph may result in
changes in these topological properties, from which
we can determine changes in the connectivity of
G. We keep a special representation of the graph
embedding and its dual which allows us to effi-
ciently implement modifications to the graph em-
bedding, and to efficiently update the connectivity
properties of interest.

This paper is organized as follows: in Section 2
we define oriented graphs representing graph em-
beddings and describe efficient data structures for
maintaining topological properties of these em-
beddings. Section 3 describes our dynamic graph
connectivity algorithm with edge deletions. Fi-
nally, Section 4 considers complete dynamic prob-
lems.

2. Data structures for graph embeddings

Let G = (V, E) be an undirected graph where V
is a finite set of vertices and

EcC {{u, v} |u,vEV}.

An embedding of G onto an oriented surface can
be specified [3] by giving for each vertex vEV a
cyclic permutation 6(v) of the edges containing v.
We call (G, 6) an oriented graph. Our data struc-
ture for (G, 0) will represent each cyclic permuta-
tion 6(v) by a doubly linked cyclic list, and each
edge {u, v} €E will have pointers to the occur-
rence of {u, v} in 6(v) and 0(u).
Let

E= {(w,v)|{u, v} €E} U {(v,u)|{u, v} €E}

be the set of directed edges derived from E. Let
wm:E—E be the permutation on E such that
w((u, v)) = (v, w) iff edge {v,u} is immediately
followed by edge {v, w} in 8(v) (see Fig. 1). The

66

8(v) w
Fig. 1. The induced permutation .

faces of the embedding are the orbits of = (see
7).

Let F be the set of faces. Let ¢ be the number
of connected components of G. Euler’s equation
gives

|E|-|V|—|F|=2(g-0¢),

where g is the genus of the embedding,
For each edge {u, v} € E we have a dual edge

D({u, v}) = {f, £’}

consisting of the set of (not necessarily distinct)
faces containing (u, v) or (v, u). We define the
dual graph

D(G) = (F, D(E)),
where D(E) = {D({u, v}) |{u, v} €E}.

For each face f € F, we define a cyclic permuta-
tion D(6)(f) of the dual edges containing f, so that
dual edge D({v, u})= {f, f'} is immediately fol-
lowed by D({v, w})={f, f"”} iff directed edge
(u, v) is immediately followed by (v, w) in f (see
Fig. 2).

In addition to our data structure for oriented
graph, (G, 6) will also maintain the dual oriented
graph (D(G), D(0)) using a similar data structure.
Furthermore, we keep links to and from each edge
¢ € E and dual D(e) € D(E) (Guibas and Stolfi [7]
also have described data structures for graph em-
beddings).

6 (v)

£

Fig. 2. Oriented graph (G, 8) is given by sclid lines and oriented graph (G’, 8) is given by dashed lines.

We shall also use a balanced binary tree to
maintain a mapping face: E - F, so face((u, v)) is
the unique face containing directed edge (v, v) € E.

3. An efficient algorithm for dynamic connectivity,
with edge deletions

Given an initial oriented graph (G, 6;) of genus
g we wish to process a sequence of n operations
where we may (i) delete an isolated vertex, (ii)
delete an edge, or (iii) test if two given vertices are
in the same connected component. Let n be the
size of this problem, i.e., the sum of the number of
edges and vertices of G, and the number of
operations to be executed. '

We shall begin by executing the O(n) time
depth-first search algorithm of Tarjan [15] to de-
termine the connected components of G,. Also, in
linear time we can construct the dual graph D(G,)
and the mapping face as described in Section 2.

Suppose after processing some (but not all) of
the required operations in order, we have the
derived oriented graph (G, 6) of genus g, where

G =(V, E). We assume that we have maintained
the dual graph D(G) = (F, D(E)). We also assume
to have maintained a connectivity mapping CC:
V — V such that Yu,v € V, CC(u) = CC(v) iff u is
in the same connected component of G as v and,
furthermore, CC(v) is in the same connected com-
ponent as v.

Given this information, we require constant
time to delete an isolated vertex or to test if given
vertices are in the same connected component.

