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The advantage of optics is its capability of providing highly
parallel operations in a three-dimensional space. In this paper,
we propose optical architectures to execute various image
compression techniques.

We optically implement the following compression techniques:

o transform coding

e vector quantization

® video coding

We show many generally used transform coding methods,
for example, the cosine transform, can be implemented by a
simple optical system. The transform coding can be carried out
in constant time.

Most of this paper is concerned with an innovative optical
system for vector quantization using holographic associative
matching. Limitations of conventional vector quantization
schemes are caused by a large number of sequential searches
through a large vector space. Holographic associative matching
provided by multiple exposure holograms can offer advantageous
techniques for vector-quantization-based compression schemes.
Photorefractive crystals, which provide high-density recording in
real time, are used as our holographic media. The reconstruction
alphabet can be dynamically constructed through training or
stored in the photorefractive crystal in advance. Encoding a new
vector can be carried out by holographic associative matching
in constant time.

An extension to interframe coding using optical block matching
methods is also discussed.

Most of the results in this paper were previously presented
in our earlier paper [1].

I. INTRODUCTION

A. Image Compression

Image compression is crucial for many applications [2].
The objective of image compression is to reduce the bit
rate for signal transmission or storage while maintaining
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an acceptable image quality for various purposes. In video
signal transmission, one can compress original images so
that the high-quality images which would otherwise require
high bandwidth can be transmitted through a medium with
relatively low bandwidth. In medical imaging, one can use
image compression techniques to store a large number of
X-ray pictures that are routinely produced at hospitals.

Compression techniques generally exploit the redundancy
in the image. The transform coding such as the Fourier
transform coding or the cosine transform coding decom-
poses an input image into its spectral components [3], [4].
One can achieve compression by appropriately coding the
spectral components which are above a certain threshold
value. Unfortunately, the difficulties of implementing the
transform coding arise from the complexity of transforming
algorithms, which require O(nlogn) time or O(logn) time
in parallel for an n-point transformation.

A vector quantizer is a system that maps a set of
continuous or discrete vectors into a finite set of discrete
vectors that are suitable for transmission or storage. The
vector quantization techniques for compressing image and
speech signals have been extensively investigated by many
researchers [5], [6]. The basic algorithm using full search
in the vector space requires an extremely large number of
computations. A similar approach using tree search has less
computational complexity but requires larger storage and
needs still a quite large number of computations.

In video compression, the block matching techniques
are used to estimate the displacement of objects [7], [8].
To find the displacement of an object, a small block
around the object is correlated with the previous or next
frames. The correlation operations require a large number
of computations.

These problems are caused by sequential execution of the
algorithm on conventional electronic computers. Although
some parallelism can be obtained by standard parallel-
processing hardware, electrically implemented interconnec-
tion may not provide enough bandwidth to handle a large
number of computations.
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B. Power of Optical Computing

Optical computing has recently become a very active
research field [9]-[13]. The obvious advantage of optics
is its freedom in space. A set of light beams can establish
communication links among optical logic gates in a three-
dimensional space, whereas the VLSI model must confine
electrical wires on a two-dimensional plane.

From a theoretical computational point of view, for a
given problem, there is a lower bound on the circuit area
and its computational time. One such lower bound on
the planar VLSI model called “AT? bounds” states that
AT? = Q(I?), where A is the circuit area, T is the
time used by the circuit, and [ is information content!
of the problem [14]. In a three-dimensional electrooptical
model called VLSIO [15], the similar lower bound can
be expressed as V32 = Q(I%/2). This implies that as
the information content becomes larger, the VLSI circuit
requires a larger and larger area to solve the problem in
a fixed amount of time. Using three-dimensional optical
systems as in the VLSIO model, we can overcome this
interconnection problem by utilizing space in a volume.

C. Optics for Image Compression

Although the advantages of optics are well known, the
realization of a general-purpose optical computer is yet
to happen. On the other hand, special-purpose optical
computers have been implemented for areas such as image
and signal processing [16], [17], associative memory [18],
and neural networks [19], [20]. These systems exploit the
advantages of optics such as the ability to perform a two-
dimensional Fourier transform in constant time and to
implement associative memory using holograms.

A lens can compute the Fourier transform of an input
image [21]. A transparency whose transmittance represents
the input image is placed at the front focal plane of the
lens. The amplitude of the light passing the transparency
is modulated by the transmittance. The complex amplitude
of the light at the back focal plane represents the Fourier
transform of the input image.