Our key problem is to efficiently delete an edge
{u, v}. In particular, we must appropriately de-
termine the resulting oriented graph (G’, 8’) and
its dual (D(G’, D(8’)), and also update the con-
nectivity mapping CC. By application of Euler’s
equation we have the following lemma.

3.1. Lemma. If D({u, v}) consists of two distinct
faces, then (G’, 8") has the same genus as (G, 6),
and the same connected components but one less
face. If D({u, v}) consists of a single face and
there is no path in G from u to v avoiding edge
{u, v}, then {G’, 0") has the same genus as (G, 0)
but (G, 0") has an additional face and connected

67

component. Otherwise, (G’, 9’) has the same con-
nected components as ‘G but there is an additional
face in (G’, 0’) and the genus of (G’, 0’) is one
less than the genus of (G, 8).

The oriented graph representation described in
Section 2 allows us to efficiently perform deletion
operations. Suppose D({u, v}) = {f}, f,} are dis-
tinct faces. We call this a type 1 deletion. In this
case, we need not modify CC since u, v will re-
main in the same component of G’. However, we
must merge f, into f, to form a new face {’ such
that if originally

D(8)(t,) = (o= {8, V}» €1s--- €40 €0 ---)

and

D(8)(f;) = (e = {u. v}, €f,--.. €%, €9, ---),
then the resulting cyclic permutation is

0(V)(£") = (1,.+-»€xs €}snrerCh-er)

(see Fig. 3). This is accomplished by first deleting
¢, from D(0)(f,) and D(0)(f,) and then perfor-
ming an insertion operation on the corresponding
doubly linked lists. We can update the mapping
face appropriately using the union algorithm for
balanced binary trees described in [1).

Next suppose D({u, v}) consists of a single face
f. We assume that for each vertex w € V there are
Boolean variables visit;(w), visit,(w) which are
initially false. We perform simultaneously a
depth-first search DFS, starting at vertex u of the
connected component containing u, and a depth-
first search DFS, starting at vertex v of the con-
nected component containing V. (We do not allow
DFS, and DFS, to traverse edge {u,v}.) We
alternately execute one step of DFS,, and then
one step of DFS,. We immediately terminate both
DFS, and DFS, if either terminates or if they visit
a common vertex.

The case where DFS,; and DFS, visit no com-
mon vertex is called a type 2 deletion. Without

el
/'.'—'”—-'—-J——'_"\ T e T e e e ~
/ \ g \,
/ I \
face £ o\ face f /
\ 2 / \
\ \ //
N o o e e e -._-._.,/ _____ —ppn — e —
. *
v
a
u
L. S S
ol N
\
{ \
| merged face f']
\ /
o e _-_____________/
e €1
v
b

Fig. 3. (a) Oriented graph (G, 8). (b) Oriented graph (G’,) resulting from a type 1 deletion of edge {u, v}.

68

loss of generality we can assume that DFS,;
terminates before DFS,. In this case, Lemma 3.1
states that u and v are in distinct connected com-
ponents. Hence, we can reset CC(w) =u for each
vertex w visited by DFS,. Also, we must ap-
propriately modify face f. If, originally,

D(B)(f) = (eo"_‘ {u’ V}, €15--5€1,
e;={u,v}, €., 5. -»€, € ---)

then the resulting (G’, 6”) has two induced faces
f’, £ where

D(0)(f') =(es,--s6_1s €45 ---)

Fig. 4. (a) Oriented graph (G, 0). (b) Oriented graph (G’, §’)
resulting from a type 2 or 3 deletion of edge {u, v}.

and
D(e)(f") = (ei+1""’ek’ €iv1s)

(see Fig. 4). Again, these can be constructed by a
constant number of linked list operations plus
O(log(|Vy | + V2])) steps to compute face((u, v))
and to appropriately modify face. The cost of a
type 2 deletion is thus

O(mm{ Vil lvzl}) +log(|V, |+ V2 1),

where V), V, € V are the connected components of
G’ containing u, v respectively.

The case where DFS, and DFS, visit a com-
mon vertex is called a type 3 deletion. By Lemma
3.1, the genus decreases by 1, and connectivity
mapping CC need not be modified since u and v
are on the same connected component of G’. The
cost of a type 3 deletion is O(n). Face f is mod-
ified just as in the immediately previous case.

After these type 2 or 3 deletion modifications,
we reset visit,(w) and visit,(w) to false for all
vertices w visited by DFS, and DFS,.

3.2. Theorem. Execution of our algorithm costs
O(gn + n log n) total time for the dynamic (dele-
tion) connectivity problem of size n and genus g.

Proof. We have only constant time cost for each
vertex deletion and connectivity test. We require
only a constant number of steps on each type 1 or
any deletion operation. We have a cost of O(n)
steps for each type 3 deletion operation but notice
that the genus drops by 1. Thus, the total cost for
all type 3 deletion operations is O(gn). On the
type 2 deletion operations, the genus remains the
same, but the number of connected components
increases by 1. Suppose H is the forest of derived
connected components, where each node of H
corresponds to a connected component of a de-
rived graph, and each internal node is weighted by
the minimum size of its two immediate successor
components plus the logarithm of the sum of their
sizes. Then, the total cost of processing all the
type 2 deletion operations is at most a constant
factor times the sum of all the weights of the
internal nodes of H. It is easy to show that the
worst-case cost is when H is a balanced binary
tree and hence the total cost of all type 2 deletion

69

operations is O(n log n). This implies the total
cost of all operations to be O(ng + n log n) as
claimed. O

4. Complete dynamic problems

There are a large number of problems with
linear time sequential RAM algorithms on a single
input instance, but which seem to require a com-
plete recomputation in the worst case if a single
symbol of the input is modified. Many of these
problems are complete in deterministic poly-
nomial time with respect to log space TM reduc-
tions.

Examples are:

(1) the acceptance of a linear time TM,

(2) path system [2],

(3) the Boolean circuit evaluation problem [12],
(4) unit resolution [11}, and

(5) depth-first search numbering of a graph [14].

In fact, all the above problems have the follow-
ing properties:

(P1) the known reductions between these prob-
lems can be done in linear time by a sequen-
tial RAM.

Furthermore,

(P2) (given a suitable encoding) each of these
reductions is constant time updatable: if we
modify one symbol of input to an already
computed reduction, then the reduction (but
not necessarily the problem) can be recom-
puted in constant time on a sequential RAM.

Consider the dynamic problem of processing a
sequence of n single bit modifications to an input
instance of any of the above problems of size n,
where the problem satisfies (P1) and (P2). It fol-
lows from (P1) and (P2) that if any of the result-

70

ing dynamic problems can be solved in t(n) = o(n?)
time, then all these dynamic problems can be
solved in O(t(n)) time.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Computer Algorithms (Addison-Wesley,
Reading, MA, 1974).

[2] S.A. Cook, An observation of time-storage trade-off, J.
Comput. Systems Sci. 9 (1974) 308-316.

[3] J. Edmonds, A combinatorial representation for poly-
hedral surfaces, Amer. Math. Soc. Notices 7 (1960) 646.

[4] S. Even and Y. Shiloach, An on-line edge deletion prob-
lem, J. Assoc. Comput. Mach. 28 (1981) 1-4.

[5] 1. Fillotti, G. Miller and J.H. Reif, On determining the
genus of a graph in O(v™(#?) steps, 11th Symp. on Theory
of Computing (1979) 27--37.

[6] G.N. Frederickson, Data structures for on-line updating
of minimum spanning trees, Proc. 15th Ann. ACM Symp.
on Theory of Computing (1983) 252--257.

[7} LJ. Guibas and J. Stolfi, Primitives for the manipulation
of general subdivisions and the computation of Voronoi
diagrams, Proc. 15th Symp. on Theory of Computing,
Boston, MA (1983) 221-234.

{8] J.E. Hopcroft and R.E. Tarjan, Efficient planarity testing,
J. ACM 21 (1973) 549-568.

[9] J.E. Hopcroft and R.E. Tarjan, Dividing a graph into
triconnected components, SIAM J. Comput. 2 (3) (1973).

{10] J.E. Hopcroft and R.E. Tarjan, Efficient algorithms for
graph manipulation, Comm. ACM 16 (6) (1973) 372-378.