Holograms have been used for associative matching
[22]-[26]. One can record multiple images on a single
holographic medium using distinct reference beams as
their associative keys. Later, the stored image can be
reconstructed by using its corresponding reference beam as
a key associated to the image. Recently, dynamically mod-
ifiable holographic media such as photorefractive crystals
(i.e., iron-doped LiNbO3) have been widely investigated
for associative memory. The refractive index of these
media can be optically changed to store holograms. The
thickness of the media allows the superposition of many
holograms in a common volume in the crystal. A large
number of holograms can be stored in a volume by using
a recording reference beam that has a distinct angle for
each hologram. Later, each hologram can be read out

! Information content is the number of bits that must cross a boundary
in order to solve the problem. The boundary separates the circuit into two
sides, each of which holds approximately half the input bits.
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Fig. 1. Optical cosine transform.

using its corresponding reference beam. Photorefractive
crystals are particularly attractive as holographic media,
since they provide high-density recording in real time.
The maximum number of interconnections that can be
implemented in the photocrystal is between 10° to 10%°
Jecm? [20]. Unfortunately, it is difficult to achieve this limit
because of the incoherent erasure during the sequential
recording process. The exposure schedule must be carefully
controlled to keep the recorded holograms with equal
efficiencies. In this case, the maximum number of exposures
is in the order of 10¢ [27], [28].

II. OPTICAL COSINE TRANSFORM CODING

A. Cosine Transform

An optical implementation of a two-dimensional cosine
transform is quite simple, as depicted in Fig. 1. A symmet-
rical image of the original image can be optically created
using two mirrors. The two perpendicularly arranged mir-
rors create three virtual images of the original image. A lens
is used to compute a two-dimensional Fourier transform in
constant time. The symmetry of the input image allows
its cosine transform to be obtained at the back focal
plane. The amplitude of each spectral component represents
its corresponding Fourier coefficient. Unfortunately, if the
intensity is directly measured, we obtain the square of each
coefficient. To determine the sign of each coefficient, we
can add a constant reference beam at the axis to bias the
amplitude of the spectrum components. When the intensity
is measured, the amount of this bias term can be subtracted
to determine the amplitude of each component.

III. OPTICAL VECTOR QUANTIZATION

A. Vector Quantizer

Extensive studies of vector quantizers (VQ) have been
made by many researchers [5], [6]. Lloyd proposed an
iterative nonvariational method for optimal PCM design
algorithm for scalar variables. Linde, Buzo, and Gray gen-
eralized Lloyd’s approach to the general vector quantizer
design and gave a method referred to as the LBG algorithm
[29].

The computational difficulty of VQ comes from the
large number of search operations it requires for finding
the vector in the codebook that best matches the input
vector. To reduce the number of comparisons, Buzo et al.
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introduced a tree-searched vector quantizer (TSVQ). The
drawback of TSVQ is that it requires more storage than
the full-search VQ and it does not necessarily find the best
matching vector.

B. Computing Distortion Measure

It turns out that it is easier to compute the inner product of
two vectors in optics. The computation of the squared error
distortion is transformed into that of the inner products.

dz,y) = ||z — yl* = l|z|I* + [ly}i* - 22y.

We introduce two encoding methods.
1) Scaled Coding: Each template vector y is normalized
as follows:

’ CY:
Y=
7

In this case, the Euclidean norm of the vector is ||y||? =
kc?. In Gain/Scale VQ [30], the template vectors are
normalized in this way. The input vector is matched against
each template vector. The template vector which maximizes
the value of the inner product is chosen as the shape vector.
The gain factor, which is the value of the inner product, is
independently quantized.

2) Expanded Coding: Each input vector z and template
vector y, each of length k, are transformed into vectors z’
and y’, each of length 3k, respectively, as follows:

z;, ifi<k
zi=4{c¥/2-x%/2, ifk<i<2k
1, otherwise
yl = 1, ifk<i<2k

c?/2 — y?/2, otherwise.

In this case, taking the inner product of z’ and ¥’ computes
the squared error distortion.

k k k
1 1
o . L o 2 __ .2 st 2 _ .2
a:y_zi :cly1+2% (s w,)+22 (s —u)
1
=kc® - §(||ﬂv||2 + lyll? - 2zy)

These encoding schemes can be implemented using
SLM’s or nonlinear optical filters. In the following
subsections, we assume one of the above encoding schemes.