[11] N.D. Jones and W.T. Laaser, Complete problems for
deterministic polynomial time, Theoret. Comput. Sci. 3
(1977) 105-117.

[12] R.E. Ladner, The circuit value problem is log space com-
plete for P, SIGACT News 7 (1) (1975) 18-20.

[13] G. Miller, An additivity theorem for the genus of graph,
MIT Tech. Rept., 1983,

[14] JH. Reif, Depth-first search is inherently sequential, In-
form. Process. Lett. 20 (5) (1985) 229-234.

[15] R.E. Tarjan, Depth-first search and linear graph al-
gorithms, SIAM J. Comput. 1 (2) (1972) 146-160.

{16] R.E. Tarjan, Efficiency of a good but not linear set union
algorithm, J. Assoc. Comput. Mach. 22 (1975) 215-225.

[17] A. White, Graphs, Groups and Surfaces (North-Holland/
American Elsevier, New York, 1973),

The pgrallel computation of minimum cost
paths in graphs by stream contraction

V. Pan *

Departmen: of Mathematics and Computer Science, Lehman College, CUNY, Bronx, NY 10468, USA and C omputer Science

Department, SUNY Albany, Albany, NY 12222, USA

J. Reif **

Computer Science Department, Duke University, Durham, NC 27706, USA

Abstract

We accelerate by a factor of log #n and with no increase of the processor bound our previous parallel algorithm for path
algebra computation in the case of the minimum cost path computation in an n-vertex graph and, more generally, wherever
the path algebra has an order relation defined by its ® operation. The acceleration is obtained by means of a novel technigue

of stream contraction.

Keywords: Parallel algorithms, computational complexity, path algebras

1. Introduction. General stream contraction fech-
nique and the main result for path algebra

It has been well recognized that numerous im-
portant computations of paths in an n-vertex graph
G =(V, E) can be both unified and simplified by
means of reducing them to the evaluation (over a
fixed dioid, also called semiring or path algebra)
of the quasi-inverse 4* given an n Xn matrix

* Supported by NSF Grants DCR 85-07573, CCR8805782
and CCR 9020690 and by PSC CUNY Awards No. 668541,
No. 669290 and No. 661340.

** Supported by Air Force Contract AFOSR-87-0386, ONR
Contract N00014-87-K-0310, DARPA/ISTO Contract
N00014-88-K-0458, ~:IR Contract DAAL03-88-K-0195,
and NASA/CESDIS Subcontract 550-63 NAS 5-30428
URSA.

A = A(G) associated with the graph G (see
[1,2,4,6], for details).

In the present paper we propose a novel general
technique of stream contraction for the accelera-
tion of parallel algorithms by means of their sys-
tolic rearrangement and demonstrate its power by
accelerating the recent parallel algorithms of [6]
for several important path algebra computations.
To show how this technique of stream contraction
works, we will now describe two algorithms. The
first generalizes the algorithm of [6] and the sec-
ond represents its new acceleration. We assume
that 4, X and W (with subscripts) are matrices
related <o each other through the functions f, g, p
and ¢q; 4 and K(h) for h=0,1,...,d are fixed
positive input integers, A, is an input matrix and
Ay ko= Wakny for 1=0,1,..., d, are the out-

79

Preprint of paper appearing in Information Processing Letiers, Vol.
40, October 25,1991, pp. 79-83.

put matrices. For path algebra computations, the
matrices represent the input, output and auxiliary
graphs, and the output defines the paths and their
properties.

Algorithm 1.

for h=0,1,...,d do
for k=0,1,....,K(h)—1do
X 0=P(Anp)
Wio=1f(Xuo)
Wik+1=9(Wp i)
Ani10= 8 Wy kiay Ano)
Ap ko =Ano

end for
end for
Algorithm 2.
for h=0,...,d do
Xoo=p(A4)0)
Wyo=1(X,0)
Api10= 8(Whos Ano)-
end for

forh=0,...,d do
for k=0,...,K(h)—1do
Wk =9(X 1o W.2)
Apirk1= 8 (Whrars Ans)

Xh.k+l =p(Ah.k+l)
end for
end for

Applying Algorithms 1 and 2, for appropriate
functions f, g, p, ¢ and K(h), to certain path
algebra computations, we will arrive at the same
desired output (see below). If we assume that each
evaluation of f, g, p or ¢ can be performed in a
single time-step on a single processor, then Al-
gorithni 1 takes ¥9-) K(k) time-steps on a single
processor and cannot run faster even if more
processors are available, whereas Algorithm 2 takes
3(d + 1 + max, K(h)) steps using d + 1 processors
because the second “for” locp (for h=0,...,d)
can be performed concurrently.

In the particular case of the algorithm of [6] as
Algorithm 1, we achieve a speedup of ¢ log n for
a positive constant ¢; our acceleration technique
requires no increase of the asymptotic processor
bounds and applies to a large and important class

80

of the minimum cost path computations in the
planar graphs or planar digraphs G having no
negative cost cycics. Furthermore, we may allow
negative cost cycles in G provided that we com-
pute paths consisting of at most n= |V | edges
over dioids (semirings) S whose operation + de-
fines an order relation, so that a + b < a, for any
pair of the elements of S [1.2,4,6]. Moreover,
similarly to 6}, we may relax the assumptions that
the input graph or digraph G is planar; what we
actually need is just an s(n)-separator family de-
fined by a fixed separator tree of G, where s(n) =
O(n); in particular, for planar graphs, s(n)=
O(/n).

With appropriate modifications, the stream
contraction technique can be applied to many
other computational problems, in particular, see
{31

Hereafter, for simplicity we assume that G is
an undirected graph (the extension to digraphs G
is straightforward, see [6]).

2. The “old” algorithm

We first recall that the aigorithms of [6] com-
pute the matrix A* by means of computing its
recursive factorization (given by equations (8) and
(9) of [6]),

T]
Ag=PAP", 4,= X Y ,
Y, Z, | (=)

Api1=2,® YhXh*YhTs

e I x*v 1 x o[1 o
"~ 1o I 0 Ara]| YXr If
(*+)

where P denotes a permutation matrix, A=
0,1,....,d, d=0(og n), n= |V |, the number of
vertices of the input graphs G = (V, E), and where
the choice of P and the partition of the n, X n,
matrix A, into its blocks X,, Y, Z, and Y7
depends on the separator structure of the graph
and is computed in the nested dissection al-
gorithm of [5], which is the basis of the algorithm
of [6]. The algorithm of [6] consists in recursive

evaluation of X;* and A, ,, for h=0,1,....d,
where in the case of the minimum cost paths with
1o negative cost cycles the quasi-inverse X;* (given
X,) is computed by using the matrix equations
XF=eoX,) forall i>s(n,)—1 (see [1-3.6]),
and then the matrices 4,,, (and thus X, ,) are
computed by using (*). The computation is effec-
tive because n, decreases as a geometric progres-
sion as & grows and X, is a block diagonal matrix
with diagonal blocks of smaller size (of the size of
the separators), as these are well-known properties
of the generalized nested dissection algorithms, to
which class the algorithm of [6] belongs. On the
other hand, the evaluation of X}*., only starts
when A, , and thus its submatrix X,,, has been
computed, and therefore, only when the quasi-in-
verse X;* has been evaluated (see (*)). Therefore,
the parallel time bound of the algorithms of [6}
equals the sum of the respective bounds for com-
puting X;* for all h, h=0,1,...,d, d being of
the order of log n. In the present paper, we start
computing X,*%, before we end computing X;*
and this way speed up the parallel computations.

To reconcile this algorithm with Algorithm 1 of
the Introduction, we set

Ago= Ay, Xoo= Xo»
p(4;) =X, (according to (*)),
f(X)=IeXx, q(W)=WwW?

g(W, 4,)=2Z,® YWY, (accordingto (*)).

Then we observe that W, ., =(I® X,)* and,
therefore, W, x(ny=X;* since 25 >s(n,)-1,
Ah.K(h) =Ah.0 =Ah fOl' all h (aS deSil'ed).

3. The new algorithm

Our new improvement relies on a systolic re-
arrangement of the algorithm of [6], so that com-
puting X,* , (and therefore, A},) starts before
the matrix X;* has been evaluated.