C. Design of Holographic VQ

. 1) General Configuration: Let the size of each block be
vk x Vk. We use two light source arrays at the input
plane: one for the input image block array S; and the
other for the label array S;. The first array, Sy, is of size
vk x Vk and is used to represent each vector of the input
image. Each pixel of the input vector can be represented by
either amplitude (coherent reading) or intensity (incoherent
reading). For recording, a coherent source must be used, but
for reading, either a coherent or incoherent source may be

950
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Fig. 2. Holographic vector quantizer.

used. If the pixel values are encoded in amplitude, the total
intensity of the input vector in Scaled coding method is kept
constant. Otherwise, this issue is not very significant to the
general configuration. We assume the intensity encoding
with incoherent reading.

The other array at the input plane, Ss, is of size VN x
V/N, and provides one of N label beams to the holographic
medium. We have two arrays of photodetectors at the output
plane: one for the reconstruction vector array D; and the
other for the label array D,. The detector array, D;, is of
size vk x vk and is used for reconstructing the decoded
vector. The other array, Dy, is of size VN x VN and is
used to detect the best matching label for the input vector.
Figure 2 shows a configuration of the system. Two Fourier
lenses are used to form Fourier transform holograms in the
photorefractive crystal placed between the lenses.

We consider each pixel in the input plane as a point
source. Each point source produces a plane wave after
passing the first lens. There are k pixels in S; and N pixels
in S3. At the output plane, there are k pixels in D; and N
pixels in D>. We give a global index number to each pixel
of the vector arrays and the label arrays. The pixels of the
vector arrays are indexed from 1 to &, and those of the label
arrays are indexed from k+ 1 to k£ + N. The image of the
ith pixel in the input plane is formed at the position of the
ith pixel in the output plane via the two Fourier lenses.

In photorefractive crystals, holograms are recorded via
the modulation of the index of refraction by the space-
charge field induced by a spatially varying optical intensity
distribution. Interaction between light waves and multiple
gratings in the volume can be treated as linear if the
diffraction efficiencies of the gratings are very small [31].
In this case, each incident plane wave interacts with every
grating in the volume independently. The diffracted light
for an arbitrary configuration of the input pixels is thus
computed as a sum of each diffracted wave via each grating.
Each grating formed by recording a pair of two plane waves
is capable of connecting the pair of pixels.

Let n;; be the diffraction efficiency of the grating con-
necting the sth pixel and the jth pixel. Assuming incoherent
reading with the first-order crosstalk, the intensity of light
at the jth pixel due to a light wave from the ith pixel with
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Fig. 3.  Pixel arrangement with no crosstalk.

intensity I; is given by [32]

I; = Ii’lh'j + Zzlz‘npq(ivj)

p#i q#j

where 7,,4(4, §) denotes the crosstalk diffraction efficiency,
which is the diffraction efficiency of light from the 5th pixel
to the jth pixel due to a grating connecting the pth pixel
and the gth pixel.

The phase mismatched crosstalk term can be eliminated
under several conditions [31], [32]. The first condition
limits the minimum spacing between pixels in the vertical
direction. In other words, the minimum spacing of two
pixels must be greater than \f /L, where f is the focal
length of the lens. The second condition restricts the
placement of pixels in the horizontal direction. A grating
that connects two pixels in a column may connect the pixels
in the same two rows of other columns. Thus one way
to satisfy this condition is to keep the horizontal spacing
between label pixels larger than the whole dimension of
the vector array as in Fig. 3.

Under these assumptions, a hologram connecting a pair
of pixels can be recorded without seriously affecting the
connections between other pairs. If we assume the phase
mismatched crosstalk term to be negligible, we can consider
the photorefractive crystal as a linear mapping from input
plane vector I to output plane vector O. I is a vector of
length k£ + N whose elements correspond to the intensity
values of pixels at the input plane. Similarly, O is a vector
of length £+ N whose elements correspond to the intensity
values of pixels at the output plane. The mapping from the
input plane to the output plane can be written as a matrix
vector multiplication.

O=HI

where H is a (k 4+ N) x (k 4+ N) matrix whose (4,7)th
entry is 7;;.