In our new accelerated factorization, we define
a sequence of matrices A4, ,; we proceed recur-
sively in A, for h=0,1,...,d, and in k, for k=
0,1,...,d +[log, n], starting with 4,9 =A,. For

all 4 and &, we let

X, T
Ah_k = [h.k Yh.l\

Yt Zie| W
Wio=18 X, ,,
Apir0= 2,40 Y, oW, oV, @)
Wik = (Xis ® W,), (3)
Apir st = Zp ko © Yy Wy i Vi (4)

We first compute the matrices W, o, 4, . for
all h, by using (2); then we recursively apply (3)
and (4) in order to compute first the matrices W, ;.
Ay, for all h, then the matrices W, ,, a,. 5.
for all h, and so on, ending with W, , and 4,.,,
for k=d+[log, n]. Finally, we set X;*=W,,,
A, = A, . for k= h + [log, n] and for all A, which
defines the desired recursive factorization (*),
(* =)

In an alternate version of this algorithm, we
end the computation with & =[log,(s(ng) ~ 1)
and arrive at (*), (* *) by setting X;* = W, ..
A,=A,, for k=[log,(s(n.)—1)] and for all &
(see Remark 2 below). (We give two versions of
the algorithm and of the correctness proof to
demonstrate more fully some variations of the
stream contraction technique.)

To reconcile the latter algorithm (in its second
version) with Algorithm 2 of the Introduction we
set

X, «=p(A,,) (according to (1)),

f(X)=IeX, q(X,W)=(XoWw),

g(W, 4,4)=Z, , ® Y, WY,
according to (1) and (4)).

In the next section (see Remark 7, Theorem 1
and Lemma 5) we will prove that A, = A4, x4
W, k= X" (as desired).

In the resulting algorithm, we avoid computing
the auxiliary quasi-inverses X;*, and all the oper-
ations used are similar to ones used for computing
A, according to (*) provided that Z,, Y, and
X, are available cost-free. More precisely, this
applies to computation of 4,4 according to (2).
The asymptotic complexity estimates for (2) are

8i

thus the same as for the algorithm of [6] except
that the parallel time is now less by the factor of
clog n (for a positive constant c), since here we
do not compute X;*. Next, for every k, compute
W,.x+1 and A4, , ., for all & according to (3) and
(4). Then again, no quasi-inverses need be com-
puted at these stages, and we only need to perform
the matrix additions and multiplications. For ev-
ery h, we perform d+ [log, n}= O(log n) such
matrix operations by using O(log2n) time and

O(s(n4)’/10g n,)

processors, under EREW PRAM, and O(log)
and s(n,)* under a randomized CRCW PRAM,
where 4, is an n, X n, matrix. We do this concur-
reatly for all O(log n) values of h, and since n,
decreases as a geometric progression as & grows,
we arrive at the overall asymptotic time and
processor bounds

O(log?n) and O(s(n)’/log n),

respectively, under EREW PRAM, and O(log n)
and O(s(n)*), under a randomized CRCW PRAM,
which improves the asymptotic complexity bounds
of [6], as we claimed.

4. The correctness proof

The correctness of the algorithm is immediately
implied by Lemma 5, by Remark 6 below and by
the following theorem:

Theorem 1. A, , = A,, forall h, ifk = h + [log, n].

The theorem follows from the equations (*),
(1)-(4), and Lemmas 3 and 5 below (see also
Remark 6 below). To prove and even to state

Lemmas 3 and 5, we will need some auxiliary
definitions.

Definition 2. Hereafter, (V) ; denotes the (i, j)-
entry of a matrix ¥, | p| denotes the number of
distinct edges (that is, the length) of a path p, and
¢(p) denotes the cost of a path p, defined as the
sum of the given costs of all the edges of p. We
will assume that all the graphs are complete, for

82

we may interpret any absent edge as an edge of
infinite cost.

Lemma 3. For all h, k, i, and j, we have:
(Wui)i; = (X)) (Ani)ij=(A4)i)
Moreover, if k > 1, then

(War-1)i, 2 (W), (Ap i) 2 (A4 0) 5

Lemma 3 immediately follows from the defini-
tion of the recursive factorizations (*) and the
equations (1)—(4) (here, we apply induction on k).

Definition 4. We will partition the set V of all the
vertices of the graph G associated with the matrix
A, into the subsets V;, V..., V, associated with
the matrices X,, X;...., X, of the recursive fac-
torization (*). (In fact, this partition of the set V
is computed in the nested dissection algorithm of
{51) Hereafter, let V,=U" g=0Vy and let G, (V)
denote the maximum subgraph of G induced by
V,, (such that G,,(V,,) (V,,, E,,) where E,, de-
notes the set of all the edges of G with both
endpoints in V).

Lemma S. Let p denote a minimum cost path in
GA(V,,) benween two vertices i and j in V,, Let

l pl < Zmax(k—h.O)' (5)
Then
(m.k):‘.j=(xh*)i.j=c(l’)- (6)

Remark 6. The assumption (5) always holds for
k > h + [log, n] and for any minimum cost path p
in G, since we suppose that |p|<n (see the
Introduction).

Let kK =d+{log, n]— 1, so that (5) holds, due
to Remark 6. Let us deduce Theorem 1 from
Lemmas 3 and 5. Indeed, Lemma 5 implies (6).
Furthermore, from Lemma 3, it follows that for all
h and k,

Xok < Xpo=X,, Y, <
Zy k< Zyo=Z,.

< Yo=Y,

Substitute these inequalities and (6) into (4) and
deduce that

T
Ak SZ® VXY, =4,

Combine the latter inequality with A, ;.. >
A,y due to Lemma 3 and arrive at Theorem 1.
0

It remains to prove Lemma 5.

Proof of Lemma 5. Lemma 5 is obvious for k < A,
in particular, for k = 0. Apply induction on k and
always assume that h < k. First note that, by the
definition of X;*, (X,*), ;=c(p), and that, by
virtue of Lemma 3, (W,), ; = (X,F), ;-

It remains to prove that (W),), ;< c(p). Fixa
positive k,, suppose that the latter unequality
holds for all 4 and for all k <k, and consider a
path p satisfying the assumptions of Lemma 5 for
k = k. Partition p into two subpaths p, and p,
such that p=p, p,; the two endpoints of p, are
denoted u, and v, for s =1, 2, so that

uy=i, vy =, v;=j wherei,u,, j€V,, (7)

and
[Pl 257174, (®
for s=1, 2.

Note that the induction hypothesis implies that
(Wh.ku—l)u,_,-, <c(p)s 9)
as long as (8) holds.

The inequalities (8) and (9) hold for s=1, 2.
On the other hand, (3) imples that

2
Wh.k., = (Xh.ko—-l ® Wh.k.,-l) '

so that
(Wh.ko),.,gc(Pl) +c(p) se(p).

This implies (6). O

This was a graph-theoretical proof. Here is an
alternate algebraic proof. Recursively apply (3)
and deduce that

Wi < Wi, < th.‘o= (1@ Xh.o)z‘ =(I® Xh)z‘L

for all h and k, but (/@ X,)"" 1= X}*, and
s(n,)<n,<n. QO

Remark 7. The latter proof implies that W, ;, = X,*
and A4, , = A, already for

k = [log,(s(n,) = 1)] < [loga(s(no) — 1)].

References

[1] R.C. Backhouse and B.A. Carré, Regular algebra applied to
path-finding problems, J. Inst. Math. .ipplics. 15 (1975)
161-186.

[2] B.A. Carré, An algebra for network routing problems, J.
Inst. Math. Applics. 7 (1971) 273-294,

[3] H. Gazit and J. Reif, A randomized parallel algorithm for
planar graph isomorphism, in: Proc. 2nd Ann. ACM Symp.
on Parallel Algorithms and Architecture (1990) 210-219.

[4] M. Gondran and M. Minoux, Graphs and Algorithms (Wi-
ley/Interscience, New York, 1984).

[5] V. Pan and J. Reif, Fast and efficient parallel solution of
sparse linear systems, Tech. Rept. 88-19, Computer Sci-
ence Dept., SUNYA, 1988.

[6] V. Pan and J. Reif, Fast and efficient solution of path
algebra problems, J. Compur. System Sci. 38 (1989) 494~
510.

83