In this paper, we assume the above model to characterize
photorefractive crystals. However, the nonlinear dynamics
of multiple-exposure holograms make it extremely difficult
to characterize analytically the recorded holograms. It is not
possible to record multiple holograms independently. The

exposure of each new hologram partially erases previously
recorded holograms. For a more complete analysis, one may
have to rely on experiments.

2) Encoding and Decoding: We assume that the recon-
struction alphabet of size NV is already stored in the photore-
fractive crystal. The photorefractive crystal is initialized by
a uniform plane light wave. To record the reconstruction
alphabet, each vector in the reconstruction alphabet is
loaded into array S; one at a time. Array Sy can produce
one of the N label beams.

The exposure of a pair of each vector wave and its
associated label beam increases the connection strength
by an amount proportional to the intensity of each pixel.
The photorefractive crystal stores each 7;j as an element
in matrix H[20]. Each vector y; is of length k& and is
represented by intensity. Each diffraction efficiency n;; is
proportional to the product of the intensity values of the ith
pixel and the jth pixel. Thus after recording each vector in
this alphabet, we have

Hiy y1 oy - un
t
1

Ho | gt I

Ui
where y! denotes the transposed vector of y;, and Hy; is
the sum of every outer product of Yi-
Consider encoding a new vector y. The input plane vector
I can be written as I = (y?,0,---,0). Thus the output
plane vector O can be written as

0= ((Hllyt)ti y§y7 yéy, Y yf\’y)

The first k elements of O correspond to the intensity values
at Dy and are not of interest to us. The rest of the N
elements correspond to the intensity values at label array
Ds. Each pixel receives light with intensity proportional
to the inner product of the input vector and the recorded
vectors.

In Scaled coding, maximizing the inner product gives the
best matching shape vector and quantizing the value of the
inner product gives the gain factor. In Expanded coding, the
inner product gives the complement of the actual squared
error distortion. Thus maximizing the inner product gives
the best matching vector. In both coding methods, we
choose the label of the pixel with the maximum intensity
value as the encoded symbol.

Thus encoding a new vector is simple and fast. There
are no explicit computations or searches required to find
the best matching vector in the reconstruction alphabet.
Each new vector can be loaded into array Sp, which in
turn illuminates the photorefractive crystal to retrieve its
associated label. The retrieved light reaches some pixels at -
array Dj. Array Dj selects the pixel with the maximum
intensity and transmits its label as the encoded symbol.

Decoding is very simple. For a given label, the recon-
struction of its associated image vector is straightforward.
The label is loaded into array S, that will illuminate
the photorefractive crystal. By associative matching of the
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Fig. 4. Block matching by optical correlation.

holograms, the image vector associated with the label will
be obtained at array D;.

The speed of the system is only limited by the switching
speed of the source array.

3) Codebook Generation: We consider the LBG algo-
rithm for optimizing the codebook and the splitting tech-
nique for creating the initial codebook. In order to imple-
ment these algorithms, we need three operations: computing
the distortion, partitioning the training sequence into the
minimum distortion partition, and computing the centroid
of each partition.

Each vector from the training sequence is loaded into
array S; one at a time. Array S; illuminates the pho-
torefractive crystal. The diffracted waves from the crystal
are detected by array D,. The distortion is obtained by
measuring the intensity and the training sequence is parti-
tioned into the minimum distortion partition. The centroid
of each partition is computed by recording each pattern in
the partition.

IV. OPTICAL VIDEO COMPRESSION

A. Motion Detection

The block-matching algorithm uses a two-dimensional
correlation function to estimate the displacement of small
blocks. The computational cost of correlation is high. Thus
in practice, each correlation operation is applied for a small
block within a relatively small surrounding area.

B. Design of Block Correlator

We consider coding of the translation of each block in
the image frame. We use a dynamic cross-correlator to track
the movement in the image. There are two types of optical
correlators: the matched filtering correlator [33] and the
joint transform correlator [34], [35]. The matched filtering
correlator requires a preparation of a Fourier hologram of
the input image. The input key is used to illuminate the
hologram, from which the correlation image as well as the
convolution image can be obtained. The joint transform
correlator places the input image and the key at the same
input plane. The Fourier transform of the light distribution
at the input plane is recorded in a hologram. By illumi-
nating the hologram by a plane wave, the autocorrelation
image can be obtained. From the autocorrelation image,
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the correlation image can be extracted. The high-resolution
spatial light modulators (SLM’s) can be used to implement
dynamic correlation operations.

In the matched filtering correlator, the input image is
recorded in a holographic medium as a Fourier hologram.
When the hologram is illuminated with an input key, the
correlation and convolution images can be obtained as the
reconstructed waves.

In the Joint Transform correlator, the input image and
input key are placed at the same input plane. The hologram
records the Fourier power spectrum of the light distribution
of the input plane. Since the Fourier transform of the
Fourier power spectrum is the autocorrelation function of
the original input, a plane wave is used to read the recorded
hologram to obtain its Fourier transform at the detector
plane. By placing the input image and input key with
an appropriate displacement, the correlation of the input
key to the input image can be obtained as part of the
autocorrelation image.

We describe our interframe coding method using an
optical correlator as shown in Fig. 4. For the spatial domain,
either VQ or cosine transform methods can be used. First,
we consider the matching of a single block. Later, we
consider the matching of all the blocks in parallel.

Suppose the previous frame is already encoded. First,
the Fourier transform of the previous frame is formed on
the SLM and stored. Next, the current frame is loaded
into the source array. To encode a block from the current
frame, the Fourier transform of the block is superimposed
on the SLM. The light reflecting from the SLM forms the
cross-correlation of the block with the previous image on
the correlation plane. The position of the correlation peak
represents the position of the matching block. The next
step is to determine the differential block that represents the
difference between the matched block and the source block.
To obtain the differential block, the correlation peak is used
to address the SLM again. When a point source located
at the position of the correlation peak is used to address
the SLM, the image recorded in the SLM is reconstructed
on the current frame array with the displacement equal to
that of the point source from the center of the correlation
plane. Thus the previous frame is superimposed on the
current frame with the correct displacement that matches the
matched block and the source block. This allows differences
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in the pixel values of the source block and the matched
block to be detected. The displacement vector and the pixel
values of the differential block are used to encode the source
block. '

The block correlator finds the displacement vector and
the pixel values of the differential block for each source
block sequentially. The current frame is encoded as the set
of displacement vectors and differential blocks.

We can use the Joint transform optical correlator for block
matching. The block-matching system is depicted in Fig. 5.

In this method, there are two recording phases for each
block-matching operation. In the first recording phase, the
previous frame and a block from the current frame are
placed at the same source array. The light from the source
array forms its Fourier transform on the SLM, and it is
stored in the SLM as the Fourier power spectrum. A plane
wave is used to read the SLM. The Fourier transform of
the light distribution at the SLM is formed on the detector
array. The detector array finds the correlation peak and the
position of the peak is transferred to the source array. The
SLM is reset for the second recording phase. In the second
recording phase, the previous frame and a point source
placed at the position of the correlation peak are used to
illuminate the SLM. The SLM stores the power spectrum
and the plane wave is used to read the SLM. The light
from the SLM forms the previous frame with the correct
displacement so that the differential block is obtained at
the detector array.

The previous two correlators compute the correlation of
a single block. If we wish to obtain the correlation of

all the blocks in parallel, we may do so by increasing
the hardware complexity. The current image is divided
into blocks as before. Then, they are demagnified and
transformed into smaller blocks with positional offsets.
Figure 6 illustrates this transformation. Blocks are separated
by sufficient distance, so that the correlation of each block
to the frame is obtained without overlapping.

V. DISCUSSION

We introduced optical techniques for transform coding,
vector quantization, and video coding.

The advantage of using a lens to compute a cosine
transform is its speed. The computational time does not
depend on the size of the input image. The drawback is its
analog nature which requires detectors with a large dynamic
range.

The advantages of our holographic vector quantizer are
its speed and small size. Encoding a vector is carried out in
constant time. The scalability of the system is determined
by the dynamic range of the photocrystal rather than the
diffraction and aberration of the optical system. Although
LiNbO; has large dynamic range to allow a number of
multiple exposures, a large number of exposures reduces
the dynamic range of each image.

The advantage of using an optical correlator for video
coding is its speed. Optical correlation techniques have
been used in real-time target analysis. The optical system
to perform block-matching operations is not complicated.
The limitation is its limited dynamic range. The dimension
of the block and the range of pixel values are limited by
the dynamic range of the detectors.
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